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A new computa t iona l scheme for electric dipole hyperpolarizabili t ies has been devised within the 
coupled Har t ree-Fock method. Only the project ion of second-order per turbed orbitals on to the 
subspace spanned by unper turbed virtual orbi tals is computed . The entire molecular symmetry is 
exploited to reduce computa t iona l effort: a reduced two-electron integral file containing only sym-
metry-distinct matrix elements over the a tomic basis funct ions is processed at each iteration. In 
addition, only symmetry- independent first- and second-order per turbed density matrices need to be 
calculated. An efficient compute r p rog ram implementing the present approach has been developed. 
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Introduction Solution of Second-Order CHF Equation 

In the presence of a static uniform electric field £ a , 
the electronic cloud of atomic and molecular systems 
gets polarized. The energy, W, can be written as a 
Taylor series [1] 
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where W0 is the unperturbed energy, na is the perma-
nent electric dipole moment and the coefficients ccxß, 
ßxßy, etc. are known as (static) electric polarizabilities. 
Non-linear response of the system is rationalized via 
hyperpolarizabilities ßaßy and yaßyö. 

A computer program for the theoretical determina-
tion of electric polarizabilities and hyperpolarizabilities 
has been implemented at the ab initio level of accuracy 
using a computational scheme based on coupled 
Hartree-Fock (CHF) perturbation theory. Zero-order 
self-consistent-field (SCF) and first- and second-order 
C H F equations are solved to obtain the correspond-
ing perturbed wavefunctions and density matrices. 
Then otaß, ßaßy and yaßyS tensors are evaluated. 
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We outline a method to compute the second-order 
wavefunction and density matrix exploiting the entire 
molecular symmetry: the second-order C H F equation 
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where F (0), F (1 ) and F<2) are the zero-, first-, and second-
order Fock operators, 8(0), g(1) and s{2) are Lagrange 
multipliers, the label i refers to occupied orbitals, and 
molecular orbitals are expanded over the atomic basis 
set y: *• m m 

P = i 
m 

0 | O ) = Z XpC$. 
p= 1 

p= 1 

(2) 

Using matrix notation and for an orthonormal ba-
sis set, (1) becomes 

occ 
[£(0) _ F(0,-| c(2) _ F( l) c( l) _ £ C U ) £(1) 

+ F(2) c(0)_Z c(0) g(2)_ (3) 

By means of the projection operators and R2, with 
representations 

occ 

R 1 = R ( 0 ) = E4 0 ) c f c
( 0 ) t (4) 

k 
and 

r 2 = ( 1_R(0 ) ) = Z c ( 0 ) C j (0) _ (0)t (5) 

0932-0784 / 93 / 0100-0141 $ 01.30/0. - Please order a reprint rather than making your own copy. 



142 P. Lazzeretti et al. • Hartree-Fock Calculations of Non-linear Tensors 

the second-order coefficients c-2) can be separated into 
project ions on the subspaces of occupied and virtual 
molecular orbitals: 

c|2) = o|2) + v<2>, 

° | 2 ) — R i c/2> ' 

vP» = R2C|2» 

(6) 
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In addit ion, the second-order density matrix 

occ 

R<2) = £ (c(2) c(0)t + c(l) c(Dt + c(0) c(2) t ) ( 9 ) 

k 

can be resolved into project ion components [2-3] , 

R ( 2 ) = R'2» + R<22 + R(
2

2) + R <£1, (10) 
where 

R ^ = RmR(2)R„, rn,n = 1 , 2 . (11) 

By subst i tut ion of (4), (5) and (9) in (10) it can be shown 
that [4] 

R ( 2 ) = - XX + + Y + Y+ + X + X , 
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i.e. only the projection of second-order coefficient over 
the virtual-orbitals subspace is needed to compute the 
second-order density matrix. 

Mult iplying (3) on the left by c f n , j virtual, observ-
ing that 

c (0)t F (0) = g(0)c(0)t; ( 1 5 ) 

and choosing 

4 V = c i 0 ) t F ( 1 ) c | 0 ) , (16) 

we obtain 
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Multiplying on the left by c f ] and summing over the 
virtual orbitals we get 
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{F ( 2 ) cj 0 ) + F ( 1 )c[ 1 } — X + F ( 1 ) c [ 0 ) } , (18) 

where it can be observed that the left-hand side of (18) 
is the project ion of the second-order coefficients de-
fined by (8). 

In t roducing the quanti t ies 

M(i) = Z ( e ( 0 ) _ e ( 0 , r i c , 0 , c ( 0 ) t 
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the iterative scheme for the second-order C H F calcu-
lation becomes 

v(2) = M ( i ) F ( 2 ) c < 0 ) + k|2), 

occ 

k 

R<2) = - XX + + Y + Y f + X + X , 

F<2) = G< 2 ) = G (R ( 2 ) ) . 

(21) 
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(23) 
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M ( , ) and X matr ices have been computed only once to 
solve the first-order C H F problem, i.e. to determine 
the polarizabili ty a. Together with k\2) they are saved 
on to a file to be processed also at each step of the 
iterative calculation (21)-(24): it seems to be wor th 
noticing that the present C H F algori thm, based on the 
Har t ree -Fock p ropaga to r (19), is quite general, com-
pact and suitable for efficient determinat ion of both 
first- and second-order per turbed orbitals. In addi-
tion, it can easily be extended to per turbat ions of 
higher order. 

