
Electrostatic Properties of Ions in Crystals 
from X-Ray Diffraction Data * 
Niels K. Hansen 
Laboratoire de Mineralogie, Cristallographie et Physique Infrarouge, URA-CNRS-809, 
Universite de Nancy I, Vandceuvre-les-Nancy, France 

Z. Naturforsch. 48a, 81 -84 (1993); received December 24, 1991 

A procedure for calculating the electrostatic potential and the electrostatic energy of an ion in a 
crystal is presented. It is based on a mixed direct and reciprocal space approach, and it takes into 
account the detailed charge density distribution in the crystal which can be obtained from accurate 
X-ray diffraction measurements. 
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Introduction 

The intensities of X-ray Bragg reflections from single 
crystals give a detailed information on the 3-dimen-
sional distribution of the electron density, ge, and on 
derived electrostatic properties. We will study the pos-
sibility of calculating the electrostatic potential within 
the crystal and the electrostatic potential energy of an 
ion. This may be especially interesting for materials 
showing large mobility of cations. 

We may recall that within the Born-Oppenheimer 
approximation (adiabatic theory) the force on a nucleus 
equals the negative gradient vector of the total elec-
tronic plus nuclear-nuclear Coulomb energy: KRi = 
- V Ä 1 £ t o t ( / ? ! , . . . , R„;Qe), where / ? , , . . . , R„ are the 
position vectors of the atomic nuclei on which ge de-
pends parametrically. In this expression Etot may be 
replaced by the electrostatic potential (the Hellmann-
Feynman theorem [1]). It is trivial that in case Rx 

corresponds to a compact cation, i.e. its polarisability 
is low, KRI is also the force on this ion. In the following 
we will limit the discussion to the calculation of the 
electrostatic potential and energies of ions, but let us 
speculate a bit more before entering this subject: If we 
were able to calculate all the second-order derivatives 
of the energy with respect to the coordinates of the ion 
positions, we could establish the equations which, 
within the harmonic approximation, determines the 
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lattice dynamics of the crystal. Let us write, in a kind 
of shorthand notation, 

d2£tot = e X t / S g e y e2£tot 

dR2 d(ge)2 \ d R j dR^g* \dRJ 

a2E to t s£tot / a y \ 

dR2 dge \dR2)' 

Since (Ö£t0t/Ö£e) = 0 (the Hohenberg-Kohn theorem), 
the last term vanishes. The preceding term is purely 
electrostatic (nuclear-nuclear and nuclear-electronic 
coulomb interactions) and is easily calculated, whereas 
the two first terms are polarisability-like contributions 
to the energy derivatives [(ög/öR ^-polarisation of the 
electron density induced by a change in the nuclear 
coordinates], and we do not know of any straightfor-
ward way of calculating these. 

A general description of the algorithms will be 
given. They follow quite closely the ideas developed by 
Stewart [2]. We illustrate their applications by two 
examples. The first with the aim of showing how to 
proceed in order to obtain reliable numerical results. 
To this end we study a hypothetical N a F crystal. The 
second example given is the potential felt by a potas-
sium ion in K T i 0 P 0 4 (KTP), for which the crystals 
show strong ionic conduction due to the mobility of 
the K+-ions. 

Algorithms 

An analytical description of the electron density in 
a crystal may be obtained by fitting a flexible model to 
the X-ray diffraction data. Presently the most com-
monly used approach is refining a so-called aspherical 
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pseudoatom model using some kind of multipole ex-
pansion technique (see, e.g., Hansen and Coppens [3]), 
but for the following discussion the only impor tan t 
requirement is that the model must allow us to calcu-
late a complete set of structure factors corresponding 
to the "at rest" electron density in the crystal. Accurate 
nuclear coordinates must also be known, either f rom 
such a model or f rom an independent neutron diffrac-
tion study. 

