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An overview of some of the basic concepts in the modern first-principles band theory of disordered
alloys is given. The question of how the notion of Bloch energy bands and Fermi surfaces generalizes
to the case of the disordered system, insofar as the average electronic spectrum is concerned, is
stressed. The theory is illustrated with examples chosen from the work on binary alloys; a few
examples of the very recent studies of disordered phases of the high-T, superconductors are also
included. The application of the alloy theory to obtain electron and electron-positron momentum
densities involved in the analysis of Compton scattering and positron annihilation (angular correla-
tion) experiments in alloys is discussed, with a selection of relevant theoretical and experimental

studies.
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I. Introduction

By the early 1970s, it was evident from the extensive
work on tight-binding Hamiltonians that the coherent
potential approximation (CPA) provides a reasonable
mean-field theory of the average electronic properties
of random substitutional alloys. These simple model
Hamiltonians, however, are not adequate for dis-
cussing the electronic spectra of alloys in any detail.
There was thus a natural impetus to consider the ap-
plication of the CPA to the muffin-tin Hamiltonian,
which is well-known to provide a realistic description
of the crystal potential in close-packed systems, espe-
cially in metals; by inserting suitably placed “empty”
spheres to increase the packing fraction, a reasonable
treatment of more open structures is also possible.
This effort has led to the development of a successful
first-principles band theory of disordered alloys. The
formalism, which makes extensive use of the multiple
scattering approach and is thus limited to neither the
strong nor the weak scattering regimes, reduces to
the Korringa-Kohn-Rostoker (KKR) band structure
scheme in the perfect-crystal limit and for this reason
is usually referred to as the KKR-CPA [1-7].
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It is noteworthy that the Bloch energy band theory
for a perfect crystal hinges on the presence of long-
range order in the system. Therefore, this theory can-
not be applied directly to the case of a disordered alloy
where the translational symmetry is broken. Never-
theless, insofar as the average properties of the alloy
are concerned, substantial progress is possible by
replacing the disordered system by an ordered one
of suitably chosen effective atoms. It is this class of
approximations, the so-called single-site approxima-
tions, to which the CPA belongs. The periodicity thus
having been restored, the notions of energy bands,
Fermi surfaces, Brillouin zones, etc., then occur natu-
rally in describing the alloy spectrum, albeit with cer-
tain inherent subtleties. There is clear experimental
evidence that, despite the lack of long-range order,
these concepts continue to play a useful role in wide
classes of disordered alloys.

The purpose of this article is twofold. First, we
discuss some of the basic concepts underlying the
modern band theory of disordered alloys. Second, we
provide an overview of the application of the KKR-
CPA-type approach to obtain electron and electron—
positron momentum densities relevant for an analysis
of the Compton scattering and the angular correlation
of positron annihilation radiation (ACAR) experi-
ments. Within the limitations of space, many topics
are hardly mentioned or not touched at all. Among
these are recent important advances in formalism and
application to multi-atom-per-unit-cell complex struc-
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tures, extensions of the theory to treat ordering and
clustering effects, relativistic effects, attempts to go
beyond the single-site-approximation CPA frame-
work, and efforts to include non-muffin-tin correc-
tions to the muffin-tin Hamiltonian. Many physical
properties of alloys have been investigated within the
KKR-CPA framework, including momentum densi-
ties, charge densities, band spectroscopies, itinerant
magnetism, phase stabilities, transport, and a variety
of related issues. The set of review articles and refer-
ences cited should, however, allow the interested reader
access to the relevant literature [1-25].

An outline of this article is as follows. The introduc-
tory remarks are followed in Sect. II by an overview of
the alloy theory, including brief comments on the
common single-site approximations, namely, the vir-
tual crystal (VCA), the average t-matrix (ATA), and the
coherent potential (CPA) approximations. We discuss
how the concept of the Bloch energy bands and the
Fermi surface generalizes to the disordered case, with
illustrative examples drawn from mostly the binary
alloys. As examples of complex systems, a few results
pertaining to the very recent work on the high-T,
superconductors, namely, the simple cubic perovskites
[11], Ba,K,_,BiO; and BaPb,_,Bi,O;, and the
body-centered tetragonal La,_,Sr . CuO,, are pre-
sented [7]. Section III turns to the question of electron
and electron—positron momentum densities [18—25].
Here, brief remarks on the relevant KKR-CPA for-
malism are followed by illustrative results in a number
of Cu-based alloys, which have been the subject of
numerous theoretical and experimental studies. Sec-
tion IV makes some concluding remarks.

