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We present a discussion of a number of conceptual and methodological aspects associated with 
the theoretical characterization and computat ion of charge densities and momentum distributions 
in solids. The main ambition has been to stress properties that both exact and approximate 
quantities must possess. We have also attempted to point out conceptual and computat ional trends 
which would seem to be of importance for the future of the subject. 
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I. Introduction 

The calculation of charge densities and momentum 
distributions in solids has always been of importance 
in solid-state theory. Despite statements to the con-
trary, however, band theory is not a closed field, neither 
conceptually nor computationally, in particular if we 
think of band theory not as a limited one-electron 
theory, but as something that at least asymptotically 
approaches a characterization in terms of natural spin 
orbitals and /o r generalized overlap amplitudes. In this 
little review we will draw attention to some tendencies 
that seem to be of importance for the theoretical treat-
ment of charge and momentum densities. 

For general information about solid-state theory in 
general we refer to the book by Ashcroft and Mermin 
[1]. Symmetry plays a central role for our subject; here 
we recommend in particular the new edition of the 
book by Corn well [2]. The list of references obviously 
has no ambition to be exhaustive, but those references 
that are given should provide suitable entrance chan-
nels to the various areas discussed. 

In the first six of the following short sections we 
emphasize a number of formal aspects that although 
more or less discussed in the literature, should in our 
opinion be given more attention. In the last two sec-
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tions we discuss certain aspects of the two main com-
putational methods for calculating wave functions 
and thus also charge densities and momentum distri-
butions. 

II. Periodic Boundary Conditions and 
Discretized Momentum Space 

Even though the term periodic boundary conditions 
appears in every text book of solid state theory, we 
should like to draw attention here to some aspects of 
this concept that do not seem to have received the 
notice they deserve. For more details concerning the 
present section we refer to [3]. 

The big difference between a finite and an extended 
system resides in the boundary conditions imposed on 
the wave functions. Wave functions for a finite system 
like an atom or a small molecule must tend to zero at 
sufficiently large distances from the system. In an ex-
tended system we require that the wave functions are 
different from zero throughout the whole system. The 
usual way of implementing that requirement is to 
divide space into so-called Born-von Kärmän regions 
(BK). All wave functions are then required to be peri-
odic with respect to these BKs. It is essential to distin-
guish this periodicity in the wave functions from an-
other type of periodicity in the potentials that we will 
meet in the next section. 

In one dimension periodic boundary conditions 
thus mean that there is a distance, N a, such that all 
wave functions satisfy 

( f ) (x + N a) = ( f ) (x). (1) 
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At this stage there is no need to write the length of a 
BK as a product of a typical cell length a, and a very 
large even integer N. Later on we will need these 
quantities, however, and we might just as well intro-
duce them already here. 

Given any wave function </>(x) in position space, its 
counterpar t in momentum space is given by [4] 

$(p) = 
1 

]/2n 
J dx(p{x)e-i' (2) 

One can show [3] that the counterpart of a function 
satisfying periodic boundary conditions, (1), can be 
written as 

$(P) = — $»(P) a Z S N p -
2nv 

where 
\ Na/2 

$N(p) = —= J d x ( t > ( x ) e - ^ 
J / 2 71 —Na/2 

(3) 

(4) 

Relation (3) shows that periodic boundary conditions 
in position space imply a discretization of momentum 
space: the momentum-space functions vanish unless 
their argument is of the form 

P = 
2n v 
~N~A 

(5) 

where v is any positive or negative integer or zero. 
In order to generalize these expressions to three 

dimensions, we introduce basis vectors, a l , a 2 , a 3 , for 
the direct lattice and bx, b2, b3, for the reciprocal 
lattice, satisfying 

a i ' b j = S u . 

Instead of (1) we now require 

0 ( r + G«, ) = 0 ( r ) , i = l , 2 , 3 , 

(6) 

(7) 

where G is a large even integer. The momentum-space 
counterpar t of a function satisfying (7) can be written 
as [3] 

${p) = 4>G(P) 
8TI3 3,1 

^ T - ' Z S i p - k ) . 
0 a k G3 Vr 

(8) 

Here (p) is defined in analogy with (4) as an inte-
gral over the BK, and 

2n 
Ä = — (Ä1v1 + Ä 2 v 2 + Ä 3 v 3 ) ; 

V; is any positive or negative integer or zero. 

