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An overview of some of the basic concepts in the modern first-principles band theory of disordered 
alloys is given. The question of how the notion of Bloch energy bands and Fermi surfaces generalizes 
to the case of the disordered system, insofar as the average electronic spectrum is concerned, is 
stressed. The theory is illustrated with examples chosen from the work on binary alloys; a few 
examples of the very recent studies of disordered phases of the high-Tc superconductors are also 
included. The application of the alloy theory to obtain electron and electron-positron momentum 
densities involved in the analysis of Compton scattering and positron annihilation (angular correla-
tion) experiments in alloys is discussed, with a selection of relevant theoretical and experimental 
studies. 
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I. Introduction 

By the early 1970s, it was evident from the extensive 
work on tight-binding Hamiltonians that the coherent 
potential approximation (CPA) provides a reasonable 
mean-field theory of the average electronic properties 
of random substitutional alloys. These simple model 
Hamiltonians, however, are not adequate for dis-
cussing the electronic spectra of alloys in any detail. 
There was thus a natural impetus to consider the ap-
plication of the CPA to the muffin-tin Hamiltonian, 
which is well-known to provide a realistic description 
of the crystal potential in close-packed systems, espe-
cially in metals; by inserting suitably placed "empty" 
spheres to increase the packing fraction, a reasonable 
treatment of more open structures is also possible. 
This effort has led to the development of a successful 
first-principles band theory of disordered alloys. The 
formalism, which makes extensive use of the multiple 
scattering approach and is thus limited to neither the 
strong nor the weak scattering regimes, reduces to 
the Korringa-Kohn-Rostoker (KKR) band structure 
scheme in the perfect-crystal limit and for this reason 
is usually referred to as the KKR-CPA [1-7] . 
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It is noteworthy that the Bloch energy band theory 
for a perfect crystal hinges on the presence of long-
range order in the system. Therefore, this theory can-
not be applied directly to the case of a disordered alloy 
where the translational symmetry is broken. Never-
theless, insofar as the average properties of the alloy 
are concerned, substantial progress is possible by 
replacing the disordered system by an ordered one 
of suitably chosen effective atoms. It is this class of 
approximations, the so-called single-site approxima-
tions, to which the CPA belongs. The periodicity thus 
having been restored, the notions of energy bands, 
Fermi surfaces, Brillouin zones, etc., then occur natu-
rally in describing the alloy spectrum, albeit with cer-
tain inherent subtleties. There is clear experimental 
evidence that, despite the lack of long-range order, 
these concepts continue to play a useful role in wide 
classes of disordered alloys. 

The purpose of this article is twofold. First, we 
discuss some of the basic concepts underlying the 
modern band theory of disordered alloys. Second, we 
provide an overview of the application of the K K R -
CPA-type approach to obtain electron and electron -
positron momentum densities relevant for an analysis 
of the Compton scattering and the angular correlation 
of positron annihilation radiation (ACAR) experi-
ments. Within the limitations of space, many topics 
are hardly mentioned or not touched at all. Among 
these are recent important advances in formalism and 
application to multi-atom-per-unit-cell complex struc-
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tures, extensions of the theory to treat ordering and 
clustering effects, relativistic effects, at tempts to go 
beyond the single-site-approximation CPA frame-
work, and efforts to include non-muffin-tin correc-
tions to the muffin-tin Hamiltonian. Many physical 
properties of alloys have been investigated within the 
KKR-CPA framework, including momentum densi-
ties, charge densities, band spectroscopies, itinerant 
magnetism, phase stabilities, transport, and a variety 
of related issues. The set of review articles and refer-
ences cited should, however, allow the interested reader 
access to the relevant literature [1-25]. 

An outline of this article is as follows. The introduc-
tory remarks are followed in Sect. II by an overview of 
the alloy theory, including brief comments on the 
common single-site approximations, namely, the vir-
tual crystal (VCA), the average f-matrix (ATA), and the 
coherent potential (CPA) approximations. We discuss 
how the concept of the Bloch energy bands and the 
Fermi surface generalizes to the disordered case, with 
illustrative examples drawn from mostly the binary 
alloys. As examples of complex systems, a few results 
pertaining to the very recent work on the high-Fc 

superconductors, namely, the simple cubic perovskites 
[11], B a x K 1 _ x B i 0 3 and B a P b ^ B i ^ O a , and the 
body-centered tetragonal L a 1 _ x S r x C u 0 4 , are pre-
sented [7]. Section III turns to the question of electron 
and electron-posi t ron momentum densities [18-25]. 
Here, brief remarks on the relevant KKR-CPA for-
malism are followed by illustrative results in a number 
of Cu-based alloys, which have been the subject of 
numerous theoretical and experimental studies. Sec-
tion IV makes some concluding remarks. 