II. An Overview of the Alloy Theory
a) Formalism

We are concerned with the average electronic spec-
trum (i.e, an average over the possible microscopic
configurations of the constituent atoms) of the ran-
dom substitutionally disordered alloy A B,_.. The
fundamental idea behind the alloy band theory is to
replace the disordered system by an ordered system of
appropriately chosen effective atoms, as represented
by Figure 1.

To proceed further, the effective atom needs to be
specified. This introduces other well-defined approxi-
mations [1-7]. The simplest is the virtual-crystal
approximation (VCA), where the effective potential,
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Fig. 1. A schematic illustration of how the disordered assem-
bly of A and B atoms is replaced by an ordered crystal of
effective atoms for discussing the average properties of the
alloy.

Vica» is the average of the A and B potentials:
Voca=xVy+(1—x) V. (1)

VCA is generally a poor scheme for describing systems
that are strongly disordered in the sense that V, and
V; differ substantially. Also, in view of (1), Vyca is a
real quantity, so that the VCA yields a strictly vanish-
ing disorder smearing of states.

In the average-t-matrix approximation (ATA), one
averages the A and B atom t-matrices, rather than the
potentials, i.e.

ATA = xtA 4+ (1 —x) B. 2

The t-matrix is related straightforwardly to the atomic
potential V' by the equations of potential scattering.
Despite its relative simplicity, the ATA has been found
to capture the dominant physics of disorder in wide
classes of alloys.

Finally, the coherent potential approximation
(CPA) is specified by the condition that the average
scattering from A and B atoms placed in the CPA
medium vanishes, i.e.,

xtfF+ (1 —x) 5 =0. 3)

Here, t5f and ¢ respectively denote the t-matrices of
A and B atoms placed in the effective medium. Equa-
tion (3) is to be solved for the unknown quantity ¢,
the solution being t*f = tPA,

The modern alloy theory is based on the applica-
tion of the single-site approximation to treat disorder
effects within the framework of the muffin-tin Hamil-
tonian. The CPA is the most satisfactory of the ap-
proximations as it treats disorder selfconsistently. The
resulting KKR-CPA formalism proceeds naturally in
terms of the angular-momentum representation, mak-
ing extensive use of the multiple scattering theory
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techniques. The central objects in the formalism are
the ensemble-averaged one-particle Green’s function
G(z), whose imaginary part is related to the average
density of states, and the one-site restricted averages
of the Green’s function, G, (z) and Gg(z), which yield
the effective charge densities in the A and B spheres.
Most recently, [10] has rigorously extended the KKR-
CPA Green’s function into the complex energy plane
and exploited its analytic properties to obtain a
powerful scheme for a parameter-free charge- and
spin-selfconsistent treatment of the electronic struc-
ture of complex multi-component alloys with many
atoms per unit cell; furthermore, by invoking the
spectral representation of the Green’s function, we are
able to apply a tetrahedron-type k-space integration
method in the theory of muffin-tin alloys, permitting
us to treat for the first time the ordered compounds,
the single-impurity problem, and the concentrated
disordered alloys with the same set of computer codes.
We refer to [10] and various review articles for a dis-
cussion of these and related aspects of the KKR-CPA
methodology and formalism [1-7, 9, 12].

b) Complex Energy Bands

The concept of a Bloch energy level perhaps plays
the most fundamental role in the band theory of per-
fect crystals. It turns out that something similar can
still be defined in a disordered alloy, even though the
system does not possess long-range order. As in the
case of a perfect crystal, the “energy bands” for the
ordered medium of effective atoms can be shown to be
given by the secular equation [1, 2]

I tere (E) — B(k, E)|| =0. “)

