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We present a discussion of a number of conceptual and methodological aspects associated with
the theoretical characterization and computation of charge densities and momentum distributions
in solids. The main ambition has been to stress properties that both exact and approximate
quantities must possess. We have also attempted to point out conceptual and computational trends
which would seem to be of importance for the future of the subject.
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I. Introduction

The calculation of charge densities and momentum
distributions in solids has always been of importance
in solid-state theory. Despite statements to the con-
trary, however, band theory is not a closed field, neither
conceptually nor computationally, in particular if we
think of band theory not as a limited one-electron
theory, but as something that at least asymptotically
approaches a characterization in terms of natural spin
orbitals and/or generalized overlap amplitudes. In this
little review we will draw attention to some tendencies
that seem to be of importance for the theoretical treat-
ment of charge and momentum densities.

For general information about solid-state theory in
general we refer to the book by Ashcroft and Mermin
[1]. Symmetry plays a central rdle for our subject; here
we recommend in particular the new edition of the
book by Cornwell [2]. The list of references obviously
has no ambition to be exhaustive, but those references
that are given should provide suitable entrance chan-
nels to the various areas discussed.

In the first six of the following short sections we
emphasize a number of formal aspects that although
more or less discussed in the literature, should in our
opinion be given more attention. In the last two sec-
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tions we discuss certain aspects of the two main com-
putational methods for calculating wave functions
and thus also charge densities and momentum distri-
butions.

I1. Periodic Boundary Conditions and
Discretized Momentum Space

Even though the term periodic boundary conditions
appears in every text book of solid state theory, we
should like to draw attention here to some aspects of
this concept that do not seem to have received the
notice they deserve. For more details concerning the
present section we refer to [3].

The big difference between a finite and an extended
system resides in the boundary conditions imposed on
the wave functions. Wave functions for a finite system
like an atom or a small molecule must tend to zero at
sufficiently large distances from the system. In an ex-
tended system we require that the wave functions are
different from zero throughout the whole system. The
usual way of implementing that requirement is to
divide space into so-called Born-von Karman regions
(BK). All wave functions are then required to be peri-
odic with respect to these BKs. It is essential to distin-
guish this periodicity in the wave functions from an-
other type of periodicity in the potentials that we will
meet in the next section.

In one dimension periodic boundary conditions
thus mean that there is a distance, N a, such that all
wave functions satisfy

d(x+Na)=¢(x). 1
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At this stage there is no need to write the length of a
BK as a product of a typical cell length a, and a very
large even integer N. Later on we will need these
quantities, however, and we might just as well intro-
duce them already here.

Given any wave function ¢ (x) in position space, its
counterpart ¢ (p) in momentum space is given by [4]

1 = .
[ dx ¢(x) e irx. 2
[/2n -
One can show [3] that the counterpart of a function
satisfying periodic boundary conditions, (1), can be
written as

o(p) =

2 © 2
F0)=""d0) T 6<Np——”~v), ©

a
where
- i Na/2 4 i s
ol =g} B, @

Relation (3) shows that periodic boundary conditions
in position space imply a discretization of momentum
space: the momentum-space functions vanish unless
their argument is of the form

2nv 5
p - Na ¥ ( )
where v is any positive or negative integer or zero.
In order to generalize these expressions to three
dimensions, we introduce basis vectors, a, , a,, a5, for
the direct lattice and b,, b,, b5, for the reciprocal
lattice, satisfying

a;-b=9,; . (6)
Instead of (1) we now require
¢(r+Ga)=¢(), i=1,23, (7)

where G is a large even integer. The momentum-space
counterpart of a function satisfying (7) can be written
as [3]

8 13 all

<5(p)=<$c(p)'G3—Voa'§5(p—k)- )

Here ¢ (p) is defined in analogy with (4) as an inte-
gral over the BK, and

27
k=F(b1v1+bzv2+b3v3);

v; is any positive or negative integer or zero.
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I11. Translational Invariance and Translational
Symmetry

Crystalline solids are characterized by translational
symmetry. Various kinds of diffraction experiments re-
veal that certain quantities have the periodicity of the
direct lattice or of a related lattice. In order to describe
the electronic structure, the usual starting point is
some kind of effective one-electron equation (see fur-
ther Sects. VIII and IX) with a potential having the
periodicity of the direct lattice. That implies that the
effective Hamiltonian commutes with the three trans-
lation operators associated with the basis vectors:

e, T1=0; i=1,2,3. (10)
For the translation operators we use the convention
To(=¢0—a). (1)

An arbitrary lattice vector in the BK can be written as
(u; integers),

G G
-5 S k<.