III. Translational Invariance and Translational 
Symmetry 

Crystalline solids are characterized by translational 
symmetry. Various kinds of diffraction experiments re-
veal that certain quantities have the periodicity of the 
direct lattice or of a related lattice. In order to describe 
the electronic structure, the usual starting point is 
some kind of effective one-electron equat ion (see fur-
ther Sects. VIII and IX) with a potential having the 
periodicity of the direct lattice. That implies that the 
effective Hamiltonian commutes with the three trans-
lation operators associated with the basis vectors: 

[ H e f f , T ] = 0; i = 1, 2, 3 . (10) 

For the translation operators we use the convention 

T ^ ( r ) = 0 ( r - « ( ) . (11) 

An arbitrary lattice vector in the BK can be written as 
(/!,- integers), 

G G 
m = ai^i1 + a2n2+ a3n3; - — < < — . (12) 

The three commutat ion relations (10) imply that for 
any m, 

[H e f f ,T(m)] = 0 , (13) 

where T(w) is the translation operator associated with 
the lattice vector (12). 

The concept of translational symmetry, (13), should 
be carefully distinguished from that of translational 
invariance, which means that the effective Hamiltonian 
commutes with the momentum operator [5], Transla-
tional invariance implies translational symmetry, but 
not vice versa [6]. 

The commutator (13) forces the eigenfunctions of 
the effective one-electron Hamil tonian to be Bloch 
functions, i.e. eigenfunctions of the translation opera-
tors, characterized by a wave vector k in the first 
Brillouin zone (BZ): 

T(m) </>(&; r) = 4>{k;r) e~ (14) 

These wave vectors k are of the form (9), but with the 
coefficients restricted to certain values: 

k = ( M 1 + M 2 + M 3 ) ; ~ y - X i < y - ( 1 5 ) 

It is instructive to observe that, whereas the periodic 
boundary conditions imply non-vanishing functions 
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in momentum space only for arguments of the form 
(9), the further requirement of translational symmetry 
restricts those wave vectors, that label the possible 
translation symmetry types of the wave functions, to 
a certain subset of (9). Momentum-space consider-
ations help us to understand the connections be-
tween periodic boundary conditions and translational 
symmetry better. In position space we notice the 
difference between wave functions satisfying periodic 
boundary conditions (7), and Bloch functions (14). 
Bloch functions obviously also satisfy periodic bound-
ary conditions. But whereas the potential has the peri-
odicity of the direct lattice, the Bloch functions only 
change their phases when going from one cell to an-
other one. 

We thus have G 3 lattice vectors of type (12) in the 
BK, and the same number of wave vectors k, (15), in 
the BZ. Since we will need that number often, we 
introduce the notat ion G3 = N. The numbers 

U{m,k) = -^= eik m (16) 
]/N 

can be seen as elements of a unitary matrix U, of order 
N, thus satisfying 

U U + = U + U = 1 . (17) 

Using this unitary matrix U we can transform a set of 
N Bloch functions (j)(k;r) satisfying (14) to a set of 
Wannier functions 

BZ 

W(m;r) = Y<Hk;r)[\J+](k,m). (18) 
k 

These Wannier functions are thus labeled by the direct 
lattice vectors m. Combining (17) and (18) we get the 
inverse t ransformation 

BK 

<Kk;r) = '£W(m;r)U(m,k). (19) 

IV. The Born-Oppenheimer Approximation 

In most cases when the charge density or the 
momentum distribution is discussed, one probably 
thinks of the ground state situation or at least of a 
stationary state. This is obviously reflected in attempts 
to calculate these quantit ies: almost always the Born-
Oppenheimer approximation is invoked. Generally 
speaking this means that the nuclei are frozen in a 

suitable configuration and one studies the electronic 
structure for that particular nuclear skeleton. 

Even though that the electronic problem is formi-
dable in itself, one should not forget that one really 
should solve an even more complicated many-particle 
problem, namely the one where both electrons and 
nuclei are allowed to move. The traditional way of 
handling that problem has been - to use a slightly 
provocative description - to work as if electronic 
structure and lattice dynamics were two separate 
worlds. Sooner or later they have to be combined, 
however, in particular when the coupling between 
them is non-negligible - when the electron-phonon 
coupling has to be taken into account. 