Here, the determinant is implicitly taken to be in the
angular-momentum space (i.e. the space of orbital and
magnetic quantum numbers, L= (I, m)). The B(k, E)
matrix depends only on the crystal lattice and is inde-
pendent of the atomic potentials. In a perfect A (or B)
crystal, t. —t, (or tg) and (4) reduces to the KKR
equation used widely to compute energy bands in
perfect crystals. Equation (4) therefore forms a natural
basis for constructing a band theory of random alloys.
If we fix the value of the crystal momentum k and
solve (4) for the bands E (k), the solutions are real in a
perfect crystal, but become complex numbers in the
alloy. The presence of a non-zero imaginary part of
energy levels is a fundamental physical effect which
represents the disorder-induced smearing of states in
an alloy.
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Figure 2 shows typical complex energy bands in
Cu-based alloys [26—29]. As indicated in the caption,
some of the results are based on the ATA, while others
on the CPA. The Cu-potential in Fig. 2a is also used
in the CugpAl,, and Cuy,Ge,, computations. The
Cu,(Ni;, and Cu,yZn;, results use a different Cu-po-
tential; nevertheless, all alloys are comparable insofar
as the Cu d-band position is concerned. Whereas the
various panels of Fig. 2 cannot be compared with each
other in detail, this figure allows us to delineate simi-
larities and differences in this series of alloys. In all
cases, the Cu d-band complex is seen to suffer rela-
tively small shifts on alloying. Ni induces new Ni-re-
lated d-bands (around 8.2 eV in Fig. 2b), which are
heavily smeared due to disorder. The states of s-p
symmetry (e.g. I, X,), on the other hand, are virtu-
ally unaffected by disorder in CuNi and are un-
damped. In contrast to Ni, the addition of Ge or Al
causes large smearings and shifts in the s-p-type states,
Figs. 2d and 2e. Among the polyvalent solutes, Zn
gives rise to a narrow 3d-band (around —1.4¢eV in
Fig. 2¢), whereas in CuGe, the impurity band is of s-p
symmetry and is several electron-volt wide. It is clear
that different impurities influence the spectrum of Cu
in fundamentally different ways, and that the effective
disorder parameter in transition and noble metal
alloys possesses a very complicated nature. In general,
the effective disorder parameter is k-dependent and,
even for a given k-value, the disorder seen by states of
various symmetries can differ qualitatively. Note that
aspects of the alloy bands could be modelled within
simpler schemes. For example, the growth of the
Fermi surface of Cu with the addition of Zn is well
described by the virtual-crystal approximation and
also by the rigid-band model (RBM); in RBM, CuZn
is assumed to possess the band structure of Cu, inde-
pendent of Zn concentration, but the RBM fails com-
pletely in the energy range of the Zn 3d-resonance.
The present band theory, however, encompasses
various behaviors within a single framework.

The complex energy bands are amenable to direct
experimental observation via angle-resolved photo-
emission (ARPES) measurements from surfaces of
alloy single crystals. Many such studies have been
carried out [16, 30—32]. Figure 3 presents an example
of the uppermost valence bands in Cu, CuAl, and
CuGe solid solutions and indicates a good accord
between theory and experiment. The disorder smear-
ings of the complex bands, as deduced from the mea-
sured increase in spectral widths in these alloys, are
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Fig. 2. Complex energy bands along the symmetry direction I'-X in the Brillouin zone for (a): Cu, (b): Cu,,Ni;, (ATA, Bansil
et al. [26]), (¢): Cu,oZn;, (ATA, Bansil et al. [27]), (d): CugoAl,, (CPA, Asonen et al. [28]), and (e): Cug,Ge,, (CPA, Prasad
and Bansil [29]). The vertical length of shading around the levels equals two times the imaginary part, Im E (k), of the complex
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Fig. 3. Theoretical and experimental dispersion of the upper-
most conduction band in Cu, CuAl, and CuGe in the (100)
mirror plane. k;; denotes the component of crystal momen-
tum parallel to the (100) face. The imaginary parts of the
alloy complex bands are not shown (after [31]).

also in reasonable accord with the corresponding
theoretical predictions [31]. Figure 4 gives an example
of a relativistic KKR-CPA computation compared
with the ARPES experiments (a Cu,sPt,s (100)-sur-
face is considered), showing once again a reasonable
agreement between theory and experiment [13, 32].

