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A procedure for calculating the electrostatic potential and the electrostatic energy of an ion in a
crystal is presented. It is based on a mixed direct and reciprocal space approach, and it takes into
account the detailed charge density distribution in the crystal which can be obtained from accurate

X-ray diffraction measurements.
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Introduction

The intensities of X-ray Bragg reflections from single
crystals give a detailed information on the 3-dimen-
sional distribution of the electron density, ¢, and on
derived electrostatic properties. We will study the pos-
sibility of calculating the electrostatic potential within
the crystal and the electrostatic potential energy of an
ion. This may be especially interesting for materials
showing large mobility of cations.

We may recall that within the Born-Oppenheimer
approximation (adiabatic theory) the force on a nucleus
equals the negative gradient vector of the total elec-
tronic plus nuclear-nuclear Coulomb energy: Kg, =
—Vg, Ei(Ry, ..., R,; 0°), where R,,..., R, are the
position vectors of the atomic nuclei on which ¢¢ de-
pends parametrically. In this expression E,, may be
replaced by the electrostatic potential (the Hellmann-
Feynman theorem [1]). It is trivial that in case R,
corresponds to a compact cation, i.e. its polarisability
is low, K is also the force on this ion. In the following
we will limit the discussion to the calculation of the
electrostatic potential and energies of ions, but let us
speculate a bit more before entering this subject: If we
were able to calculate all the second-order derivatives
of the energy with respect to the coordinates of the ion
positions, we could establish the equations which,
within the harmonic approximation, determines the
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lattice dynamics of the crystal. Let us write, in a kind
of shorthand notation,
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Since (O0E,,,/0¢°) = 0 (the Hohenberg-Kohn theorem),
the last term vanishes. The preceding term is purely
electrostatic (nuclear-nuclear and nuclear-electronic
coulomb interactions) and is easily calculated, whereas
the two first terms are polarisability-like contributions
to the energy derivatives [(0g/OR,)-polarisation of the
electron density induced by a change in the nuclear
coordinates], and we do not know of any straightfor-
ward way of calculating these.

A general description of the algorithms will be
given. They follow quite closely the ideas developed by
Stewart [2]. We illustrate their applications by two
examples. The first with the aim of showing how to
proceed in order to obtain reliable numerical results.
To this end we study a hypothetical NaF crystal. The
second example given is the potential felt by a potas-
sium ion in KTiOPO, (KTP), for which the crystals
show strong ionic conduction due to the mobility of
the K*-ions.

azElot
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Algorithms

An analytical description of the electron density in
a crystal may be obtained by fitting a flexible model to
the X-ray diffraction data. Presently the most com-
monly used approach is refining a so-called aspherical
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pseudoatom model using some kind of multipole ex-
pansion technique (see, e.g., Hansen and Coppens [3]),
but for the following discussion the only important
requirement is that the model must allow us to calcu-
late a complete set of structure factors corresponding
to the “at rest” electron density in the crystal. Accurate
nuclear coordinates must also be known, either from
such a model or from an independent neutron diffrac-
tion study.

The quantities that we want to compute from the
charge density distribution of the crystal are the poten-

tial tot [,/
Vi) =V [e™(r) = f 230, gop
r—r|

and the energy of an ion centred at the position R,
= [ V() dion(r—R) dr, @

where ¢'' denotes the total charge density, i.e. elec-
tronic as well as nuclear, V and E are linear functionals
of the charge density distribution. We can therefore
take advantage of a decomposition of the total charge
density

0“'(r) =

1)

tot

atoms

2 Zio(r—R)—o"(n), (©)
which is simply the division into the nuclear and elec-
tronic parts. Next we rewrite the electron density

e*(N =2 ¢i(r—R)+ Ae(r), 4)
where ¢f is some convenient (see below) spherical
atomic density function centred at R; (the nuclear po-
sition) and integrating to Z, electrons; Ag is the corre-
sponding deformation density correcting for the defi-
ciencies of the atomic functions.

When defining the total atomic charge density by

(N =Z;5(r)—0f(r), )
we obtain for the potential
Vie*™(r) = Z Ve (r—R;) — VIAg](r). (6)

In this expression, V [¢}®"] is short-range; thus only a
small cluster of atoms surrounding the point r may be
included in the summation. By choosing g¢f properly,
Ap 1is slowly varying, and consequently its Fourier
series

VAol (r) = V [AF](r)

AF
_L 5 ar

nV Hxo

exp(—2niH:-r) (7)
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will converge rapidly. It may be stressed that the nu-
clear contributions are taken care of in the cluster
summation, and that the Fourier series only accounts
for the contribution of the electron density. By this
procedure we obtain the potential due to the entire
crystal. If we want to get the potential at the site of an
ion from the surrounding crystal, we simply subtract
the contribution of this single ion,

Vicion (1) = Z V{ei™](r—R;) = V[Ag] (r)

tot

[Q on ] (r

ion )

surround

= X VIe"1r—R)—VI[Ag](r)

Vg — ®)

where in the first term we only need to sum over close
surroundings of the ion. The last term is the potential
due to the deformation density of the ion itself, cor-
recting the fact that the Fourier sum necessarily ac-
counts for the full crystal, including this ion.

Having obtained the potential, we can express the
electrostatic energy of the ion as a function of dis-
placement around its mean position R,,

Q:lom] (r_ Rion)’

Eion(R—Ro) =3 [ Viion [0 (r— R)) @l (r— R) d*r

"E[AF]R) + | Vgh— on] (r—R)
o= (R—Rq) . o)

The terms in the cluster summation may be rewritten
according to

[ Vo) 0, (r—Ry) dr

=j91("1

which will contain nucleus—nucleus, nucleus—elec-
tron and electron—electron Coulomb interactions.
The last term in (9) may be expressed in a similar
manner and can be considered as a kind of self-defor-
mation energy

jAQicon (rl

The Fourier contribution (a “crystal deformation en-
ergy”) equals

—R,)0,(r,—R,)
lry—r,]

3, 13
d°r, d°r,,

(10)

—Ry) 0ion (r, —R)

[ry—r,]

3, 43
d°r, d°r,.