A new and promising perspective on this difficult 
problem is offered by some recent developments due 
to Öhrn and Deumens [7-10]. Their starting point is 
the time-dependent Schrödinger equation, for which 
they construct approximate solutions by means of the 
time-dependent variational principle (TDVP), [11-13]. 
The key quantities of their method, E N D = Electron 
Nuclear Dynamics, are two sets of time-dependent 
parameters, electronic and nuclear. The electronic 
parameters are usually, but not necessarily, coeffi-
cients of basis orbitals. The nature of the nuclear 
parameters depends on the approximation level cho-
sen. The method is capable of handling quantum me-
chanical nuclei; in that case one can, for example, 
choose nuclear parameters characterizing Gaussian 
wave packets for the nuclei. It is also possible to de-
scribe some or all the nuclei classically. In that case the 
nuclear parameters are simply the nuclear positions 
and momenta. The T D V P leads to a set of first-order 
coupled differential equations for these parameters. 
Computer programs already exist for solving such 
equations for small systems, and work on extended 
systems is underway. 

It is to be expected that this inclusion of nuclear 
motion will have considerable influence on the char-
acterization of charge densities and momentum distri-
butions. 

V. Density Matrices and Form Factors 

As emphasized particularly by Löwdin [14] and 
McWeeny [15], it is preferable to work with reduced 
density matrices, rather than many-particle wave func-
tions [16]. Since the Hamiltonian normally contains 
at most two-electron operators, we need only the first 
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and second-order reduced density matrices. F o r an 
N-electron state with the total wave funct ion 
lP(x1,x2,x3,..., xN), these are defined as follows with 
Löwdin's normal izat ion 

y(x1\x\) = N f V(xl,x2, ...,xN) 

• *F*(x\ ,x2,..., xN) d x 2 , . . . , dxN; (20a) 

F ( x j , x21 , x2) = - | ¥ / ( x 1 , x 2 , x 3 , . . . , x^y) 

• ¥ / * ( x ' 1 , x ' 2 , x 3 , . . . , x N ) d x 3 , . . . , d x i V . (20b) 

As usual, x denotes the combined coordinate for space 
and spin: x = (r, Q. 

We write the first-order density matr ix (20 a) as 

MC) y(x\x') = y(r,CW, £) = [OL(Q ß(Q]Q 
ß(C) 

(21) 

The 2 x 2 matr ix Q, which is the orbital par t of y, can 
be written in terms of the number density matrix 
N(r, r') and the componen t s of the spin density matrix 
vector S(r, r') [17, 18]: 

Q = Q(r, / ) 

'\N(r, r') + Sz(r, r') Sxir, r') - iSy(r, r')' 

Sx(r, r') + iSy (r, r') \ N(r, r') - Sz(r, r') 
(22) 

Like wave functions, (2), density matrices also have 
their counterpar t s in m o m e n t u m space. F o r example, 
the number density matr ix and its counterpar t are 
related by . J (23 a) 

1 f 
NiP>P') = drdr'N(r, r') exp { - i ip • r-p' • r')}; 

O K 

1 f N{r, r') = — j dp dp' Nip, p') exp {i(p r - p - r')} . o It 

(23 b) 
Similar relations hold for the componen t s of the spin 
density matr ix vector and for Q. 

In order to get the corresponding densities we first 
integrate over spin, 

J d ( y(r,C\r', C) = Tr Q = N(r, r'); (24a) 

f dC yip, CIP', 0 = Tr 0 = N(P,P'Y, (24b) 

The charge density is the diagonal element of N (r, /*'), 

Q(r) = N{r,r), (25) 

and the momentum distribution is the diagonal element 
of N{p, p): 

An impor tant complementary aspect of posit ion and 
m o m e n t u m space appears when we combine (25) with 
(23 b) and (26) with (23 a): 

1 f 
= dp dp Nip,p') e x p { i ( p - p ' ) - r } ; 

eip) = 

871 

1 

8 ^ 
| dr dr' N{r, r') exp { — ip- (r —r')}. 

(27 b) 

Thus, in order to get the density in one space, we need 
the nondiagonal elements of the density matrix in the 
other space. 

In experimental work, the Four ier t ransforms of 
these quantities - the form factors - play a ma jo r role: 

Fip) = j e W exp {ip • r}; 

B(r) = j Qip) exp{ —i/7 • r} . 