In a perfect crystal, every Bloch level possesses a
unit spectral weight. In sharp contrast, the complex
energy levels do not possess uniform weights. For this
reason, the average alloy density-of-states cannot be
obtained by constructing a histogram of the complex
energy levels. This difference between the complex
bands and their perfect-crystal counterparts is a fun-
damental one and underlines the fact that a calcula-
tion of the density of states in the disordered system
entails a level of intricacy well beyond the perfect
crystal case.

It is noteworthy that, in a formal sense, the elemen-
tary quantity with a well-defined meaning in the for-
malism is the spectral density function Ay(k, E). In a
perfect crystal, Ag(k, E) consists of a superposition of
o-functions at the Bloch levels E (k). In the alloy, these
o-functions spread out into finite peaks. As illustrated
by Fig. 5, the real and imaginary parts of the complex
levels respectively yield the positions and half-widths
of the associated peaks in Ag(k, E). In principle, the
information given by the complex bands is thus con-
tained in the plots of Ay(k, E) for various k-values.
However, the complex bands permit a convenient
visualization and interpretation of the alloy spectrum.
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Fig. 4. (a) Relativistic KKR-CPA complex-energy bands in Cu,sPt, along the symmetry direction I'-X. Typical disorder-in-
duced smearings of energy bands are represented by vertical bars around bands. Filled circles give the E, k points obtained
from the angle-resolved photoemission measurements; dashed lines connecting these circles depict the final state (free
electron) band shifted down on the energy scale by the corresponding photon energies. The hatched regions on the right-hand
side of the panel give the average location and the FWHM of the Pt-derived structures in the ARPES spectra. (b) Cu (solid
line) and Pt (dashed line) component densities of states in Cu,sPt,s (after [32]).

c) Alloy Fermi Surface

Many experiments show that the concept of the
Fermi surface (FS) often continues to be useful in
disordered alloys [2, 1825, 15—17, 33]. As in the case
of perfect crystals, the dimension of the alloy FS in a
given direction in the Brillouin zone may be deter-
mined by the intersection of the Fermi energy Eg with
the associated complex energy band. The smearing of

states then implies that the alloy FS will not be
sharply defined and that any point k(Eg) on the FS
will possess a half-width 4k(Eg). Although Ak(Eg)
and the imaginary part Im E (k) of the complex levels
represent the same physical effect, namely, the disor-
der induced smearing, the manner in which these two
quantities occur in the theory should be distinguished.
| Ak (Eg)| is the half-width of a peak in the spectral
density, Ag(k, E), plotted as a function of | k| (in any
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Fig. 6. A schematic plot of a complex-energy band. The
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width, 2 |4E| in terms of the spectral function ¢(k, E) is
illustrated.

direction), whereas Im E (k) yields the half-width in
energy, |4E|, when Ag(k, E) is considered as a func-
tion of E for a fixed k, see Figure 6.

Many studies of Fermi surfaces of concentrated
alloys via positron annihilation (2D-ACAR) [18-25],
and of dilute alloys via the de Haas-van Alphen effect
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(dHvA) [33] have been reported; some FS work via
angle-resolved photoemission [16] in alloys also exists.
We present a few illustrative examples now. Figure 7
shows that the shape of the FS in Cu and Cu,,Zn;,
is similar and that the theory and experiment are in
good accord in this regard [34, 35]. The Fermi sur-
faces of noble-metal-based solid solutions are in fact
expected to be similar, because the Fermi energy in
these alloys often intersects only the uppermost va-
lence band, which approximately preserves its shape
on alloying, see Figure 2. The FS smearing in Fig. 7 is
indicated by shading of the CPA curves. The length of
the shading on any straight line drawn in the plane of
the figure is 4 times the apparent half-width Ak (Eg) of
the FS along this direction; for example, the half-width
along the line B passing through the point P in Fig. 7b
is nearly 3 to 4 times larger than along the line A.