II. An Overview of the Alloy Theory 

a) Formalism 

We are concerned with the average electronic spec-
trum (i.e., an average over the possible microscopic 
configurations of the constituent atoms) of the ran-
dom subst i tut ional^ disordered alloy AxB1_ ; c . The 
fundamental idea behind the alloy band theory is to 
replace the disordered system by an ordered system of 
appropriately chosen effective atoms, as represented 
by Figure 1. 

To proceed further, the effective atom needs to be 
specified. This introduces other well-defined approxi-
mations [1-7] , The simplest is the virtual-crystal 
approximation (VCA), where the effective potential, 

Veff J( Veff Jf Veff J 

Veff \ Veff i Veff J 

Veff )( Veff )( Veff J 

(a) (b) 
Fig. 1. A schematic illustration of how the disordered assem-
bly of A and B atoms is replaced by an ordered crystal of 
effective a toms for discussing the average properties of the 
alloy. 

F v c a , is the average of the A and B potentials: 

Vvca = xVA + (1-X)VB. (1) 

VCA is generally a poor scheme for describing systems 
that are strongly disordered in the sense that F

A
 and 

VB differ substantially. Also, in view of (1), F
V C A

 is a 
real quantity, so that the VCA yields a strictly vanish-
ing disorder smearing of states. 

In the average-Mnatrix approximation (ATA), one 
averages the A and B atom r-matrices, rather than the 
potentials, i.e. 

tATA = xtA + (l - x ) f B . (2) 

The r-matrix is related straightforwardly to the atomic 
potential V by the equations of potential scattering. 
Despite its relative simplicity, the ATA has been found 
to capture the dominant physics of disorder in wide 
classes of alloys. 

Finally, the coherent potential approximation 
(CPA) is specified by the condition that the average 
scattering from A and B atoms placed in the CPA 
medium vanishes, i.e., 

x t f + (1 - x) t f = 0 . (3) 

Here, rA
ff and tB

f respectively denote the r-matrices of 
A and B atoms placed in the effective medium. Equa-
tion (3) is to be solved for the unknown quantity fe f f , 
the solution being teff = rCPA. 

The modern alloy theory is based on the applica-
tion of the single-site approximation to treat disorder 
effects within the framework of the muffin-tin Hamil-
tonian. The CPA is the most satisfactory of the ap-
proximations as it treats disorder selfconsistently. The 
resulting KKR-CPA formalism proceeds naturally in 
terms of the angular-momentum representation, mak-
ing extensive use of the multiple scattering theory 
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techniques. The central objects in the formalism are 
the ensemble-averaged one-particle Green's function 
G(z), whose imaginary part is related to the average 
density of states, and the one-site restricted averages 
of the Green's function, GA(z) and GB(z), which yield 
the effective charge densities in the A and B spheres. 
Most recently, [10] has rigorously extended the KKR-
CPA Green's function into the complex energy plane 
and exploited its analytic properties to obtain a 
powerful scheme for a parameter-free charge- and 
spin-selfconsistent treatment of the electronic struc-
ture of complex multi-component alloys with many 
atoms per unit cell; furthermore, by invoking the 
spectral representation of the Green's function, we are 
able to apply a tetrahedron-type Ar-space integration 
method in the theory of muffin-tin alloys, permitting 
us to treat for the first time the ordered compounds, 
the single-impurity problem, and the concentrated 
disordered alloys with the same set of computer codes. 
We refer to [10] and various review articles for a dis-
cussion of these and related aspects of the KKR-CPA 
methodology and formalism [1-7, 9, 12]. 

b) Complex Energy Bands 

The concept of a Bloch energy level perhaps plays 
the most fundamental role in the band theory of per-
fect crystals. It turns out that something similar can 
still be defined in a disordered alloy, even though the 
system does not possess long-range order. As in the 
case of a perfect crystal, the "energy bands" for the 
ordered medium of effective atoms can be shown to be 
given by the secular equation [1, 2] 

\\t;ff
1(E)-B(k,E)\\=0. (4) 

Here, the determinant is implicitly taken to be in the 
angular-momentum space (i.e. the space of orbital and 
magnetic quantum numbers, L = ( / , m)). The B(k,E) 
matrix depends only on the crystal lattice and is inde-
pendent of the atomic potentials. In a perfect A (or B) 
crystal, te[(-*tA (or fB) and (4) reduces to the K K R 
equation used widely to compute energy bands in 
perfect crystals. Equation (4) therefore forms a natural 
basis for constructing a band theory of random alloys. 
If we fix the value of the crystal momentum k and 
solve (4) for the bands E(k), the solutions are real in a 
perfect crystal, but become complex numbers in the 
alloy. The presence of a non-zero imaginary part of 
energy levels is a fundamental physical effect which 
represents the disorder-induced smearing of states in 
an alloy. 