Transformation of Second-Order Density 

The electron density is a scalar field with per turba-
t ion expansion 

P (r) = JP(0) (r) + £ P
a

 (r) EA 

+ -ZPaß(r)EAIEß + .... 
* xß 

(25) 

In t roduc ing a basis set x of a tomic functions, for the 
second-order term one defines the expansion 

P"(T) = 2 X K«Jv (r)y*(r). (26) 
pq= 1 

F o r any symmetry opera tor t (rewritten t when oper-
at ing on the doma in of basis funct ions x), with repre-
sentat ion T over a basis set of Car tes ian unit vectors, 
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and belonging to a group G, one has 
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T * p ( r ) = x A T ' 1 r ) = £ v ( r )S„ (27) 
q = 1 

In the transformed coordinate system one has 

P* ß ( r) = Y.T~1 P y ö ( r ) To~d
 x, (28) 

PuZ(Tr) = z I 1 P J L ( T r ) T f §
 1 = Paß(r), (29) 

yd 
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= Z K K t W H T r ) = P t r ^ ( T r ) . (30) 
y<5 

Hence the t ransformation law for second-order den-
sity is 

P^nAr) = Z T X a T ß ß P " } ( T - i r ) , (31) 
aß 

m 
Paß(T~1r) = 2 Z r ) 

pq = 1 

— 2 X PXpqXrSrpXfS*q- (32) 
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Since the transformation belongs to the group G, one 
has 

(33) 

and the second-order density matrices t ransform ac-
cording to 

aß 
(34) 

Introducing the symmetrized Kronecker square of 
T, with matrix elements [5] 

= Tay T ß y , (35) 

(T[2\ß,ys = (Tay Tßs + Tad T ß y ) , y * <5, ( 3 6 ) 

one finds the final t ransformation law for the second-
order density matrices (X ^ //), 

. S R " ' S t . = £ (T[21) 
a^ß 

Aß,aß 1 (37) 

Hence, according to the present method, only the 
symmetry-distinct density matrices need to be com-
puted. 

Within our approach the entire molecular symme-
try is exploited to increase the efficiency of the code in 
every step of the calculation. For a molecule belonging 
to point group G of order | G|, only « n4/(8 | G |) symme-
try-distinct two-electron integrals over a basis set of n 

Gaussian atomic functions are calculated and pro-
cessed at each iteration within SCF, first- and second-
order C H F procedures. A skeleton Coulomb repul-
sion matrix Gxß is obtained by processing the 
non-redundant list of unique two-electron integrals, 
then the actual repulsion matrices Gxß, oc ^ ß, are ob-
tained via the equation 

G ° ß = Z ( Z ( T [ 2 \ ß , Y d ( S - y & * S - l \ . ( 3 8 ) 
teG\y^ö J 

This method turns out to be a major computer 
saver, as (i) the iterative steps become much faster, 
owing to the reduced number of integrals, and (ii) the 
occupancy of the mass storage gets smaller. Accord-
ingly, one can afford large problems that would be 
otherwise intractable. 

Results 

Using the polarized basis sets from [6] we obtained 
the results reported in Tables 1 - 3 for some small 
molecules. 

A substantial amount of computer effort can be 
saved by the present method. For the molecules exam-
ined here the use of symmetry can reduce computer 

Table 1. Electric polarizability a for water, ammon ia and 
me thane in a.u. 

C o m p . H 2 O t N H 3 | C H J 

X X 7.850 12.753 16.038 
y y 9.191 12.753 16.038 
zz 8.517 13.274 16.038 
av. 8.519 12.927 16.038 

t Coord ina tes in bohr: O t =(0,0 ,0 .12414) , 
H t = (0,1.43153, — 0.98527). 

t Coord ina tes in bohr: N t =(0,0 ,0 .12780) , 
H x = (1.77100,0, — 0.59196). 

§ Coord ina tes in bohr: C x = (0,0,0), 
H t = (1.19034,1.19034,1.19034). 

Table 2. First hyperpolarizabili ty ß for water, ammon ia and 
me thane in a.u. 

C o m p . H2O NH3 CH4 

X X X 0.000 - 9 . 5 4 6 0.000 
XX z 0.577 6.751 0.000 
xyy 0.000 9.546 0.000 
xyz 0.000 0.000 - 1 2 . 1 6 0 
yyz 9.787 6.751 0.000 
zz z 4.657 6.415 0.000 
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Table 3. Second hyperpolarizability y for water, ammonia 
and methane in a.u. 

Comp. H2O NH3 CH4 

x x x x 1216.6 1078.1 1861.7 
xxxz 0.0 - 1 3 9 . 4 0.0 
xxyy 293.3 359.4 746.7 
xxzz 327.9 1068.1 746.7 
xyyz 0.0 139.4 0.0 
yyyy 475.4 1078.1 1861.7 
yyzz 282.5 1068.1 746.7 
zzzz 772.4 4246.1 1861.7 

times necessary to calculate second hyperpolarizabili-
ties at least by an order of magnitude. From these 
findings we conclude that the present computational 
scheme, owing to its use of complete molecular sym-
metry, and to the efficiency of the iterative procedure 
(21)-(24) for the projection of the second-order or-
bitals onto the virtual orbital subspace, represents a 
step forward with respect to other methods presently 
available [7]. 

Comparison with previous C H F theoretical values 
reported for the water molecule by Maroulis [8] shows 

very good agreement for a: his predictions are virtu-
ally identical to those reported here (see Table II of 
[8]). Our theoretical estimates for y are roughly 10% 
smaller than those of [8], which may depend on the 
features of the Sadlej basis sets [6], less extended than 
those adopted in [8]. 

The theoretical ß tensor components obtained in 
this study are slightly different from those of Maroulis 
[8] and from those evaluated in a systematic investiga-
tion [9]. This behaviour is expected, in the light of the 
discussion reported in [9], owing to the strong depen-
dence of the first-hyperpolarizability tensor upon the 
characteristics of the basis set. 
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