The FS of CuGe presents an interesting case study
[29], showing non-linear composition dependence of
the radii, Figure 8. In the limit of low Ge concentra-
tion (< 0.5 at.% Ge), the neck as well as the belly radii
increase at roughly half the rigid-band rate for quadri-
valent impurities, in accord with the dHvVA measure-
ments [36, 37]. By contrast, in the high concentration
regime (> 5 at.% Ge), the rate of change of the various
FS radii corresponds to an effective Ge valence of
somewhat less than 4. More recently, [38] reports a
high-resolution 2 D-ACAR investigation of the CuGe
alloys, finding a good accord with KKR-CPA predic-
tions of both the FS radii and their disorder-induced
widths.

The non-linearity in the composition dependence of
the FS of CuGe is related to the appearance of the
Ge-derived impurity band well below the Fermi energy,
see Figure 2e. Another striking instance of a system
where changes deep within the spectrum influence the
behavior of the FS is provided by «-PdH, solid solu-
tions. In this case, computations as well as dHvA
measurements show that the FS changes non-uni-
formly on H uptake [39]; the I'-centered electron
sheets of Pd grow at approximately the rigid-band
rate, while the hole pockets centered around X- and
L-symmetry points shrink at only half the rigid-band
rate. Also, the disorder smearing of the electron sheets
in PdH, is quite substantial, even though the states
associated with the hole ellipsoids are virtually un-
damped.

Figure 9 considers FS radii in CuPd alloys. In this
connection [40] focuses on the question of possible
flattening of the FS of Cu along the [110] direction
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upon adding Pd. KKR-CPA calculations predict an
appreciable flattening effect up to about 40 at.% Pd
[41, 42]; the FS smearing in CuPd is rather small. This
flattening is believed to be responsible for driving the
short-range order that has been observed in CuPd
alloys in diffuse electron and x-ray scattering studies
[41]. The agreement between theory and experiment is
good, especially with the KKR-CPA computations of
[42]. The more rapid decrease of kg/kg, in the [110]
direction compared to the [100] direction provides
clear evidence that the FS of Cu indeed flattens along
[110] upon alloying. We note that such a flattening is
seen in KKR-CPA calculations in other Cu-based
alloys with decreasing electron/atom ratio as well as
in rigid-band computations [34].

d) High-T, Superconductor Alloys

We consider here some applications of the KKR-
CPA scheme to complicated structures involving many
atoms per unit cell, the examples so far having been
limited to binary alloys.
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The total KKR-CPA density of states in the
simple cubic perovskites Ba,K;_ BiO; (BKB) and
the BaPb, _ Bi O, (BPB) is presented in Fig. 10 over
the entire composition range [11]. The computations
are charge self-consistent and involve no parameters
other than the lattice data. Figure 11 compares the
density of states at the Fermi energy (E) in the alloys
with the corresponding predictions of the rigid band
model based on the BaBiO; density of states. Fig-
ures 10 and 11 allow us to delineate the rigid band as
well as non-rigid band changes in the spectrum of
BaBiO; induced by (Ba-K) and (Bi-Pb) substitution.

Figure 10a shows that for energies around the
Fermi energy of BaBiO;, the shape of the density-of-
states curve is little affected by Ba-K substitution. In
contrast, the Pb-Bi substitution rapidly smooths the
cusp at ~ 0.6 Ry. This effect is related to the fact that
the density of states around Ep in BaBiOj arises
mainly from Bi- and O-sites, which are not influenced
substantially when Ba is replaced by K; the Pb- and
Bi-site densities, on the other hand, are quite different
in this energy region and thus lead to considerable
changes upon alloying. Interestingly though, the total
density of states at Eg in both alloys (Fig. 11) is rather
close to the predictions of a BaBiO;-based rigid-band
model [43, 44]. However, in view of the preceding
observations, the agreement between the rigid-band
and the KKR-CPA results in Fig. 11 in the case of
BPB should be considered fortuitous rather than of an
intrinsic significance.