> > (12)

m=a;ji;+ap, +azus;
The three commutation relations (10) imply that for
any m,

[Heg, T(m)] =0, (13)

where T (m) is the translation operator associated with
the lattice vector (12).

The concept of translational symmetry, (13), should
be carefully distinguished from that of translational
invariance, which means that the effective Hamiltonian
commutes with the momentum operator [5]. Transla-
tional invariance implies translational symmetry, but
not vice versa [6].

The commutator (13) forces the eigenfunctions of
the effective one-electron Hamiltonian to be Bloch
functions, i.e. eigenfunctions of the translation opera-
tors, characterized by a wave vector k in the first

Brillouin zone (BZ):
T(m) ¢p(k;r) = p(k;r)e™ ™. (14)

These wave vectors k are of the form (9), but with the
coefficients restricted to certain values:

2n G G
k=? by, + byny+ byxsy); —7$x,-<?. (15)

It is instructive to observe that, whereas the periodic
boundary conditions imply non-vanishing functions
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in momentum space only for arguments of the form
(9), the further requirement of translational symmetry
restricts those wave vectors, that label the possible
translation symmetry types of the wave functions, to
a certain subset of (9). Momentum-space consider-
ations help us to understand the connections be-
tween periodic boundary conditions and translational
symmetry better. In position space we notice the
difference between wave functions satisfying periodic
boundary conditions (7), and Bloch functions (14).
Bloch functions obviously also satisfy periodic bound-
ary conditions. But whereas the potential has the peri-
odicity of the direct lattice, the Bloch functions only
change their phases when going from one cell to an-
other one.

We thus have G? lattice vectors of type (12) in the
BK, and the same number of wave vectors k, (15), in
the BZ. Since we will need that number often, we
introduce the notation G*= N. The numbers

1 .
Umk)=—=e'*™
VN
can be seen as elements of a unitary matrix U, of order
N, thus satisfying

Ut =UtT=1.

(16)

17

Using this unitary matrix U we can transform a set of
N Bloch functions ¢ (k; r) satisfying (14) to a set of
Wannier functions
BZ

W(m;r) = % ¢k;r) [U™] (k, m). (18)
These Wannier functions are thus labeled by the direct
lattice vectors m. Combining (17) and (18) we get the
inverse transformation

plk;r) = 35( W (m;r) U(m, k). (19)

IV. The Born-Oppenheimer Approximation

In most cases when the charge density or the
momentum distribution is discussed, one probably
thinks of the ground state situation or at least of a
stationary state. This is obviously reflected in attempts
to calculate these quantities: almost always the Born-
Oppenheimer approximation is invoked. Generally
speaking this means that the nuclei are frozen in a
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suitable configuration and one studies the electronic
structure for that particular nuclear skeleton.

Even though that the electronic problem is formi-
dable in itself, one should not forget that one really
should solve an even more complicated many-particle
problem, namely the one where both electrons and
nuclei are allowed to move. The traditional way of
handling that problem has been — to use a slightly
provocative description — to work as if electronic
structure and lattice dynamics were two separate
worlds. Sooner or later they have to be combined,
however, in particular when the coupling between
them is non-negligible — when the electron-phonon
coupling has to be taken into account.

