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Some consequences of the quantum fluid dynamics formulation are discussed for excited states
of atoms and molecules and for time-dependent processes. It is shown that the conservation of
electronic current density j(r) allows us to manufacture a gauge potential for each excited state of
an atom, molecule or atom in a molecule. This potential gives rise to a tube of magnetic flux carried
around by the many-electron system. In time-dependent situations, the evolution of the electronic
density distribution can be followed with simple, site-dependent cellular automaton (CA) rules. The
CA consists of a lattice of sites, each with a finite set of possible values, here representing finite
localized elements of electronic charge and current density (since the charge density ¢ no longer
suffices to fully characterize a time-dependent system, it needs to be supplemented with information
about the current density j). Our numerical results are presented elsewhere and further development

is in progress.
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Some consequences of the fluid dynamical formula-
tion of density functional theory [1-9] are discussed,
with particular reference to excited states and time-
dependent situations. The Hohenberg-Kohn theorem
[10, 11] established that the ground-state energy of a
many-particle system is a unique functional E[g] of
the single-particle density o(r), promising an enor-
mous simplification in theoretical studies of quantum
systems, by-passing the complexities of the many-elec-
tron wavefunction. In excited states of atoms and
molecules, however, as well as in time-dependent situ-
ations, the one-electron density no longer suffices to
completely characterize the electronic states; in addi-
tion one now requires information about the elec-
tronic phases S;(r) or current density j(r).

Quantum fluid dynamics (QFD) views the electron
cloud in a many-electron system as a “classical” fluid
moving under the action of classical Coulomb forces
augmented by forces of quantum origin. In an earlier
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paper [1] it was shown that, for a stationary electronic
state, the continuity equation of QFD,

v-j=0, (1)

represents a differential equation for the orbital elec-
tronic phases,

7258+ (Vo ¥S;)/e;=0, 2

where g, (r) and S;(r) are the orbital densities and or-
bital phases, respectively. This must be solved subject
to certain periodicity conditions, which arise from the
nodal topology of the wavefunctions [12—17] and give
rise to vortices of orbital current, with quantized cir-
culation.

Rather than using such an orbital treatment, it is
also possible to describe a many-electron atom or
molecule in terms of a single function in three-dimen-
sional space,

®(r)=0"?(r) exp[i S (r)/H], (€)
which satisfies a generalized non-linear Schrodinger-
type equation (GNLSE). When this is done for an

excited state with current-density vortices, it is evident
that the velocity field, defined as

v(r)=j(r)/e(r) (4)
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is not irrotational, so that v(r) can be separated into
an irrotational gauge term, arising from the gradient
of the net electronic phase S(r), and a solenoidal or
transverse field term. This is equivalent to introducing
an “internal magnetic vector potential” 4, (r) [1] into
the defining equation for the electronic current density,

J(r)=(1/m) e (r)[VS(r) +(e/c) Ain ()] )

The conservation of j () thus allows us to manufac-
ture a gauge potential. For each excited state of an
atom or molecule, there corresponds a specific, unique
configuration of internal magnetic field in the
GNLSE. For each vortex of current, the internal mag-
netic vector potential A, , (r) in equation (5) gives rise
to a tube of magnetic flux carried around by the pseu-
do-particle described by the function @(r). Such
charged-particle-flux-tube composites have been em-
ployed theoretically to construct anyons, obeying
fractional statistics [18, 19], in two dimensions. These
concepts could fruitfully be employed to describe an
atom in a molecule [20].

In time-dependent situations, the evolution of the
electronic density distribution can be followed with
simple, site-dependent cellular automaton rules. Cel-
lular automata (CA) [21] are discrete dynamical sys-
tems constructed from many similar components,
each simple, but together capable of complex self-or-
ganizing behaviour. The complexity is generated by
the co-operative effect of many localized elements of
electron density on a lattice of sites, each with a finite
set of possible values. The CA evolves in discrete time
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steps. At each time step, the value of each site is up-
dated according to a definite rule, which specifies the
new site value in terms of its own old value and those
of sites in some neighbourhood around it. The rule is
applied synchronously to each site at each time step.

In an earlier work [22], we had formulated a CA
simulation rule based on density functional theory
(DFT) in the Thomas-Fermi local density approxima-
tion, by dividing space into a large number of discrete
volume elements (“sites”) labelled by n, each with den-
sity o(n). For small disturbances from the ground
state, the evolution of the density is given by CA rules
at each site governing the flow of electrons from re-
gions of higher chemical potential (lower electronega-
tivity) to regions of lower chemical potential (higher
electronegativity) [23]. The equilibrium density is re-
covered through a Class II CA [21, 24]. Our numerical
results, for one- and two-dimensional systems, are pre-
sented elsewhere [22].

The above treatment would be valid for a near-
equilibrium situation. In a truly time-dependent situa-
tion, however, the charge density ¢ (n) alone no longer
suffices to fully characterize the system, as discussed
above, and needs to be supplemented with informa-
tion about the current density j(n). CA simulations
have been used extensively in modelling reaction-
diffusion systems [25, 26] and fluid dynamical equa-
tions [27-29]. These CA techniques are now being
adapted to model the QFD equations of motion [2—-9].
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