Figure 2 shows typical complex energy bands in 
Cu-based alloys [26-29], As indicated in the caption, 
some of the results are based on the ATA, while others 
on the CPA. The Cu-potential in Fig. 2 a is also used 
in t h e C U 9 0 A 1 1 0 a n d C u 9 0 G e 1 0 c o m p u t a t i o n s . T h e 
C u 7 0 N i 3 0 and C u 7 0 Z n 3 0 results use a different Cu-po-
tential; nevertheless, all alloys are comparable insofar 
as the Cu d-band position is concerned. Whereas the 
various panels of Fig. 2 cannot be compared with each 
other in detail, this figure allows us to delineate simi-
larities and differences in this series of alloys. In all 
cases, the Cu d-band complex is seen to suffer rela-
tively small shifts on alloying. Ni induces new Ni-re-
lated d-bands (around 8.2 eV in Fig. 2 b), which are 
heavily smeared due to disorder. The states of s-p 
symmetry (e.g. , X4,), on the other hand, are virtu-
ally unaffected by disorder in CuNi and are un-
damped. In contrast to Ni, the addition of Ge or Al 
causes large smearings and shifts in the s-p-type states, 
Figs. 2d and 2e. Among the polyvalent solutes, Zn 
gives rise to a narrow 3 d-band (around —1.4 eV in 
Fig. 2 c), whereas in CuGe, the impurity band is of s-p 
symmetry and is several electron-volt wide. It is clear 
that different impurities influence the spectrum of Cu 
in fundamentally different ways, and that the effective 
disorder parameter in transition and noble metal 
alloys possesses a very complicated nature. In general, 
the effective disorder parameter is Ac-dependent and, 
even for a given A;-value, the disorder seen by states of 
various symmetries can differ qualitatively. Note that 
aspects of the alloy bands could be modelled within 
simpler schemes. For example, the growth of the 
Fermi surface of Cu with the addition of Zn is well 
described by the virtual-crystal approximation and 
also by the rigid-band model (RBM); in RBM, CuZn 
is assumed to possess the band structure of Cu, inde-
pendent of Zn concentration, but the RBM fails com-
pletely in the energy range of the Zn 3 d-resonance. 
The present band theory, however, encompasses 
various behaviors within a single framework. 

The complex energy bands are amenable to direct 
experimental observation via angle-resolved photo-
emission (ARPES) measurements from surfaces of 
alloy single crystals. Many such studies have been 
carried out [16, 30-32] . Figure 3 presents an example 
of the uppermost valence bands in Cu, CuAl, and 
CuGe solid solutions and indicates a good accord 
between theory and experiment. The disorder smear-
ings of the complex bands, as deduced from the mea-
sured increase in spectral widths in these alloys, are 
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Cu C u ^ N i ^ Cu70Z n30 C u 90 A l i 0 Cu90Ge10 

Fig. 2. Complex energy bands along the symmetry direction T - X in the Brillouin zone for (a): Cu, (b): C u 7 0 N i 3 0 (ATA, Bansil 
et al. [26]), (c): C u 7 0 Z n 3 0 (ATA, Bansil et al. [27]), (d): CU90A110 (CPA, Asonen et al. [28]), and (e): C u 9 0 G e 1 0 (CPA, Prasad 
and Bansil [29]). The vertical length of shading around the levels equals two times the imaginary part, Im E(k), of the complex 
energies. 

Fig. 3. Theoretical and experimental dispersion of the upper-
most conduction band in Cu, CuAl, and CuGe in the (100) 
mirror plane. k[: denotes the component of crystal momen-
tum parallel to the (100) face. The imaginary parts of the 
alloy complex bands are not shown (after [31]). 

also in reasonable accord with the corresponding 
theoretical predictions [31]. Figure 4 gives an example 
of a relativistic KKR-CPA computat ion compared 
with the ARPES experiments (a C u 7 5 P t 2 5 (100)-sur-
face is considered), showing once again a reasonable 
agreement between theory and experiment [13, 32]. 

In a perfect crystal, every Bloch level possesses a 
unit spectral weight. In sharp contrast, the complex 
energy levels do not possess uniform weights. For this 
reason, the average alloy density-of-states cannot be 
obtained by constructing a histogram of the complex 
energy levels. This difference between the complex 
bands and their perfect-crystal counterparts is a fun-
damental one and underlines the fact that a calcula-
tion of the density of states in the disordered system 
entails a level of intricacy well beyond the perfect 
crystal case. 