A new and promising perspective on this difficult
problem is offered by some recent developments due
to Ohrn and Deumens [7—10]. Their starting point is
the time-dependent Schridinger equation, for which
they construct approximate solutions by means of the
time-dependent variational principle (TDVP), [11-13].
The key quantities of their method, END = Electron
Nuclear Dynamics, are two sets of time-dependent
parameters, electronic and nuclear. The electronic
parameters are usually, but not necessarily, coeffi-
cients of basis orbitals. The nature of the nuclear
parameters depends on the approximation level cho-
sen. The method is capable of handling quantum me-
chanical nuclei; in that case one can, for example,
choose nuclear parameters characterizing Gaussian
wave packets for the nuclei. It is also possible to de-
scribe some or all the nuclei classically. In that case the
nuclear parameters are simply the nuclear positions
and momenta. The TDVP leads to a set of first-order
coupled differential equations for these parameters.
Computer programs already exist for solving such
equations for small systems, and work on extended
systems is underway.

It is to be expected that this inclusion of nuclear
motion will have considerable influence on the char-
acterization of charge densities and momentum distri-
butions.

V. Density Matrices and Form Factors

As emphasized particularly by Lowdin [14] and
McWeeny [15], it is preferable to work with reduced
density matrices, rather than many-particle wave func-
tions [16]. Since the Hamiltonian normally contains
at most two-electron operators, we need only the first
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and second-order reduced density matrices. For an
N-electron state with the total wave function
Y(xy,X,,X3,..., Xy), these are defined as follows with
Lowdin’s normalization

ey |x) = N [ Py, xg, .., xp)
- R (% 5 Xy sms Xog) AXogs 0o Ay s (202)
N(N-—

’ ’ 1)
I(xy,x,|x),x5) = j']’(xl,xz,x3,...,x,v)

2

“P*(xy, X5, X3,..0, Xy) dX5, ..., dxy . (20b)

As usual, x denotes the combined coordinate for space
and spin: x=(r, {).
We write the first-order density matrix (20a) as

Yx[x) =, {r, ) =[«() B Q [a(c,)] - @2
B()
The 2 x 2 matrix Q, which is the orbital part of y, can
be written in terms of the number density matrix
N (r, ¥) and the components of the spin density matrix
vector S(r, ¥') [17, 18]:

Q=Q(rr)
sN@Er)+S.(r,r) S.(r,r)—iS,(r,r) @)
S.(r,r)+iS,(r,r) IN(rr)—S.(rr)]

Like wave functions, (2), density matrices also have
their counterparts in momentum space. For example,
the number density matrix and its counterpart are
related by (23a)

S 1
N(P,p'):Wfdrdr'N(r,r’)exp{_i(p. r—p ¥

N(r,r)= #fdp dp' N(p,p)exp{ip-r—p -r)}.
(23b)
Similar relations hold for the components of the spin
density matrix vector and for Q.
In order to get the corresponding densities we first
integrate over spin,

[dlyn CIF,0) =Tt Q= N(r,r);
(7, Clp. =Tt Q=N p);
The charge density is the diagonal element of N (r, ),

e(r)=N(rr), (25)

(242)
(241)

and the momentum distribution is the diagonal element
of N(p, p):

¢ =Np.p. (26)
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An important complementary aspect of position and
momentum space appears when we combine (25) with
(23b) and (26) with (23a): (272)

1 =
0N =55 [dpdp' N(p.p)exp{ip —p) r};

°<h

(p) = % jdr d¥ N(r,¥)exp{—ip-(r—r)}.
(270b)

Thus, in order to get the density in one space, we need
the nondiagonal elements of the density matrix in the
other space.

In experimental work, the Fourier transforms of
these quantities — the form factors — play a major réle:

F(p)=_[g(r)exp{ip-r}; (284a)
B(r) = [ &(p)exp{—ip-r}. (28b)

The “ordinary” form factor F(p) as been used for a
long time, whereas the reciprocal form factor, B(r), has
been introduced relatively recently. Its properties have
been exploited in particular by Weyrich and collabo-
rators (a rather complete bibliography can be found in
[19]). We notice the interpretation of the form factors
as projections of the number density matrices

F(p)=[dp' N(p,p'+ p);
B(r) = j dP N(¥,¥r+r).