(28 a) 

(28 b) 

The "ordinary" form factor F(p) as been used for a 
long time, whereas the reciprocal form factor , B(r), has 
been introduced relatively recently. Its propert ies have 
been exploited in part icular by Weyrich an d collabo-
rators (a rather complete bibl iography can be found in 
[19]). We notice the interpretat ion of the form factors 
as projections of the number density matr ices 

F(p) = \dp'Nip',p' + py, (29a) 

B(r) = J d r ' J V (r\ r'+ r). (29 b) 

VI. One and Many-Electron Functions 

One-electron functions - spin orbi tals - constitute 
the primary raw material both for calculat ions and for 
the interpretat ion of theoretical results. At the one-
electron level, where the total wave function is approx-
imated by a single determinant , we have one spin 
orbital per electron. Expressed in a different way, each 
spin orbital is occupied by one electron. At higher 
levels of approximat ion the total wave function is a 
more elaborate quantity and one may wonder whether 
the concept of one-electron function is still meaning-
ful. The answer to this presumpt ion is very definitely 
yes, and we will now sketch two different but related 
connections between spin orbitals and many-electron 
wave functions. 

Löwdin has coined the term natural spin orbital [14, 
20] for those functions tp k ( x ) that diagonalize the first-
order density matrix y, 

Qip) = Nip,p). (26) y ( * ! * ' ) = Z <Afc(x)"fc<A*(x') (30) 
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The eigenvalues of y, the occupation numbers nk, satisfy 
the relations 

0 < nk < 1; (31a) 

Tr y=£nk = N, (31b) 
k= 1 

where N is the total number of electrons in the system. 
These relations are completely general, and they must 
be satisfied both by exact and approximate density 
matrices. At the independent-part icle level there are 
only N occupat ion numbers different f rom zero, and 
they are all equal to one. When correlation is intro-
duced, the occupat ion numbers creep below one. In 
principle we have an infinite number of occupation 
numbers different f rom zero, even though most of 
them will presumably be very close to zero. 

The natural spin orbitals (NSO) have the impor tant 
property that they form an o r thonormal set, 

\^*(x)Mx)dx = ökl. (32) 

Thus given a first-order reduced density matrix for a 
certain state of a many electron system, we can find the 
corresponding natural spin orbitals and their occupa-
tion numbers. The first-order density matrix can be 
obtained f rom the total wave funct ion or the reduced 
second-order density matrix. Approximat ions to either 
of these quantit ies can be obtained in a large number 
of ways. The natura l spin orbitals actually provide a 
very efficient tool for compar ing different approxima-
tions [21]. 

Another set of spin orbitals that are naturally asso-
ciated with many-electron functions are the general-
ized overlap amplitudes (GOA) or Dyson orbitals [22, 
23]. These are defined in terms of an exact or approx-
imate total wave function for a certain state of an 
AT-electron system together with all states for that 
system with one electron more or less. Thus we get 
two sets of spin orbitals, which are most easily ex-
pressed in a second-quantized formulat ion, using anti-
commut ing field operators , 

<A(x) ij/+{x') + iA+(x') iA(x) = <5 ( x - x ' ) . (33) 

Denot ing the N-electron state under consideration 
by | AT), the states of the (N — l)-electron system by 
\N— 1, s ) and those of the [ N + l)-electron system by 
\N +1, s>, we define 

0 s(x) = < N | < A + ( x ) | i V - l , 5 > ; (34a) 

/s(x) = <N|^(x)|7V + l , s> . (34b) 

As has been shown by Goscinski and Lindner [23], 
there is an intimate but ra ther subtle connection be-
tween the G O A and the NSO. Combining (33) and 
(34), we see that the two sets of spin orbitals (34) 
together form a complete set: 

£ / S W fs*(x') + i g,(x)g?(x') = ö ( x - x ' ) . (35) 
S = 1 S = 1 

The G O A are, however, linearly dependent and thus 
cannot be o r thonormal like the NSO. The connection 
between them can be described by saying that, if we 
make a canonical or thonormal iza t ion of the set 
{gs(x)}t we get the N S O , [23], 

The G O A play an essential role for the interpreta-
tion of so-called (e, 2e) experiments [24]. It is indeed 
remarkable that it has been possible to design experi-
ments which give direct access to certain properties of 
wave functions: the (e, 2e) experiments give informa-
tion about the absolute value of the m o m e n t u m coun-
terpart of the GOA. 