It is noteworthy that, in a formal sense, the elemen-
tary quantity with a well-defined meaning in the for-
malism is the spectral density function AB{k, E). In a 
perfect crystal, AB(k, E) consists of a superposition of 
^-functions at the Bloch levels E(k). In the alloy, these 
^-functions spread out into finite peaks. As illustrated 
by Fig. 5, the real and imaginary parts of the complex 
levels respectively yield the positions and half-widths 
of the associated peaks in AB(k, E). In principle, the 
information given by the complex bands is thus con-
tained in the plots of AB(k, E) for various /c-values. 
However, the complex bands permit a convenient 
visualization and interpretation of the alloy spectrum. 
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Density of States (states/ryd) 

Fig. 4. (a) Relativistic KKR-CPA complex-energy bands in C u 7 5 P t 2 5 along the symmetry direction T - X . Typical disorder-in-
duced smearings of energy bands are represented by vertical bars around bands. Filled circles give the E, k points obtained 
from the angle-resolved photoemission measurements; dashed lines connecting these circles depict the final state (free 
electron) band shifted down on the energy scale by the corresponding photon energies. The hatched regions on the right-hand 
side of the panel give the average location and the F W H M of the Pt-derived structures in the ARPES spectra, (b) Cu (solid 
line) and Pt (dashed line) component densities of states in C u 7 5 P t 2 5 (after [32]). 

c) Alloy Fermi Surface 

Many experiments show that the concept of the 
Fermi surface (FS) often continues to be useful in 
disordered alloys [2 ,18 -25 ,15 -17 , 33]. As in the case 
of perfect crystals, the dimension of the alloy FS in a 
given direction in the Brillouin zone may be deter-
mined by the intersection of the Fermi energy £ F with 
the associated complex energy band. The smearing of 

states then implies that the alloy FS will not be 
sharply defined and that any point ä ( £ f ) on the FS 
will possess a half-width Ak(Er). Although Ak(EF) 
and the imaginary part Im E(k) of the complex levels 
represent the same physical effect, namely, the disor-
der induced smearing, the manner in which these two 
quantities occur in the theory should be distinguished. 
|ZIA:(£f)| is the half-width of a peak in the spectral 
density, AE(k, £F), plotted as a function of (in any 
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Fig. 5. ATA and CPA spectral density AB{k, E) in C u 7 5 N i 2 5 
at the point X in the Brillouin zone. The complex levels at X 
are marked a long the energy axis. 

2|AK (EF)| /»(K.EP) 

Fig. 6. A schematic plot of a complex-energy band. The 
meaning of the Ar-width 2\Ak(EF)\ and the associated E-
width, 2\AE\ in terms of the spectral funct ion g(k, E) is 
illustrated. 

direction), whereas Im E(k) yields the half-width in 
energy, \AE\, when AB{k, E) is considered as a func-
tion of E for a fixed k, see Figure 6. 

Many studies of Fermi surfaces of concentrated 
alloys via positron annihilation (2D-ACAR) [18-25], 
and of dilute alloys via the de Haas-van Alphen effect 

(dHvA) [33] have been reported; some FS work via 
angle-resolved photoemission [16] in alloys also exists. 
We present a few illustrative examples now. Figure 7 
shows that the shape of the FS in Cu and C u 7 0 Z n 3 0 

is similar and that the theory and experiment are in 
good accord in this regard [34, 35], The Fermi sur-
faces of noble-metal-based solid solutions are in fact 
expected to be similar, because the Fermi energy in 
these alloys often intersects only the uppermost va-
lence band, which approximately preserves its shape 
on alloying, see Figure 2. The FS smearing in Fig. 7 is 
indicated by shading of the CPA curves. The length of 
the shading on any straight line drawn in the plane of 
the figure is 4 times the apparent half-width Ak(EF) of 
the FS along this direction; for example, the half-width 
along the line B passing through the point P in Fig. 7 b 
is nearly 3 to 4 times larger than along the line A. 

The FS of CuGe presents an interesting case study 
[29], showing non-linear composition dependence of 
the radii, Figure 8. In the limit of low Ge concentra-
tion ( < 0.5 a t .% Ge), the neck as well as the belly radii 
increase at roughly half the rigid-band rate for quadri-
valent impurities, in accord with the dHvA measure-
ments [36, 37], By contrast, in the high concentration 
regime ( > 5 a t .% Ge), the rate of change of the various 
FS radii corresponds to an effective Ge valence of 
somewhat less than 4. More recently, [38] reports a 
high-resolution 2 D-ACAR investigation of the CuGe 
alloys, finding a good accord with KKR-CPA predic-
tions of both the FS radii and their disorder-induced 
widths. 