(292)
(29b)

VI. One and Many-Electron Functions

One-electron functions — spin orbitals — constitute
the primary raw material both for calculations and for
the interpretation of theoretical results. At the one-
electron level, where the total wave function is approx-
imated by a single determinant, we have one spin
orbital per electron. Expressed in a different way, each
spin orbital is occupied by one electron. At higher
levels of approximation the total wave function is a
more elaborate quantity and one may wonder whether
the concept of one-electron function is still meaning-
ful. The answer to this presumption is very definitely
yes, and we will now sketch two different but related
connections between spin orbitals and many-electron
wave functions.

Lowdin has coined the term natural spin orbital [14,
20] for those functions ¥, (x) that diagonalize the first-
order density matrix 7,

Pxlx) = T Uy m U ). (30)
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The eigenvalues of y, the occupation numbers n,, satisfy
the relations

0<n <1; (31a)

Try= 3> n,=N, (31b)
k=1

where N is the total number of electrons in the system.
These relations are completely general, and they must
be satisfied both by exact and approximate density
matrices. At the independent-particle level there are
only N occupation numbers different from zero, and
they are all equal to one. When correlation is intro-
duced, the occupation numbers creep below one. In
principle we have an infinite number of occupation
numbers different from zero, even though most of
them will presumably be very close to zero.

The natural spin orbitals (NSO) have the important
property that they form an orthonormal set,

[ w0 Yy (x) dx = 5.

Thus given a first-order reduced density matrix for a
certain state of a many electron system, we can find the
corresponding natural spin orbitals and their occupa-
tion numbers. The first-order density matrix can be
obtained from the total wave function or the reduced
second-order density matrix. Approximations to either
of these quantities can be obtained in a large number
of ways. The natural spin orbitals actually provide a
very efficient tool for comparing different approxima-
tions [21].

Another set of spin orbitals that are naturally asso-
ciated with many-electron functions are the general-
ized overlap amplitudes (GOA) or Dyson orbitals [22,
23]. These are defined in terms of an exact or approx-
imate total wave function for a certain state of an
N-electron system together with all states for that
system with one electron more or less. Thus we get
two sets of spin orbitals, which are most easily ex-
pressed in a second-quantized formulation, using anti-
commuting field operators,

Y)Y (X)) +H YT ) Y (x) =6 (x—x).

Denoting the N-electron state under consideration
by | N), the states of the (N —1)-electron system by
|N—1, s> and those of the (N + 1)-electron system by
IN+1,s), we define

gs(x) =<{N|Y*(x) IN—1, 5);
L) =<KN|Y(x)IN+1,5).

(32)

(33)

(34a)
(34b)
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As has been shown by Goscinski and Lindner [23],
there is an intimate but rather subtle connection be-
tween the GOA and the NSO. Combining (33) and
(34), we see that the two sets of spin orbitals (34)
together form a complete set:

S AW L)+ 3 0,097 6) =8 (x—x). (39

The GOA are, however, linearly dependent and thus
cannot be orthonormal like the NSO. The connection
between them can be described by saying that, if we
make a canonical orthonormalization of the set
{g,(x)}, we get the NSO, [23].

The GOA play an essential role for the interpreta-
tion of so-called (e, 2e) experiments [24]. It is indeed
remarkable that it has been possible to design experi-
ments which give direct access to certain properties of
wave functions: the (e, 2¢) experiments give informa-
tion about the absolute value of the momentum coun-
terpart of the GOA.

VII. General Forms of Bloch and Wannier Functions

In Sect. III we pointed out that the solutions of any
effective one-electron equation for a system with trans-
lational symmetry must be Bloch functions, (14). The
commutation relations (10) imply that Bloch functions
with different wave vectors are non-interacting with
respect to the effective Hamiltonian. The effective equa-
tion can therefore be split up in N independent partial
problems. For each k we get an infinite set of solutions
labeled by a band index u, ¢, (k; r). The N sets of solu-
tions are orthonormal both with respect to k£ and u:

[ oxk'sr ¢ (ks dr=35,, 6. (36)

For each band we can form a set of Wannier functions
W, (m; r) using (18), which are orthogonal with respect
to both m and the band index:

| Wx(m; ) W,n; 1) dr =6, 6

uv Ymn -

(37)

Here we should notice that, since the phases of the
Bloch functions are arbitrary, (18) only defines a fam-
ily of Wannier functions. Depending on the choice of
phase for the Bloch functions, the Wannier functions
can be more or less localized.