Turning to the energy region of 0.15 to 0.45 Ry,
Fig. 10 shows that the shape of the density-of-states
curve is quite similar in BKB as well as BPB for
0.3 < E <045 Ry in the upper part of the Bi6s—O2p
complex. For lower energies, 0.15 < E < 0.3 Ry, we
see substantial changes in the spectrum. For example,
the largest peak at 0.29 Ry in BaBiO; splits and be-
comes less prominent in BKB; in contrast, this peak is
rather unaffected in BPB. The relative weights, posi-
tions, and shapes of the density-of-states peaks at
0.23 Ry and 0.25 Ry in BaBiOj are influenced consid-
erably in both BKB and BPB. The preceding changes
in the spectra between 0.15 and 0.3 Ry arise not only
from changes in the component densities of states as-
sociated with the substituted sites, but also from the
indirect changes induced on the O- and other sites as
a result of alloying.

Figure 12 presents the results of a charge self-con-
sistent KKR-CPA computation in La, ,Sr, ;CuO,
for the ideal body-centered tetragonal lattice assuming
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random occupation of the La-sites by La and Sr
atoms, together with a corresponding self-consistent
KKR calculation of the parent compound La,CuO,
[7]. The total density of states in La,CuO, and
La, ;Sr, ;CuO, is compared in Fig. 12, with Fig. 13
giving a more detailed comparison in the region of the
Eg. Aside from an overall smoothing of the density of
states, the main effect is the lowering of the E on
substituting Sr for La; in particular, the shape of the
density-of-states curve near Eg, Fig. 13, is hardly
affected upon Sr-substitution. The component densi-
ties of states associated with the La- and Sr-sites in the
alloy (not shown) are found to be rather similar. These
ab initio results support the rigid band picture [45] of
the electronic structure of La,_,Sr .CuO,, based on
band theory computations on La,CuO,, invoked

ENERGY (Ry)

commonly in the literature. (Note, however, that the
physical compound La,CuO, is insulating, not metal-
lic as predicted by the band theory.) From the data of
Fig. 13, we estimate that the Eg will in fact lie in the
van Hove singularity in the density of states for ap-
proximately 20% Sr content (i.e. x=0.20) where the
highest superconducting transition temperatures are
experimentally observed.

I11. Electron and Electron—Positron Momentum
Densities in Alloys

a) Formalism

The electron momentum density g(p) is related to
the (p, p) matrix element of the one-electron Green’s
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function, in terms of which g (p) is expressed as [2, 21]

Eg

1
e(p)=—— | dE Im<{G(p,p; E)) .

T e

)

Equation (5) is a convenient starting point for the
calculation of the average momentum density in alloys,
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Fig. 13. The density of states near the Fermi energy (Eg) in
La,CuO, and La, ,Sr, ;CuO, (after [7]).

because (G) can be calculated within the framework
of the CPA or the ATA theory.

The average electron-positron momentum density
0,,(p) relevant for the angular correlation of (two-
photon) annihilation radiation in a disordered alloy
can similarly be expressed in terms of the electron and
positron Green’s functions as [2, 21]

1
02,(p) = ?jdrfdr’ exp[—ip - (r—r)]

: jdE f(E) _[ dE, f.(E,)
(ImG(r,r; E\Im G, (r,r; E,)), (6)

where + refers to the positron quantities and f(E) is
the Fermi-Dirac distribution function. In the spirit of
the independent-particle model (IPM), it is reasonable
to decouple the average of {Im G Im G, ) as [46]

{ImGImG,) > Im<{G)Im<{G,). 7

Form (7) is expected to be a good approximation in
transition and noble metal alloys [47]. Use of the con-
volution theorem on the right-hand side of (6) then
yields

1
QZy(P) =F§._‘.dEf(E)jdE+f+(E+)
Y M G(p—k, — Ky p— ko — K5 E))

(Im Gk, + K ke + K5 ED> . (8)
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momentum p in a.u.

It is noteworthy that the evaluation of g (p) requires
only the diagonal elements Im {G(p, p)), whereas in
order to compute @,,(p) a knowledge of the general
elements Im {G(p, g)) and Im {G,(p, g)) is necessary
(see [46—48] for details of these and other aspects of
the relevant formalism).