The non-linearity in the composition dependence of 
the FS of CuGe is related to the appearance of the 
Ge-derived impurity band well below the Fermi energy, 
see Figure 2e. Another striking instance of a system 
where changes deep within the spectrum influence the 
behavior of the FS is provided by a - P d H x solid solu-
tions. In this case, computat ions as well as dHvA 
measurements show that the FS changes non-uni-
formly on H uptake [39]; the T-centered electron 
sheets of Pd grow at approximately the rigid-band 
rate, while the hole pockets centered around X- and 
L-symmetry points shrink at only half the rigid-band 
rate. Also, the disorder smearing of the electron sheets 
in P d H x is quite substantial, even though the states 
associated with the hole ellipsoids are virtually un-
damped. 

Figure 9 considers FS radii in CuPd alloys. In this 
connection [40] focuses on the question of possible 
flattening of the FS of Cu along the [110] direction 
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[101] 4 

Fig. 7. Intersections of the Fermi surface of Cu (unshaded solid) and C u 7 0 Z n 3 0 (shaded) in three different planes in the 
Brillouin zone. Experimental points in Cu (circles) and C u 7 0 Z n 3 0 (triangles) are after [35], The lines A and B in (b) are 
discussed in the text (after [34]). 

A MCLARNON AND WILLIAMS 

a SUZUKI ET AL. 

— RIGID BAND 

- o - C P A 

Ge CONCENTRATION (atomic percent) Ge CONCENTRATION (atomic percent) 
Fig. 8. The CPA changes in (a): the neck radius, and (b): the (100) and (110) belly radii of Cu as a function of Ge concentration. 
The disorder smearing \Ak(EF)\ is shown by vertical bars attached to the theoretical points. The dashed lines give the 
rigid-band results for solutes of valence Z = 3 and Z = 4. The experimental points [36] are indicated in the legend; the dHvA 
slope in (a) is from [37] (after [29]). 

I I 1 
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Pd c o n c e n t r a t i o n ( a t o m i c f rac t ion ) 

Fig. 9. kF/kBZ where kF is the FS radius in a given direction 
and kBZ is the Brillouin-zone dimension in the same direc-
tion. Radii along the [100] and [110] direction are shown. 
Least-squares fits through the data of [40] (open squares) are 
shown by solid lines. Theoretical results are: [42] (filled dia-
monds), and [41] (open triangles). 

upon adding Pd. KKR-CPA calculations predict an 
appreciable flattening effect up to about 40 at .% Pd 
[41, 42]; the FS smearing in CuPd is rather small. This 
flattening is believed to be responsible for driving the 
short-range order that has been observed in CuPd 
alloys in diffuse electron and x-ray scattering studies 
[41]. The agreement between theory and experiment is 
good, especially with the KKR-CPA computations of 
[42]. The more rapid decrease of k F /k B Z in the [110] 
direction compared to the [100] direction provides 
clear evidence that the FS of Cu indeed flattens along 
[110] upon alloying. We note that such a flattening is 
seen in KKR-CPA calculations in other Cu-based 
alloys with decreasing electron/atom ratio as well as 
in rigid-band computat ions [34]. 

d) High-Tc Superconductor Alloys 

We consider here some applications of the K K R -
CPA scheme to complicated structures involving many 
atoms per unit cell, the examples so far having been 
limited to binary alloys. 

The total KKR-CPA density of states in the 
simple cubic perovskites BaxK1_ J CBi03 (BKB) and 
the B a P b 1 _ x B i x 0 3 (BPB) is presented in Fig. 10 over 
the entire composition range [11], The computat ions 
are charge self-consistent and involve no parameters 
other than the lattice data. Figure 11 compares the 
density of states at the Fermi energy (£"F) in the alloys 
with the corresponding predictions of the rigid band 
model based on the BaBi0 3 density of states. Fig-
ures 10 and 11 allow us to delineate the rigid band as 
well as non-rigid band changes in the spectrum of 
BaBi0 3 induced by (Ba-K) and (Bi-Pb) substitution. 

Figure 10 a shows that for energies around the 
Fermi energy of B a B i 0 3 , the shape of the density-of-
states curve is little affected by Ba-K substitution. In 
contrast, the Pb-Bi substitution rapidly smooths the 
cusp at % 0.6 Ry. This effect is related to the fact that 
the density of states around EF in BaBiOa arises 
mainly from Bi- and O-sites, which are not influenced 
substantially when Ba is replaced by K ; the Pb- and 
Bi-site densities, on the other hand, are quite different 
in this energy region and thus lead to considerable 
changes upon alloying. Interestingly though, the total 
density of states at EF in both alloys (Fig. 11) is rather 
close to the predictions of a BaBi0 3-based rigid-band 
model [43, 44]. However, in view of the preceding 
observations, the agreement between the rigid-band 
and the KKR-CPA results in Fig. 11 in the case of 
BPB should be considered fortuitous rather than of an 
intrinsic significance. 