It is instructive to consider the properties of the
counterparts of Bloch and Wannier functions in mo-
mentum space [25]. Since the functions in direct space
satisfy periodic boundary conditions, their counter-
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parts must, to begin with, satisfy (8). For a Bloch
function the basic transformation rule (2) gives for any
direct-lattice vector m

G (k; p)=exp{i(k—p)-m} §(k;p).

This implies that a Bloch function in momentum space
vanishes unless the difference between its label k and
its argument p is equal to a reciprocal-lattice vector
(times 2 7 in our crystallographic normalization of (6)).

The members of a set of Wannier functions W, (m; r)
associated with a certain band differ only in their
“position” m. Their counterparts in momentum space
therefore only differ by a phase factor exp{—ip - m}:

W, (m; p) = W,(p)exp{—ip - m} . (39)

Here I7Vu(p) is the counterpart of the Wannier function
centered at the origin.

Depending on the particular procedure chosen to
solve the effective one-electron equation one gets dif-
ferent types of Bloch and Wannier functions. It defi-
nitely would seem worthwhile to exploit the informa-
tion one can gain from exploring the various
counterparts of these functions in momentum space.

(38)

VIII. Hartree-Fock Renaissance

For finite systems — atoms and small molecules —
the Hartree-Fock approximation provides the natural
zeroth-order level, and it is the most common starting
point for more eleborate calculations. For extended
systems the situation is very different. There are
historical reasons for this difference. Larger systems
require a considerable mobilization of computational
resources, and it was therefore natural to resort to
various kinds os simplifications rather than trying a
fully fledged Hartree-Fock calculation for a crystal.
More important, however, are the methodological ob-
jections that can be raised against applying Hartree-
Fock to an extended system.

Metallic systems present the worst problems. From
the point of view of band theory a metal is a system
with at least one partially filled band. Since for an
extended system the energy levels form continuous (or
quasi-continuous) bands, this means that at the Fermi
level, occupied and virtual levels are degenerate. Be-
cause of the special features of the restricted Hartree-
Fock (RHF) method this leads to the disastrous result
that the density of states at the Fermi level vanishes.
This is completely unphysical, since a system with that
property cannot be called a metal.
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For the favorite model system of solid-state theo-
rists, the uniform electron gas with uniform positive
background, it is easy to derive this “pathological”
aspect of the RHF approximation [26]. For more real-
istic systems with nuclei instead of the uniform posi-
tive background it was for a long time taken for
granted that similar results would hold. Monkhorst
[27] seems to have been the first to show that this is
indeed the case. More recently Delhalle and the pres-
ent author have analyzed this problem in some detail
and have shown that the pathological result is due to
a divergent lattice sum [28] in the exchange part of the
energy. The problem is thus intimately connected with
the RHF approximation itself. But it is characteristic
that the problem appears only for extended systems.
One can sum up this analysis by saying that the un-
physical results are due to an unfortunate conjunction
of three factors: Coulomb forces, extended systems and
the RHF approximation.

For nonmetallic systems — insulators and semicon-
ductors — RHF works better. Even there it is far from
ideal, however, in particular for the band structure
where the calculated band gaps are far too large as
compared to the experimental values. For ground-
state properties like the density the situation is defi-
nitely brighter.

Because of these negative aspects, RHF has for
many years not been considered a viable method for
solids, in particular not for metals. As will be dis-
cussed in the next section, another reason for this has
been the existence of a very attractive alternative
method. In view of this long purgatory for RHF it is
rather surprising now to witness what must be called
a renaissance for Hartree-Fock. A sign of this renais-
sance is the fact that recently a whole special issue of
the International Journal of Quantum Chemistry was
published that is devoted to ‘“‘Hartree-Fock based
correlation treatments for extended systems” [29].