The quantities that we want to compute f rom the 
charge density distribution of the crystal are the poten-
tial /* tot / >\ 

Q ( r ) j 3 V(r)=V[Q
l°l](r) = d V (1) 

and the energy of an ion centred at the position R, 

£(Ä) = j F ( r ) < C ( r - H ) d 3 r , (2) 

where £tot denotes the total charge density, i.e. elec-
tronic as well as nuclear, V and E are linear func t iona l 
of the charge density distribution. We can therefore 
take advantage of a decomposit ion of the total charge 
density 

Qlot(r) = X Z t S i r - R d - e ' W , (3) 

which is simply the division into the nuclear and elec-
tronic parts. Next we rewrite the electron density 

C"W = 2 c f ( r - Ä i ) + A(?(r)> (4) 

where g* is some convenient (see below) spherical 
a tomic density function centred at /?, (the nuclear po-
sition) and integrating to Z, electrons; A^ is the corre-
sponding deformation density correcting for the defi-
ciencies of the atomic functions. 

When defining the total a tomic charge density by 

e?(r) = Z t & ( r ) - e i ( r ) , (5) 

we obtain for the potential 

F[e t o t](r) = I F ^ K r - Ä J - V[AQ] (r). (6) 
i 

In this expression, V [£>}ot] is short-range; thus only a 
small cluster of a toms surrounding the point r may be 
included in the summation. By choosing g* properly, 
Ag is slowly varying, and consequently its Fourier 
series 

V[Ag](r)=V[AF](r) 

1 
T/ X A F J f e x p ( - 2 7 l i H r) 

KV H*o H 
(7) 

will converge rapidly. It may be stressed that the nu-
clear contr ibutions are taken care of in the cluster 
summat ion, and that the Fourier series only accounts 
for the contr ibution of the electron density. By this 
procedure we obtain the potential due to the entire 
crystal. If we want to get the potential at the site of an 
ion f rom the surrounding crystal, we simply subtract 
the contr ibut ion of this single ion, 

-V[gZ](r-Ri0n) 
surround 

= X V[sr]{r-Rt)-V[AQ](r) 
1 +V[glD-gltoJ(r-Rion), (8) 

where in the first term we only need to sum over close 
surroundings of the ion. The last term is the potential 
due to the deformation density of the ion itself, cor-
recting the fact that the Fourier sum necessarily ac-
counts for the full crystal, including this ion. 

Having obtained the potential, we can express the 
electrostatic energy of the ion as a function of dis-
placement a round its mean position R0, 

Eion (R—R0) = E j ^x-ion [er] (r-Ri) <?£ (r - R) d3r 

-E[AF](R) + \ Vigln-g^Jir-Ri) 

• g Z ( R ~ R o ) d 3 r . (9) 

The terms in the cluster summation may be rewritten 
according to 

\V[Ql](r)g2(r-R2)d3r 

Qi(ri-Ri)Q2(r2-R2) 
ri - r , 

d3»*! d 3 r 2 , (10) 

which will contain nucleus-nucleus, nucleus-elec-
t ron and e lec t ron-e lec t ron Coulomb interactions. 
The last term in (9) may be expressed in a similar 
manner and can be considered as a kind of self-defor-
mat ion energy 

*QUri-Ro)Qll(r2-R) d 3 r x d 3 r 2 . (11) 

The Fourier contr ibution (a "crystal deformation en-
ergy") equals 

£ [ A F ] ( / ? ) = - * - X ^ 7 ^ ( Z i o n - / i o n ( H ) ) 
nV H±o H 

exp( — 2n i H • R). (12) 
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Practical Aspects 

The total electron density of the crystal is explicitly 
accounted for by the structure factors AF = F — FA, 
where FA is calculated from atom-like density func-
tions. These may be chosen freely, but it is preferable 
to choose them such that AF becomes small for large 
values of sin 6 / L The important point is that we must 
use the same density functions in the calculation of FA 

as for the cluster contributions to the potential and 
energy. Special care must be taken when computing 
the electrostatic energy; here a good-quality density 
must be used for describing the "mobile" ion, and 
/ i o n , respectively. Actually, we calculate densities and 
form factors from atomic orbitals compiled by 
Clementi and Roetti [4]. An original computer code 
was written for the potentials and nucleus-electron 
interaction energies, whereas standard electron-elec-
tron Coulomb repulsion routines were taken from 
quantum chemistry programs [5]. 