Turning to the energy region of 0.15 to 0.45 Ry, 
Fig. 10 shows that the shape of the density-of-states 
curve is quite similar in BKB as well as BPB for 
0.3 < E < 0.45 Ry in the upper part of the Bi 6 s - O 2 p 
complex. For lower energies, 0.15 < E < 0.3 Ry, we 
see substantial changes in the spectrum. For example, 
the largest peak at 0.29 Ry in B a B i 0 3 splits and be-
comes less prominent in BKB; in contrast, this peak is 
rather unaffected in BPB. The relative weights, posi-
tions, and shapes of the density-of-states peaks at 
0.23 Ry and 0.25 Ry in B a B i 0 3 are influenced consid-
erably in both BKB and BPB. The preceding changes 
in the spectra between 0.15 and 0.3 Ry arise not only 
from changes in the component densities of states as-
sociated with the substituted sites, but also from the 
indirect changes induced on the O- and other sites as 
a result of alloying. 

Figure 12 presents the results of a charge self-con-
sistent KKR-CPA computation in Lax 7 Sr 0 3 C u 0 4 

for the ideal body-centered tetragonal lattice assuming 
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ENERGY (Ry) ENERGY (Ry) 
Fig. 10. Charge self-consistent KKR-CPA total densities of states in B a ^ K j ^ B i O j and B a P b 1 _ x B i ; c 0 3 . Fermi energies (EF) 
are as marked (after [11]). 

random occupation of the La-sites by La and Sr 
atoms, together with a corresponding self-consistent 
K K R calculation of the parent compound L a 2 C u 0 4 

[7]. The total density of states in L a 2 C u 0 4 and 
Lax 7Sr 0 3 C u 0 4 is compared in Fig. 12, with Fig. 13 
giving a more detailed comparison in the region of the 
EF. Aside from an overall smoothing of the density of 
states, the main effect is the lowering of the EF on 
substituting Sr for La; in particular, the shape of the 
density-of-states curve near EF, Fig. 13, is hardly 
affected upon Sr-substitution. The component densi-
ties of states associated with the La- and Sr-sites in the 
alloy (not shown) are found to be rather similar. These 
ab initio results support the rigid band picture [45] of 
the electronic structure of L a 2 _ x S r x C u 0 4 , based on 
band theory computations on L a 2 C u 0 4 , invoked 

commonly in the literature. (Note, however, that the 
physical compound L a 2 C u 0 4 is insulating, not metal-
lic as predicted by the band theory.) From the data of 
Fig. 13, we estimate that the EF will in fact lie in the 
van Hove singularity in the density of states for ap-
proximately 20% Sr content (i.e. x = 0.20) where the 
highest superconducting transition temperatures are 
experimentally observed. 

III. Electron and Electron-Positron Momentum 
Densities in Alloys 

a) Formalism 

The electron momentum density g(p) is related to 
the (p,p) matrix element of the one-electron Green's 
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Fig. 11. Total density of states at the Fermi energy for the 
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in Ba ; cK1_ J CBi03 and B a P b 1 _ x B i x 0 3 (after [11]). 
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Fig. 13. The density of states near the Fermi energy (£F) in 
L a 2 C u 0 4 and La j 7Sr0 3 C u 0 4 (after [7]). 

ENERGY (Ry) 
Fig. 12. The KKR-CPA density of states in the disordered 
La! 7Sr0 3 C u 0 4 is compared with the corresponding KKR 
results for L a 2 C u 0 4 (after [7]). 

function, in terms of which g(p) is expressed as [2, 21] 

Q(P) = ~~ T d £ I m < G ( p , / > ; £ ) > . (5) 
n - o o 

Equat ion (5) is a convenient start ing point for the 
calculation of the average momentum density in alloys, 

because <G> can be calculated within the f ramework 
of the CPA or the ATA theory. 

The average electron-positron m o m e n t u m density 
g2y{p) relevant for the angular correlat ion of (two-
photon) annihilation radiat ion in a disordered alloy 
can similarly be expressed in terms of the electron and 
posi t ron Green's funct ions as [2, 21] 

1 
Q2y(P) = — J dr J d r ' exp [ - i p • (r-r')] 

TC 

• f d £ / ( £ ) f d £ + / + C E + ) 

• <Im G(r, r ' ; E) Im G + ( r , r ' ; £ + ) ) , (6) 

where + refers to the posi t ron quanti t ies and / ( E ) is 
the Fermi-Dirac distr ibution funct ion. In the spirit of 
the independent-particle model (IPM), it is reasonable 
to decouple the average of <Im G Im G + ) as [46] 

<Im G Im G + > -> Im <G> Im <G+ > . (7) 