Effects of electron-positron correlations, neglected
in writing (6) and (8), should be included in a proper
theory of ¢,,(p). The semi-empirical “momentum” as
well as “energy” and angular-momentum dependent
enhancement schemes of the sort that have been in-
voked by various authors in perfect metals should be
adapted to the case of alloys [49].

The experiments usually do not measure the three-
dimensional functions ¢(p) and g,,(p) but only their
one or two-dimensional integrals in momentum space.
The Compton experiment is related to the two-dimen-
sional integral [22, 23]

J(p.)=[{dp.dp, o), )

where g(p) is the electron momentum density. Simi-
larly, the older 1 D-ACAR experiment measures a
two-dimensional integral of g,, (p), but the 2D-ACAR
experiment, on the other hand, resolves two momen-
tum components and measures the one-dimensional
integral g,, (p) along a specific line in momentum space,
ie. [19-21]

+
N27(px’ py)= j dpz QZy(px’ py’ pz)’ (10)
where we have assumed that the axis of the positron
camera is aligned along the z-axis.

b) Illustrative Examples

Figures 14 and 15 provide illustrative ¢(p) and
02, (p) results in CuNi solid solutions [46]. The upper
set of curves in Fig. 14 shows that some of the changes
in ¢(p), as we go from Ni to Cu, are: (i) the break at
approximately 0.5 a.u. in Ni in the first Brillouin zone
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(BZ) moves to higher momenta on alloying, and the
size of the break increases; this results from an in-
crease in the [110] Fermi Surface (FS) radius k,,, and
of the s-p character of the associated states with in-
creasing Cu concentration. (ii) The [110] FS radius
also yields “Umklapp” breaks in g(p) around
p=2au.; these breaks move to correspondingly
lower momenta with increasing k. (iii) In the alloys
the breaks are not sharp but are rounded owing to
disorder scattering of electrons. The preceding
changes are seen to persist qualitatively in the lower
set of curves for g,,(p). However, the g,,(p) curves
decrease more rapidly with p compared to ¢(p) and
thus appear to be more peaked in the first BZ. This
difference between ¢ (p) and g,, (p), which occurs more
generally, is a consequence of the nuclear repulsion of
the positron.

Figure 15 considers the momentum density along
an off-the-zone-center direction. The particular direc-
tion shown is interesting because a dip is seen around
p.=1.8a.u. in Ni and Cu,;Ni,s but not in Cu or
Cu,oNis,; this dip arises from the presence of d-hole
pockets in the Ni-rich alloys. It turns out that, owing
to momentum and angular momentum selection rules,
the disappearance/appearance of d-holes does not
cause a dramatic change in the momentum density in
the first BZ, but larger effects occur along the off-cen-
ter direction at higher momenta in Figure 15. By com-
paring the upper and lower set of curves, we further
note that this dip continues to be seen clearly even
when the positron spatial distribution effects are in-
cluded, although the size of the dip is reduced.

Figure 16 considers the Compton profile J(g) (q is
the p, of (9) after spherical averaging) in polycrystalline
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between the Cu and Ni Compton profiles (after [50]).

CuN:i alloys [50]. The agreement for J, — Jy; between
theory and experiment is seen to be good, despite the
fact that |Jo,—Jy;| is at most a few percent of the
value of Jg,(g). Both curves in the figure show a min-
imum at g = 0.6 a.u. This feature is associated with the
condition g, (p) = on;(p), which indeed occurs around
a p value of 0.6 a.u. in CuNi alloys close to the FS
break in Cu in the first BZ (see e.g., Fig. 14); the max-
imum at g &~ 2 a.u. possesses the same physical origin
and reflects the position of the FS break in the fourth
BZ. The broad dip around g = 4 a.u. in the solid curve
is an artifact of the experiments and is not physically
important; it has to do with the K-electron contribu-
tion, which, owing to experimental conditions, is in-
cluded in the spectra in the range of 3.3—-4.3 a.u. only
in Jy;(g), but not in J,(g). Ref. [50] further compares
KKR-CPA calculations with Compton measurements
on CuN:i alloys and finds a good overall agreement for
the entire range of compositions. These results suggest
that it may be possible to extract useful information
concerning FS geometry from high-resolution Comp-
ton experiments on alloys, especially if single crystals
are used.

