Use of Symmetry in Coupled Hartree-Fock Calculations
of Non-linear Response Tensors in Molecules *
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A new computational scheme for electric dipole hyperpolarizabilities has been devised within the
coupled Hartree-Fock method. Only the projection of second-order perturbed orbitals onto the
subspace spanned by unperturbed virtual orbitals is computed. The entire molecular symmetry is
exploited to reduce computational effort: a reduced two-electron integral file containing only sym-
metry-distinct matrix elements over the atomic basis functions is processed at each iteration. In
addition, only symmetry-independent first- and second-order perturbed density matrices need to be
calculated. An efficient computer program implementing the present approach has been developed.
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Introduction

In the presence of a static uniform electric field E,,
the electronic cloud of atomic and molecular systems
gets polarized. The energy, W, can be written as a
Taylor series [1]
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where W, is the unperturbed energy, u, is the perma-
nent electric dipole moment and the coefficients a,,,
By s, €tc. are known as (static) electric polarizabilities.
Non-linear response of the system is rationalized via
hyperpolarizabilities f,5, and 7,4, 5.

A computer program for the theoretical determina-
tion of electric polarizabilities and hyperpolarizabilities
has been implemented at the ab initio level of accuracy
using a computational scheme based on coupled
Hartree-Fock (CHF) perturbation theory. Zero-order
self-consistent-field (SCF) and first- and second-order
CHF equations are solved to obtain the correspond-
ing perturbed wavefunctions and density matrices.
Then a,4, B,4, and y,,, 5 tensors are evaluated.
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Solution of Second-Order CHF Equation

We outline a method to compute the second-order
wavefunction and density matrix exploiting the entire
molecular symmetry: the second-order CHF equation
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where F©, F® and F® are the zero-, first-, and second-
order Fock operators, @, ¢ and ¢? are Lagrange
multipliers, the label i refers to occupied orbitals, and
molecular orbitals are expanded over the atomic basis
set x:
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Using matrix notation and for an orthonormal ba-

sis set, (1) becomes
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By means of the projection operators R, and R,, with
representations

R, =R = 3 ¢{¥¢, 1 )
k
and _
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the second-order coefficients ¢{* can be separated into
projections on the subspaces of occupied and virtual
molecular orbitals:

¢ =0 + v, (6)
0¥ =R, ¢!, 7
V¥ =R,c?. @®)

In addition, the second-order density matrix

occ
RD =3 (2 ¢ + ¢Vt + e (9)
k

can be resolved into projection components [2-3],

R? =R + R + RY) + RE, (10)
where
Rgi:RmR(Z)R"’ mn=1,2. (11)

By substitution of (4), (5) and (9) in (10) it can be shown
that [4]

R® = —XX'+Y+ Y+ XX, (12)
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i.e. only the projection of second-order coefficient over
the virtual-orbitals subspace is needed to compute the
second-order density matrix.

Multiplying (3) on the left by ¢{”’%, j virtual, observ-
ing that
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and choosing
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Multiplying on the left by ¢/’ and summing over the
virtual orbitals we get
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where it can be observed that the left-hand side of (18)
is the projection of the second-order coefficients de-
fined by (8).
Introducing the quantities
M© = 2(8:-0) _ 83-0))_ 1 c§0) C§OH
]

(19)

and
kP = MO (FD e — XTFD ), (20)

the iterative scheme for the second-order CHF calcu-
lation becomes
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M® and X matrices have been computed only once to
solve the first-order CHF problem, i.e. to determine
the polarizability a. Together with k!{? they are saved
onto a file to be processed also at each step of the
iterative calculation (21)—(24): it seems to be worth
noticing that the present CHF algorithm, based on the
Hartree-Fock propagator (19), is quite general, com-
pact and suitable for efficient determination of both
first- and second-order perturbed orbitals. In addi-
tion, it can easily be extended to perturbations of
higher order.

