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Some consequences of the quan tum fluid dynamics formulation are discussed for excited states 
of a toms and molecules and for time-dependent processes. It is shown that the conservation of 
electronic current density j(r) allows us to manufacture a gauge potential for each excited state of 
an atom, molecule or a tom in a molecule. This potential gives rise to a tube of magnetic flux carried 
around by the many-electron system. In time-dependent situations, the evolution of the electronic 
density distribution can be followed with simple, site-dependent cellular automaton (CA) rules. The 
CA consists of a lattice of sites, each with a finite set of possible values, here representing finite 
localized elements of electronic charge and current density (since the charge density Q no longer 
suffices to fully characterize a time-dependent system, it needs to be supplemented with information 
about the current density j). Our numerical results are presented elsewhere and further development 
is in progress. 
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Some consequences of the fluid dynamical formula-
tion of density functional theory [1-9] are discussed, 
with particular reference to excited states and time-
dependent situations. The Hohenberg-Kohn theorem 
[10, 11] established that the ground-state energy of a 
many-particle system is a unique functional E[g] of 
the single-particle density g(r), promising an enor-
mous simplification in theoretical studies of quantum 
systems, by-passing the complexities of the many-elec-
tron wavefunction. In excited states of atoms and 
molecules, however, as well as in time-dependent situ-
ations, the one-electron density no longer suffices to 
completely characterize the electronic states; in addi-
tion one now requires information about the elec-
tronic phases S ;(r) or current density j(r). 

Quantum fluid dynamics (QFD) views the electron 
cloud in a many-electron system as a "classical" fluid 
moving under the action of classical Coulomb forces 
augmented by forces of quantum origin. In an earlier 
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paper [1] it was shown that, for a stationary electronic 
state, the continuity equation of QFD, 

V j = 0, (1) 

represents a differential equation for the orbital elec-
tronic phases, 

F 2 S i + ( F e l . - P S i ) / f t = 0, (2) 

where g, (r) and Si (r) are the orbital densities and or-
bital phases, respectively. This must be solved subject 
to certain periodicity conditions, which arise from the 
nodal topology of the wavefunctions [12-17] and give 
rise to vortices of orbital current, with quantized cir-
culation. 

Rather than using such an orbital treatment, it is 
also possible to describe a many-electron atom or 
molecule in terms of a single function in three-dimen-
sional space, 

<P(r) = g1,2(r)exp[iS(r)/h], (3) 

which satisfies a generalized non-linear Schrödinger-
type equation (GNLSE). When this is done for an 
excited state with current-density vortices, it is evident 
that the velocity field, defined as 

9{r)=j(r)/e(r) (4) 
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is not irrotational, so that v(r) can be separated into 
an irrotational gauge term, arising from the gradient 
of the net electronic phase S(r), and a solenoidal or 
transverse field term. This is equivalent to introducing 
an "internal magnetic vector potential" Aint(r) [1] into 
the defining equation for the electronic current density, 

j(r) = (1/m) o(r) [PS(r) + (e/c) Aint (r)]. (5) 

The conservation of j (r) thus allows us to manufac-
ture a gauge potential. For each excited state of an 
a tom or molecule, there corresponds a specific, unique 
configuration of internal magnetic field in the 
GNLSE. For each vortex of current, the internal mag-
netic vector potential Aini(r) in equation (5) gives rise 
to a tube of magnetic flux carried around by the pseu-
do-particle described by the function <P{r). Such 
charged-particle-flux-tube composites have been em-
ployed theoretically to construct anyons, obeying 
fractional statistics [18, 19], in two dimensions. These 
concepts could fruitfully be employed to describe an 
a tom in a molecule [20]. 

In time-dependent situations, the evolution of the 
electronic density distribution can be followed with 
simple, site-dependent cellular automaton rules. Cel-
lular au tomata (CA) [21] are discrete dynamical sys-
tems constructed from many similar components, 
each simple, but together capable of complex self-or-
ganizing behaviour. The complexity is generated by 
the co-operative effect of many localized elements of 
electron density on a lattice of sites, each with a finite 
set of possible values. The CA evolves in discrete time 

steps. At each time step, the value of each site is up-
dated according to a definite rule, which specifies the 
new site value in terms of its own old value and those 
of sites in some neighbourhood around it. The rule is 
applied synchronously to each site at each time step. 

In an earlier work [22], we had formulated a CA 
simulation rule based on density functional theory 
(DFT) in the Thomas-Fermi local density approxima-
tion, by dividing space into a large number of discrete 
volume elements ("sites") labelled by n, each with den-
sity g(n). For small disturbances from the ground 
state, the evolution of the density is given by CA rules 
at each site governing the flow of electrons from re-
gions of higher chemical potential (lower electronega-
tivity) to regions of lower chemical potential (higher 
electronegativity) [23]. The equilibrium density is re-
covered through a Class II CA [21, 24]. Our numerical 
results, for one- and two-dimensional systems, are pre-
sented elsewhere [22]. 

The above treatment would be valid for a near-
equilibrium situation. In a truly time-dependent situa-
tion, however, the charge density Q (n) alone no longer 
suffices to fully characterize the system, as discussed 
above, and needs to be supplemented with informa-
tion about the current density j (n). CA simulations 
have been used extensively in modelling reaction-
diffusion systems [25, 26] and fluid dynamical equa-
tions [27-29]. These CA techniques are now being 
adapted to model the Q F D equations of motion [2-9]. 
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