Turning to CuGe and CuPd systems, Figs. 17 and
18 show that very substantial changes occur in ¢ (p) as
Cu is alloyed with Ge or Pd. ¢(p) in Cu is flat and
featureless in the first BZ, but in CuGe it develops a
pronounced peak and in CuPd a dip at p = 0 [38, 40].
These effects contrast sharply with the case of CuNi
alloys discussed in Fig. 14 where the momentum
density remains quite flat in the first BZ. Owing to
momentum and angular momentum selection rules,

177

0.8

density
o
o

0.4+

momentum

0.2

r .
0 L " il N i)
10 20
ap/(2mm)

Fig. 17. ¢(p) along [100] in Cu (thin solid curve) and
Cu,y,Ge,, (heavy solid curve). Contributions to ¢(p) in the
alloy for E > 0 (dashed) and E < O (chain curve) are shown.
The inset gives the complex band structure of CugoGe,,
(after [38]).

T Y]
oa:ﬁ 4
';’ ! Cu ]

E C e CugsPdys ]

2 o6 ! ]

=] r | ]

A C | ]

= 3 ]

D 04 [ | -

= - ]

z L | J

§ r 1

1S - J

= 0.2_ §
st s N PUPIPIPE SEAPIP P,

0 0.5 1 1.5

MOMENTUM (27/a)

Fig. 18. ¢(p) in Cu (solid) and CugsPd, (dashed) along the
[100] direction (after [40]).

o(p) at p=0 arises from states around the valence
band edge; in particular, the d-bands do not con-
tribute to o(p) at p=0. The electron states at the
valence band edge, which lie some 10 eV below the
Fermi energy Eg, are difficult to access experimentally;
in photoemission, for example, these states possess
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rather small intensities and are masked by back-
ground and secondary emissions. CuGe and CuPd
thus provide striking examples where alloying effects
deep in the spectrum produce clear signatures in g(p).
The question of the extent to which the 2 D-ACAR
spectra in CuGe and CuPd reflect the behavior of ¢ (p)
near p=0 is considered in [38] and [40]. Ref. [38] in
particular shows that a bump near p=0 appears in the
theoretical as well as the experimental 2D-ACAR
derivative spectra in CuGe. This bump is not present
in Cu, and arises from the aforementioned peak in ¢ (p)
near p=0 and constitutes a signature of the Ge-
derived impurity band of s-p character (the lower A,
band in the inset in Fig. 17); the agreement between
theory and experiment in this regard offers evidence
for the existence of this Ge-derived band in the alloy
and a confirmation of these KKR-CPA predictions.
In this vein, [40] compares cuts through the 2D-
ACAR measurements in CuPd alloys and shows that
the experimental curves near p = 0 become distinctly
flatter in the alloy. This feature is reproduced in the
theoretical KKR-CPA computations (not shown), and
arises substantially from the dip in ¢(p) near p=0
discussed in connection with Fig. 18 above. These re-
sults, like those on CuGe, indicate that 2D-ACAR
experiments can yield information concerning rather
subtle features of the electronic spectrum, if they are
used in parallel with corresponding theoretical work.

IV. Conclusions

We have discussed the basic concepts in the modern
band theory of alloys that is based on the application
of the CPA to treat disorder effects within the frame-
work of the muffin-tin Hamiltonian. The nature of the
spectral density function in the alloy, and its represen-
tation in terms of complex energy bands and a Fermi
surface possessing finite disorder-induced smearing is
stressed. During the last year or so, the KKR-CPA
methodology has been generalized to provide a power-
ful charge and spin self-consistent parameter-free treat-
ment of the electronic structure and properties of com-
plicated materials possessing many atoms in the unit
cell. These developments will permit a first-principles
discussion of the effects of various substitutions and of
oxygen-vacancy disorder in the disordered phases of
the high-T, superconductors and other complex mate-
rials.
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