VII. General Forms of Bloch and Wannier Functions 

In Sect. I l l we pointed out that the solutions of any 
effective one-electron equation for a system with trans-
lational symmetry must be Bloch functions, (14). The 
commuta t ion relations (10) imply that Bloch functions 
with different wave vectors are non-interacting with 
respect to the effective Hamiltonian. The effective equa-
tion can therefore be split up in N independent partial 
problems. Fo r each k we get an infinite set of solutions 
labeled by a band index p., 4>ß{k\ r). The N sets of solu-
tions are o r thonormal both with respect to k and p: 

\<K{k'-r)^{k-r)dr = ö^ök.k. (36) 

Fo r each band we can form a set of Wannier functions 
r) using (18), which are or thogonal with respect 

to both m and the band index: 

| W*(m; r) Wv{n\ r) dr = ößV Smn . (37) 

Here we should notice that, since the phases of the 
Bloch functions are arbitrary, (18) only defines a fam-
ily of Wannier functions. Depending on the choice of 
phase for the Bloch functions, the Wannier functions 
can be more or less localized. 

It is instructive to consider the properties of the 
counterparts of Bloch and Wannier functions in mo-
mentum space [25]. Since the functions in direct space 
satisfy periodic boundary conditions, their counter-
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parts must, to begin with, satisfy (8). For a Bloch 
function the basic transformation rule (2) gives for any 
direct-lattice vector m 

4>{k• p) = e x p { i ( k - p ) • m} $(k;p). (38) 

This implies that a Bloch function in momentum space 
vanishes unless the difference between its label k and 
its argument p is equal to a reciprocal-lattice vector 
(times I n in our crystallographic normalization of (6)). 

The members of a set of Wannier functions r) 
associated with a certain band differ only in their 
"position" m. Their counterparts in momentum space 
therefore only differ by a phase factor exp{ — ip • m}: 

p) = exp { - i p • m) . (39) 

Here W^{p) is the counterpart of the Wannier function 
centered at the origin. 

Depending on the particular procedure chosen to 
solve the effective one-electron equation one gets dif-
ferent types of Bloch and Wannier functions. It defi-
nitely would seem worthwhile to exploit the informa-
tion one can gain from exploring the various 
counterparts of these functions in momentum space. 

VIII. Hartree-Fock Renaissance 

For finite systems - atoms and small molecules -
the Hartree-Fock approximation provides the natural 
zeroth-order level, and it is the most common starting 
point for more eleborate calculations. For extended 
systems the situation is very different. There are 
historical reasons for this difference. Larger systems 
require a considerable mobilization of computational 
resources, and it was therefore natural to resort to 
various kinds os simplifications rather than trying a 
fully fledged Hartree-Fock calculation for a crystal. 
More important, however, are the methodological ob-
jections that can be raised against applying Hartree-
Fock to an extended system. 

Metallic systems present the worst problems. From 
the point of view of band theory a metal is a system 
with at least one partially filled band. Since for an 
extended system the energy levels form continuous (or 
quasi-continuous) bands, this means that at the Fermi 
level, occupied and virtual levels are degenerate. Be-
cause of the special features of the restricted Hartree-
Fock (RHF) method this leads to the disastrous result 
that the density of states at the Fermi level vanishes. 
This is completely unphysical, since a system with that 
property cannot be called a metal. 

For the favorite model system of solid-state theo-
rists, the uniform electron gas with uniform positive 
background, it is easy to derive this "pathological" 
aspect of the R H F approximation [26]. For more real-
istic systems with nuclei instead of the uniform posi-
tive background it was for a long time taken for 
granted that similar results would hold. Monkhors t 
[27] seems to have been the first to show that this is 
indeed the case. More recently Delhalle and the pres-
ent author have analyzed this problem in some detail 
and have shown that the pathological result is due to 
a divergent lattice sum [28] in the exchange part of the 
energy. The problem is thus intimately connected with 
the R H F approximation itself. But it is characteristic 
that the problem appears only for extended systems. 
One can sum up this analysis by saying that the un-
physical results are due to an unfortunate conjunction 
of three factors: Coulomb forces, extended systems and 
the RHF approximation. 

For nonmetallic systems - insulators and semicon-
ductors - R H F works better. Even there it is far f rom 
ideal, however, in particular for the band structure 
where the calculated band gaps are far too large as 
compared to the experimental values. For ground-
state properties like the density the situation is defi-
nitely brighter. 

Because of these negative aspects, R H F has for 
many years not been considered a viable method for 
solids, in particular not for metals. As will be dis-
cussed in the next section, another reason for this has 
been the existence of a very attractive alternative 
method. In view of this long purgatory for R H F it is 
rather surprising now to witness what must be called 
a renaissance for Hartree-Fock. A sign of this renais-
sance is the fact that recently a whole special issue of 
the International Journal of Quantum Chemistry was 
published that is devoted to "Hartree-Fock based 
correlation treatments for extended systems" [29]. 