F o r m (7) is expected to be a good approx ima t ion in 
transit ion and noble metal alloys [47]. Use of the con-
volution theorem on the r ight-hand side of (6) then 
yields 

Qiyip) = \ I j d £ / ( £ ) f d £ + f+(E+) 
n k + 

• X <Im G(p - k+ - Kn,p - k+ - Knr, £)> 
nn' 

• <Im G+(k+ + K„, k+ + Kn.; £ + ) ) . (8) 



Fig. 14. Electron momentum den-
sity Q(p) (upper set of curves) and 
electron-positron momentum den-
sity Qiyip) (lower set of curves) in 
Cu, C u 7 5 N i 2 5 , C u 5 0 N i 5 0 , and Ni 
along the [110] direction (after [46]). 
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It is noteworthy that the evaluation of g (p) requires 
only the diagonal elements Im (G (p,p)), whereas in 
order to compute g2y(p) a knowledge of the general 
elements Im <G(p, q)> and Im <G+(p, q)y is necessary 
(see [46-48] for details of these and other aspects of 
the relevant formalism). 

Effects of electron-positron correlations, neglected 
in writing (6) and (8), should be included in a proper 
theory of g2y(p). The semi-empirical "momentum" as 
well as "energy" and angular-momentum dependent 
enhancement schemes of the sort that have been in-
voked by various authors in perfect metals should be 
adapted to the case of alloys [49]. 

The experiments usually do not measure the three-
dimensional functions g(p) and g2y(p) but only their 
one or two-dimensional integrals in momentum space. 
The Compton experiment is related to the two-dimen-
sional integral [22, 23] 

J(P2) = ttdpzdpyg(p), (9) 

where g(p) is the electron momentum density. Simi-
larly, the older 1 D-ACAR experiment measures a 
two-dimensional integral of g2y(p), but the 2D-ACAR 
experiment, on the other hand, resolves two momen-
tum components and measures the one-dimensional 
integral g2y(p) along a specific line in momentum space, 
i.e. [19-21] 

+ 00 

N2y(px,py)= J dpzg2y(px,py,pz), ( 1 0 ) 
— 00 

where we have assumed that the axis of the positron 
camera is aligned along the z-axis. 

b) Illustrative Examples 

Figures 14 and 15 provide illustrative g{p) and 
g2y(p) results in CuNi solid solutions [46]. The upper 
set of curves in Fig. 14 shows that some of the changes 
in g(p), as we go from Ni to Cu, are: (i) the break at 
approximately 0.5 a.u. in Ni in the first Brillouin zone 
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Fig. 15. Same as the caption of Fig. 14, except that this figure gives momentum densities along the off-the-zone-center 
direction joining the [111] and [113] reciprocal-lattice points (see inset) (after [46]). 
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(BZ) moves to higher momenta on alloying, and the 
size of the break increases; this results f rom an in-
crease in the [110] Fermi Surface (FS) radius /c110 and 
of the s-p character of the associated states with in-
creasing Cu concentration, (ii) The [110] FS radius 
also yields "Umklapp" breaks in g{p) around 
p = 2 a.u.; these breaks move to correspondingly 
lower momenta with increasing k l l 0 . (iii) In the alloys 
the breaks are not sharp but are rounded owing to 
disorder scattering of electrons. The preceding 
changes are seen to persist qualitatively in the lower 
set of curves for g2y(p). However, the g2y(p) curves 
decrease more rapidly with p compared to g(p) and 
thus appear to be more peaked in the first BZ. This 
difference between g(p) and g2y(p), which occurs more 
generally, is a consequence of the nuclear repulsion of 
the positron. 

Figure 15 considers the momentum density along 
an off-the-zone-center direction. The particular direc-
tion shown is interesting because a dip is seen around 
pz = 1.8a.u. in Ni and C u 2 5 N i 7 5 but not in Cu or 
C u 5 0 N i 5 0 ; this dip arises from the presence of d-hole 
pockets in the Ni-rich alloys. It turns out that, owing 
to momentum and angular momentum selection rules, 
the disappearance/appearance of d-holes does not 
cause a dramatic change in the momentum density in 
the first BZ, but larger effects occur along the off-cen-
ter direction at higher momenta in Figure 15. By com-
paring the upper and lower set of curves, we further 
note that this dip continues to be seen clearly even 
when the positron spatial distribution effects are in-
cluded, although the size of the dip is reduced. 

Figure 16 considers the Compton profile J(q) (q is 
the pz of (9) after spherical averaging) in polycrystalline 
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Fig. 16. Measured and calculated difference Ni(«?)] 
between the Cu and Ni Compton profiles (after [50]). 