Since there may be a build-up of round-off and 
series termination errors close to the centre of the ion 
in question, RxR0, primarily owing to an imperfect 
convergence of the Fourier synthesis, special care 
must be taken in this region. We minimise this by 
using a simplified description of the ion deformation 
density, Agfon, putting it equal to a valence-shell defor-
mation described by a single Slater-type orbital 
(STO). For the self-deformation energy this should 
not change the result when added to £[AF] , but the 
interaction of the ion with neighbouring, symmetry 
related ions may be modified. Nevertheless these ions 
will be at rather long distances, and details in their 
charge density description will not play an important 
role for the potential in the region of interest. 

We shall illustrate these points by a simple hypo-
thetical test: N a F composed of spherical free ions 
N a + and F " [4]. This example has the advantage of 
enabling us to calculate the energy by the procedure 
outlined above, but also to do it directly from a cluster 
calculation summing over the free ions. The second 
procedure does converge rapidly (3 shells of neigh-
bours) when considering the variation of the energy, 
E(R) — E(R0); inclusion of further shells only adds or 
subtracts a, for practical purposes, constant contribu-
tion in the region of interest, \R — /?0 | ^ 0.2 Ä. 

In Fig. 1 three curves of the electrostatic energy are 
shown. One is obtained from an ionic-cluster calcula-
tion and may be considered as the exact result. The 
other two graphs are computed by our procedure, one 
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Fig. 1. Variation of the electrostatic potential energy of a 
sodium ion in NaF. Vertical axis in e / Ä (1 e2/k = 14.4 eV). 
Abscissa: displacement in Ä of the ion from its equilibrium 
position, parallel to [100]. Continuous curve: ionic cluster 
calculation; broken curve: using accurate atomic orbitals for 
the deformation energy calculation; and crosses: using an 
STO representation of the deformation energy. 

Fig. 2. Variation of the electrostatic potential energy of a 
potassium ion (Kl) in K T i 0 P 0 4 . Same units as in Figure 1. 

is based on good quality wavefunctions [4], and the 
other one using the STO representation of the defor-
mation term: = ~ e (STO-3 s). In the Fourier 
synthesis of E[AF] all terms out to sin0/A = 1 .8Ä _ 1 

were included. Actually, when using the "STO repre-
sentation", satisfactory convergence was already ob-
tained at the level of (sin0/A)max = 1.0 Ä " 1 . 

The second example is K T P using the density 
model obtained from an X-ray diffraction study [6]. In 
the crystal structure of K T P the potassium ions oc-
cupy large cavities, and among all the atoms it is the 
K + -ion which undergoes the largest-amplitude ther-
mal vibrations. In Fig. 2 we show the electrostatic 
potential energy as a function of the ion displacement 
parallel to the crystallographic c-axis (spacegroup 
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Pna21), which is also the direction of very large ionic 
conductivity. 

Discussion 

As already remarked, we are only interested in the 
variation of the electrostatic potential energy, since 
forces and force constants are related to the deriva-
tives of this function. We will therefore not go into the 
discussion about the contribution of the Fourier coef-
ficient corresponding to / / = 0 in (7) and (12) [7, 8]. 

The derivative of the electrostatic potential at an 
ion site (the spherical contribution of the ion itself may 
be subtracted out, see (8)) gives the Feynman force [1], 
It should be equal to zero, if the extrapolation to the 
at-rest structure and density also corresponds to the 
equilibrium structure. 

It is more difficult to interpret the electrostatic po-
tential energy. This function will only be useful for 
cations having a compact electron density distribu-
tion with low polarisability. In the two calculations 
presented in the present work, the result is a negative 
force constant; there is a negative curvature in an 

extended region around R 0 of radius as 1 Ä. It should 
be recalled that the effective forces determining the 
independent-atom vibrational tensors are thermal av-
erages and, as already mentioned in the introduction, 
other than electrostatic forces between rigid ions come 
into play. 

Conclusion 

We have presented a practical procedure for calcu-
lating electrostatic properties in a crystal. Neverthe-
less, the present work raises the question: Is the elec-
trostatic potential energy of a cation in a crystal a 
useful function? May it be correlated with effective 
one-particle potentials and with mobility of the ion, or 
will we have to look at thermal averages, and to take 
into account the polarisation of the surrounding crys-
tal lattice or the electron exchange repulsion when 
displacing the ion away from its equilibrium position? 
In that case the calculations will become much more 
cumbersome, and we shall need complementary infor-
mation to the structure and electron density as ob-
tained from an X-ray diffraction measurement. 
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