Thus the point of this "renaissance" is by no means 
to stop at the R H F level. In particular for metals, but 
also for other systems, it is imperative to include cor-
relation. And one of the most important points in 
starting out with R H F is just that it provides a well-
defined zeroth-order level, f rom which one can pro-
ceed to include correlation corrections in a systematic 
manner. 

Before leaving this section on Hartree-Fock a few 
words should be said about General Hartree-Fock 
(GHF) [17, 30], Using symmetry arguments, Fuku-
tome has developed a classification scheme for single 
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determinants, in which the various classes are charac-
terized with respect to the properties of the number 
density matrix and the spin density matrix vector (cf. 
Sect. V). In this scheme, R H F constitutes one out of 
eight classes. Now when more accurate methods are 
being developed for doing explicit R H F calculations 
one can expect similar progress for the other Fuku-
tome classes. A thorough exploitation of the G H F 
concept for extended systems can be expected to pro-
duce very interesting results for certain aspects of the 
correlation problem. 

IX. Density Functional Theory 

With the Hohenberg-Kohn theorem [31] the corner-
stone was laid for an important alternative to 
Hartree-Fock. According to this theorem there exists 
a universal functional of the density that represents 
the total energy in the ground state of a many-electron 
system. Out of this theorem has grown a very power-
ful method that has made it possible to link theory 
and experiment for extended systems in a so far un-
known way. Even though Hohenberg and Kohn 
"on ly" proved an existence theorem it has been possi-
ble to build up approximations that have made it 
possible to construct effective one-electron equations, 
which are also relatively easy to solve for a large 
number of realistic systems. The result has been an 
explosion of calculations and theoretical work, which 
has indeed marked the last three decades. There is an 
enormous literature on this subject, and most of it can 
be found in the recently published book by Kryachko 
and Ludena [32]. Among the references we also in-
clude a recent survey paper by two of the most active 
practitioners in the field [33]. Density f u n c t i o n a l are 
presumably connected with density matrices, as dis-
cussed in [16]. 

Density functional theory provided something that 
R H F was unable to supply: a reasonably realistic 
zeroth-order approximation level also for metals. The 
whole approach is completely different f rom that of 
RHF, and the disadvantages of R H F sketched in the 
previous section are circumvented. This does not 
mean, however, that all is good and well. Since the 
exact functional is unknown, an approximate one 
must be constructed. The most commonly used Local 
Density Approximation (LDA) derives its name f rom 
the assumption that one can use locally the same form 
of the so-called exchange-correlation potential that 

one knows from the theory of the homogeneous elec-
tron gas. That assumption has worked much better 
than one had any reason to expect, but it obviously 
has its limitations. Perhaps the main limitation with 
density functional theory as a whole is the lack of 
methods to develop a systematic set of improvements 
of the original starting point. 

A way around that problem is to combine the prac-
tical aspects of the density functional method with 
rigorous many-body theory. Several theoreticians have 
used density functional calculations as a starting point 
for constructing the self-energy operator [34, 35], and 
this appears to be a very promising approach. 

X. Conclusion 

In this rhapsody of concepts and methods we have 
chosen to stress certain conceptual aspects. The devel-
opments of explicit computat ional procedures is ob-
viouly essential. However, it does not hurt to stop for 
a while to check whether perhaps in the rapid develop-
ment some aspects may have been overlooked. The 
combination of formal requirements that must be im-
posed on the quantities to be calculated represents 
important possibilities for checking the internal con-
sistency of the results, both mathematically, physi-
cally and numerically. 

It is hardly necessary to point out the importance of 
momentum space. It is not enough, however, to calcu-
late the momentum distribution or the reciprocal 
form factor. Bloch and Wannier functions are just as 
interesting in momentum space as in position space, 
not least now when it is getting possible to determine 
certain properties of the wave functions experimen-
tally. 

If the natural spin orbitals a n d / o r the generalized 
overlap amplitudes of a system in a particular state 
are known to some accuracy, we also know the charge 
density and the momentum distribution. There are 
many ways - direct and indirect - of obtaining NSOs 
and GOAs. F rom that point of view there are many 
encouraging signs both on the Hartree-Fock and the 
density functional horizon. 
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