CuNi alloys [50]. The agreement for Jcu —JNi between 
theory and experiment is seen to be good, despite the 
fact that | JCu — JN i | is at most a few percent of the 
value of JCu(q). Both curves in the figure show a min-
imum at q « 0.6 a.u. This feature is associated with the 
condition gCu(p) = eNi(p), which indeed occurs around 
a p value of 0.6 a.u. in CuNi alloys close to the FS 
break in Cu in the first BZ (see e.g., Fig. 14); the max-
imum at q x 2 a.u. possesses the same physical origin 
and reflects the position of the FS break in the fourth 
BZ. The broad dip around q = 4 a.u. in the solid curve 
is an artifact of the experiments and is not physically 
important ; it has to do with the K-electron contribu-
tion, which, owing to experimental conditions, is in-
cluded in the spectra in the range of 3 .3-4 .3 a.u. only 
in JNi(g), but not in Ref- [50] further compares 
KKR-CPA calculations with Compton measurements 
on CuNi alloys and finds a good overall agreement for 
the entire range of compositions. These results suggest 
that it may be possible to extract useful information 
concerning FS geometry from high-resolution Comp-
ton experiments on alloys, especially if single crystals 
are used. 

Turning to CuGe and CuPd systems, Figs. 17 and 
18 show that very substantial changes occur in g(p) as 
Cu is alloyed with Ge or Pd. gip) in Cu is flat and 
featureless in the first BZ, but in CuGe it develops a 
pronounced peak and in CuPd a dip at p = 0 [38, 40]. 
These effects contrast sharply with the case of CuNi 
alloys discussed in Fig. 14 where the momentum 
density remains quite flat in the first BZ. Owing to 
momentum and angular momentum selection rules, 

a p / ( 2 T T ) 

Fig. 17. g(p) along [100] in Cu (thin solid curve) and 
C u 9 0 G e 1 0 (heavy solid curve). Contributions to g(p) in the 
alloy for E > 0 (dashed) and E < 0 (chain curve) are shown. 
The inset gives the complex band structure of C u 9 0 G e 1 0 
(after [38]). 

0 0.5 1 
MOMENTUM (2ir/a) 

Fig. 18. g(p) in Cu (solid) and C u 8 5 P d 1 5 (dashed) along the 
[100] direction (after [40]). 

g(p) at p = 0 arises from states around the valence 
band edge; in particular, the d-bands do not con-
tribute to g(p) at p = 0. The electron states at the 
valence band edge, which lie some 10 eV below the 
Fermi energy £ F , are difficult to access experimentally; 
in photoemission, for example, these states possess 
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rather small intensities and are masked by back-
ground and secondary emissions. CuGe and CuPd 
thus provide striking examples where alloying effects 
deep in the spectrum produce clear signatures in g{p). 

The question of the extent to which the 2 D-ACAR 
spectra in CuGe and CuPd reflect the behavior of g {p) 
near p = 0 is considered in [38] and [40]. Ref. [38] in 
particular shows that a bump near p = 0 appears in the 
theoretical as well as the experimental 2 D-ACAR 
derivative spectra in CuGe. This bump is not present 
in Cu, and arises from the aforementioned peak in g(p) 
near p = 0 and constitutes a signature of the Ge-
derived impurity band of s-p character (the lower Ax 

band in the inset in Fig. 17); the agreement between 
theory and experiment in this regard offers evidence 
for the existence of this Ge-derived band in the alloy 
and a confirmation of these KKR-CPA predictions. 

In this vein, [40] compares cuts through the 2D-
ACAR measurements in CuPd alloys and shows that 
the experimental curves near p — 0 become distinctly 
flatter in the alloy. This feature is reproduced in the 
theoretical KKR-CPA computations (not shown), and 
arises substantially from the dip in g (p) near p = 0 
discussed in connection with Fig. 18 above. These re-
sults, like those on CuGe, indicate that 2 D-ACAR 
experiments can yield information concerning rather 
subtle features of the electronic spectrum, if they are 
used in parallel with corresponding theoretical work. 

IV. Conclusions 

We have discussed the basic concepts in the modern 
band theory of alloys that is based on the application 
of the CPA to treat disorder effects within the frame-
work of the muffin-tin Hamiltonian. The nature of the 
spectral density function in the alloy, and its represen-
tation in terms of complex energy bands and a Fermi 
surface possessing finite disorder-induced smearing is 
stressed. During the last year or so, the KKR-CPA 
methodology has been generalized to provide a power-
ful charge and spin self-consistent parameter-free treat-
ment of the electronic structure and properties of com-
plicated materials possessing many atoms in the unit 
cell. These developments will permit a first-principles 
discussion of the effects of various substitutions and of 
oxygen-vacancy disorder in the disordered phases of 
the high-Tc superconductors and other complex mate-
rials. 
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