Thus the point of this “renaissance’ is by no means
to stop at the RHF level. In particular for metals, but
also for other systems, it is imperative to include cor-
relation. And one of the most important points in
starting out with RHF is just that it provides a well-
defined zeroth-order level, from which one can pro-
ceed to include correlation corrections in a systematic
manner.

Before leaving this section on Hartree-Fock a few
words should be said about General Hartree-Fock
(GHF) [17, 30]. Using symmetry arguments, Fuku-
tome has developed a classification scheme for single
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determinants, in which the various classes are charac-
terized with respect to the properties of the number
density matrix and the spin density matrix vector (cf.
Sect. V). In this scheme, RHF constitutes one out of
eight classes. Now when more accurate methods are
being developed for doing explicit RHF calculations
one can expect similar progress for the other Fuku-
tome classes. A thorough exploitation of the GHF
concept for extended systems can be expected to pro-
duce very interesting results for certain aspects of the
correlation problem.

IX. Density Functional Theory

With the Hohenberg-Kohn theorem [31] the corner-
stone was laid for an important alternative to
Hartree-Fock. According to this theorem there exists
a universal functional of the density that represents
the total energy in the ground state of a many-electron
system. Out of this theorem has grown a very power-
ful method that has made it possible to link theory
and experiment for extended systems in a so far un-
known way. Even though Hohenberg and Kohn
“only” proved an existence theorem it has been possi-
ble to build up approximations that have made it
possible to construct effective one-electron equations,
which are also relatively easy to solve for a large
number of realistic systems. The result has been an
explosion of calculations and theoretical work, which
has indeed marked the last three decades. There is an
enormous literature on this subject, and most of it can
be found in the recently published book by Kryachko
and Ludeia [32]. Among the references we also in-
clude a recent survey paper by two of the most active
practitioners in the field [33]. Density functionals are
presumably connected with density matrices, as dis-
cussed in [16].

Density functional theory provided something that
RHF was unable to supply: a reasonably realistic
zeroth-order approximation level also for metals. The
whole approach is completely different from that of
RHEF, and the disadvantages of RHF sketched in the
previous section are circumvented. This does not
mean, however, that all is good and well. Since the
exact functional is unknown, an approximate one
must be constructed. The most commonly used Local
Density Approximation (LDA) derives its name from
the assumption that one can use locally the same form
of the so-called exchange-correlation potential that
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one knows from the theory of the homogeneous elec-
tron gas. That assumption has worked much better
than one had any reason to expect, but it obviously
has its limitations. Perhaps the main limitation with
density functional theory as a whole is the lack of
methods to develop a systematic set of improvements
of the original starting point.

A way around that problem is to combine the prac-
tical aspects of the density functional method with
rigorous many-body theory. Several theoreticians have
used density functional calculations as a starting point
for constructing the self-energy operator [34, 35], and
this appears to be a very promising approach.

X. Conclusion

In this rhapsody of concepts and methods we have
chosen to stress certain conceptual aspects. The devel-
opments of explicit computational procedures is ob-
viouly essential. However, it does not hurt to stop for
a while to check whether perhaps in the rapid develop-
ment some aspects may have been overlooked. The
combination of formal requirements that must be im-
posed on the quantities to be calculated represents
important possibilities for checking the internal con-
sistency of the results, both mathematically, physi-
cally and numerically.

It is hardly necessary to point out the importance of
momentum space. It is not enough, however, to calcu-
late the momentum distribution or the reciprocal
form factor. Bloch and Wannier functions are just as
interesting in momentum space as in position space,
not least now when it is getting possible to determine
certain properties of the wave functions experimen-
tally.

If the natural spin orbitals and/or the generalized
overlap amplitudes of a system in a particular state
are known to some accuracy, we also know the charge
density and the momentum distribution. There are
many ways — direct and indirect — of obtaining NSOs
and GOAs. From that point of view there are many
encouraging signs both on the Hartree-Fock and the
density functional horizon.
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