(11)

1 AF (H
Ea ()

H#O

-exp(—2niH- R).

E[AF](R) = =Sion(H))

(Z ion

(12)



Niels K. Hansen - Electrostatic Properties of Ionic Crystals

Practical Aspects

The total electron density of the crystal is explicitly
accounted for by the structure factors AF=F—F,,
where F, is calculated from atom-like density func-
tions. These may be chosen freely, but it is preferable
to choose them such that AF becomes small for large
values of sin 6/ 4. The important point is that we must
use the same density functions in the calculation of F,
as for the cluster contributions to the potential and
energy. Special care must be taken when computing
the electrostatic energy; here a good-quality density
must be used for describing the “mobile” ion, g}, and
fion» TESPEcCtively. Actually, we calculate densities and
form factors from atomic orbitals compiled by
Clementi and Roetti [4]. An original computer code
was written for the potentials and nucleus—electron
interaction energies, whereas standard electron—elec-
tron Coulomb repulsion routines were taken from
quantum chemistry programs [5].

Since there may be a build-up of round-off and
series termination errors close to the centre of the ion
in question, R~ R,,, primarily owing to an imperfect
convergence of the Fourier synthesis, special care
must be taken in this region. We minimise this by
using a simplified description of the ion deformation
density, Ag$,,, putting it equal to a valence-shell defor-
mation described by a single Slater-type orbital
(STO). For the self-deformation energy this should
not change the result when added to E[AF], but the
interaction of the ion with neighbouring, symmetry
related ions may be modified. Nevertheless these ions
will be at rather long distances, and details in their
charge density description will not play an important
role for the potential in the region of interest.

We shall illustrate these points by a simple hypo-
thetical test: NaF composed of spherical free ions
Na* and F~ [4]. This example has the advantage of
enabling us to calculate the energy by the procedure
outlined above, but also to do it directly from a cluster
calculation summing over the free ions. The second
procedure does converge rapidly (3 shells of neigh-
bours) when considering the variation of the energy,
E(R) —E(R,); inclusion of further shells only adds or
subtracts a, for practical purposes, constant contribu-
tion in the region of interest, |[R—R,| < 0.2 A.

In Fig. 1 three curves of the electrostatic energy are
shown. One is obtained from an ionic-cluster calcula-
tion and may be considered as the exact result. The
other two graphs are computed by our procedure, one
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Fig. 1. Variation of the electrostatic gotential energy of a
sodium ion in NaF. Vertical axis in e*/A (1 e2/A=14.4¢V).
Abscissa: displacement in A of the ion from its equilibrium
position, parallel to [100]. Continuous curve: ionic cluster
calculation; broken curve: using accurate atomic orbitals for
the deformation energy calculation; and crosses: using an
STO representation of the deformation energy.
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Fig. 2. Variation of the electrostatic potential energy of a
potassium ion (K1) in KTiOPO,. Same units as in Figure 1.

is based on good quality wavefunctions [4], and the
other one using the STO representation of the defor-
mation term: Agg,+ = —@(STO-3s). In the Fourier
synthesis of E[AF] all terms out to sinf/A=18A"!
were included. Actually, when using the “STO repre-
sentation”, satisfactory convergence was already ob-
tained at the level of (sin6/4),, =1.0A"1.

The second example is KTP using the density
model obtained from an X-ray diffraction study [6]. In
the crystal structure of KTP the potassium ions oc-
cupy large cavities, and among all the atoms it is the
K *-ion which undergoes the largest-amplitude ther-
mal vibrations. In Fig. 2 we show the electrostatic
potential energy as a function of the ion displacement
parallel to the crystallographic c-axis (spacegroup
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Pna2,), which is also the direction of very large ionic
conductivity.

Discussion

As already remarked, we are only interested in the
variation of the electrostatic potential energy, since
forces and force constants are related to the deriva-
tives of this function. We will therefore not go into the
discussion about the contribution of the Fourier coef-
ficient corresponding to H=0 in (7) and (12) [7, 8].

The derivative of the electrostatic potential at an
ion site (the spherical contribution of the ion itself may
be subtracted out, see (8)) gives the Feynman force [1].
It should be equal to zero, if the extrapolation to the
at-rest structure and density also corresponds to the
equilibrium structure.

It is more difficult to interpret the electrostatic po-
tential energy. This function will only be useful for
cations having a compact electron density distribu-
tion with low polarisability. In the two calculations
presented in the present work, the result is a negative
force constant; there is a negative curvature in an
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extended region around R, of radius ~1 A. It should
be recalled that the effective forces determining the
independent-atom vibrational tensors are thermal av-
erages and, as already mentioned in the introduction,
other than electrostatic forces between rigid ions come
into play.

Conclusion

We have presented a practical procedure for calcu-
lating electrostatic properties in a crystal. Neverthe-
less, the present work raises the question: Is the elec-
trostatic potential energy of a cation in a crystal a
useful function? May it be correlated with effective
one-particle potentials and with mobility of the ion, or
will we have to look at thermal averages, and to take
into account the polarisation of the surrounding crys-
tal lattice or the electron exchange repulsion when
displacing the ion away from its equilibrium position?
In that case the calculations will become much more
cumbersome, and we shall need complementary infor-
mation to the structure and electron density as ob-
tained from an X-ray diffraction measurement.
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