Transformation of Second-Order Density

The electron density is a scalar field with perturba-
tion expansion

P(r)=P?@ + X P(VE,
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Introducing a basis set y of atomic functions, for the
second-order term one defines the expansion

P (r) =2 ilR;ﬁ 1,0 22 (0). (26)

pa=
For any symmetry operator t (rewritten T when oper-
ating on the domain of basis functions y), with repre-
sentation T over a basis set of Cartesian unit vectors,
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and belonging to a group G, one has
0O =1T""'N=X 1,05, @7
qg=1

In the transformed coordinate system one has
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Hence the transformation law for second-order den-

sity is
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Since the transformation belongs to the group G, one
has
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trans

(33)

and the second-order density matrices transform ac-
cording to

R*=YT,,T,SR*S" (34)
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Introducing the symmetrized Kronecker square of
T, with matrix elements [5]
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one finds the final transformation law for the second-
order density matrices (4 < u),
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Hence, according to the present method, only the
symmetry-distinct density matrices need to be com-
puted.

Within our approach the entire molecular symme-
try is exploited to increase the efficiency of the code in
every step of the calculation. For a molecule belonging
to point group G of order | G|, only =~ n*/(8|G|) symme-
try-distinct two-electron integrals over a basis set of n
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Gaussian atomic functions are calculated and pro-
cessed at each iteration within SCEF, first- and second-
order CHF procedures. A skeleton Coulomb repul-
sion matrix G*# is obtained by processing the
non-redundant list of unique two-electron integrals,
then the actual repulsion matrices G*#, « < B, are ob-
tained via the equation
G’=3% (Z (Tizl)a,g,ya(s_1)*@‘55'1)- (38)
teG\y<é
This method turns out to be a major computer
saver, as (i) the iterative steps become much faster,
owing to the reduced number of integrals, and (ii) the
occupancy of the mass storage gets smaller. Accord-
ingly, one can afford large problems that would be
otherwise intractable.

Results

Using the polarized basis sets from [6] we obtained
the results reported in Tables 1-3 for some small
molecules.

A substantial amount of computer effort can be
saved by the present method. For the molecules exam-
ined here the use of symmetry can reduce computer

Table 1. Electric polarizability o for water, ammonia and
methane in a.u.

Comp. H,Ot NH,} CH,§
xx 7.850 12.753 16.038
yy 9.191 12.753 16.038
zz 8.517 13.274 16.038
av. 8.519 12927 16.038
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Table 2. First hyperpolarizability f for water, ammonia and
methane in a.u.

Comp. H,O NH, CH,

XXX 0.000 —9.546 0.000
X%z 0.577 6.751 0.000
xyy 0.000 9.546 0.000
xyz 0.000 0.000 —12.160
yyz 9.787 6.751 0.000
zzz 4.657 6.415 0.000
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Table 3. Second hyperpolarizability y for water, ammonia
and methane in a.u.

Comp. H,O0 NH, CH,

XX 1216.6 1078.1 1861.7
XxXxz 0.0 —139.4 0.0
xXXyy 293.3 359.4 746.7
Xxzz 3279 1068.1 746.7
xXyyz 0.0 1394 0.0
yyyy 4754 1078.1 1861.7
yyzz 282.5 1068.1 746.7
zzzz 7724 4246.1 1861.7

times necessary to calculate second hyperpolarizabili-
ties at least by an order of magnitude. From these
findings we conclude that the present computational
scheme, owing to its use of complete molecular sym-
metry, and to the efficiency of the iterative procedure
(21)—(24) for the projection of the second-order or-
bitals onto the virtual orbital subspace, represents a
step forward with respect to other methods presently
available [7].

Comparison with previous CHF theoretical values
reported for the water molecule by Maroulis [8] shows
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very good agreement for o: his predictions are virtu-
ally identical to those reported here (see Table II of
[8]). Our theoretical estimates for y are roughly 10%
smaller than those of [8], which may depend on the
features of the Sadlej basis sets [6], less extended than
those adopted in [8].

The theoretical § tensor components obtained in
this study are slightly different from those of Maroulis
[8] and from those evaluated in a systematic investiga-
tion [9]. This behaviour is expected, in the light of the
discussion reported in [9], owing to the strong depen-
dence of the first-hyperpolarizability tensor upon the
characteristics of the basis set.
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