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Incomplete and imperfect data characterize the problem of constructing electron density represen-
tations from experimental information. One fundamental concern is identification of the proper 
protocol for including new information at any stage of a density reconstruction. An axiomatic 
approach developed in other fields specifies entropy maximization as the desired protocol. In 
particular, if new data are used to modify a prior charge density distribution without adding 
extraneous prejudice, the new distribution must both agree with all the data, new and old, and be 
a function of maximum relative entropy. The functional form of relative entropy is a = — g In (g/z), 
where g and x respectively refer to new and prior distributions normalized to a common scale. 

Entropy maximization has been used to deal with certain aspects of the phase problem of X-ray 
diffraction. Varying degrees of success have marked the work which may be roughly assigned to 
categories as direct methods, data reduction and analysis, and image enhancement. Much of the 
work has been expressed in probabilistic language, although image enhancement has been somewhat 
more physical or geometric in description. Whatever the language, entropy maximization is a specific 
and deterministic functional manipulation. A recent advance has been the description of an al-
gorithm which, quite deterministically, adjusts a prior positive charge density distribution to agree 
exactly with a specified subset of structure-factor moduli by a constrained entropy maximization. 

Entropy on an iV-representable one-particle density matrix is well defined. The entropy is the 
expected form, and it is a simple function of the one-matrix eigenvalues which all must be non-neg-
ative. Relationships between the entropy functional and certain properties of a one-matrix are 
discussed, as well as a conjecture concerning the physical interpretation of entropy. Throughout this 
work reference is made to informational entropy, not the entropy of thermodynamics. 

Key words: Charge density; Correlation energy; Density matrix; Entropy maximization; Hohenberg-
Kohn theorem. 

1. Introduction 

E n t r o p y , l ike t h e d ie so o f t e n i n v o k e d in its d i scus -
s ion , h a s m a n y faces. A l t h o u g h its f u n c t i o n a l f o r m is 
t h e s a m e in t h e r m o d y n a m i c s a n d i n f o r m a t i o n phys ics , 
in th i s w o r k t h e r e is n o f u r t h e r c o n s i d e r a t i o n of t h e r -
m o d y n a m i c e n t r o p y . T h e t e r m e n t r o p y in c o n n e c t i o n 
w i t h i n f o r m a t i o n a n d the w o r k of S h a n n o n (vid. S h a n -
n o n a n d W e a v e r [1]) is a c tua l l y s o m e t h i n g of a n acci -
den t . W h e n he f o u n d a wel l -behaved m e a s u r e of unce r -
t a i n t y a s s o c i a t e d w i t h a p r o b a b i l i t y d i s t r i b u t i o n fo r n 
o u t c o m e s , S h a n n o n c o n s i d e r e d ca l l ing it i n f o r m a t i o n 
o r unce r t a in ty , b u t J o h n v. N e u m a n n p e r s u a d e d h i m t o 
cal l it e n t r o p y . W h a t e v e r g o o d r e a s o n s t h e r e m a y be 
fo r a pa ra l l e l , or , in c e r t a i n cases , even a n e q u i v a l e n c e 
b e t w e e n i n f o r m a t i o n m e a s u r e s a n d t h e r m o d y n a m i c s , 
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v o n N e u m a n n ' s w e r e f o c u s e d o n l imi t ing t o o n e t h e 
n a m e s of t h e f u n c t i o n a l f o r m ( D e n b i g h a n d D e n b i g h 
[2])-

S o m e n o t a b l e uses of i n f o r m a t i o n a l e n t r o p y a r e in 
s p e c t r a l f a c t o r i z a t i o n o r a u t o c o r r e l a t i o n d e c o n v o l u -
t ion , a n a l y s i s of c o m m u n i c a t i o n s n e t w o r k s , ana lys i s of 
p o p u l a t i o n s a n d p r o b a b i l i t i e s for a w i d e r a n g e of 
p r a c t i c a l p r o b l e m s , i m a g e e n h a n c e m e n t a n d r e c o n -
s t r u c t i o n , a n d a log ic of cons i s t en t in fe rence . T h e s e 
a n d o t h e r a p p l i c a t i o n s p r o v i d e f o r m s i m m e d i a t e l y 
a d a p t a b l e t o m a n y c r y s t a l l o g r a p h i c p r o b l e m s . Bu t t h e 
p r e d o m i n a n t c r y s t a l l o g r a p h i c use of i n f o r m a t i o n a l 
e n t r o p y is in t h e e x t r a c t i o n of o p t i m a l e l e c t r o n dens i t y 
f u n c t i o n s f r o m d i f f r a c t i o n d a t a , a n d t h e p r e s e n t d is-
c u s s i o n will b e l im i t ed t o v a r i o u s a s p e c t s of th i s gen-
e ra l p h a s e p r o b l e m of X - r a y d i f f r ac t ion . 

T h e l a n g u a g e of p r o b a b i l i t y a n d s ta t i s t ics w a s n o t 
u s e d in t h e first a p p l i c a t i o n s of e n t r o p y m a x i m i z a t i o n 
t o d e t e r m i n a t i o n of a n e l ec t ron d e n s i t y f u n c t i o n 
(Co l l ins [3, 4]), a n d in th i s p a p e r it will b e used o n l y 
inc iden ta l ly . I n c o n t r a s t , p r o b a b i l i s t i c c o n c e p t s were a 
c r i t ica l p a r t of t h e a n t e c e d e n t w o r k of G u l l a n d 
D a n i e l l [5], a n d t hey p l a y e d a n i m p o r t a n t ro le in m u c h 
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of the early crystallographic discussion of entropy 
maximization (Wilkins, Varghese, and Lehman [6], 
Navaza, Castellano, and Tsoucaris [7], Bricogne [8]), 
and continue to do so (e.g., Bricogne [9], MacLachlan 
[10], Gilmore, Henderson, and Bricogne [11, 12]). The 
viewpoint of the present discussion is that of the gen-
eral phase problem as a physical problem, in order to 
emphasize the physical nature of charge density. 

The common presumption of a (nonphysical) uni-
form distribution of a toms in a unit cell insufficiently 
constrains entropy maximization and other known 
direct methods for phasing structures of substantial 
complexity, or perhaps one should say, phasing data 
sets of limited resolution. On the probabilistic side, 
immediate advantage is expected from a better distri-
bution of atoms, and Bricogne, in his papers, has em-
phasized moving away from the uniform distribution 
to updated, physically realistic, non-uniform distribu-
tions expressed in the joint distribution of structure 
factors. On the physical side, more deterministic con-
straints are sought for charge density, and here the 
search is in the direction of a quantum-mechanically 
informed entropy maximization. 

Initially, a heuristic foundation is given for use of 
entropy in the physical context, and straightforward 
development leads to some applications. Then a quan-
tum-mechanically structured formalism is given for 
entropy maximization on a density matrix. Finally, a 
conjecture is made concerning physical interpretation 
of entropy on a one-particle density matrix. 

2. Entropy 

Given a set of possible events each with a probabil-
ity p{, Shannon [1] posed the problem of finding a 
measure of how much "choice" is involved in the selec-
tion of an event, or of the uncertainty of a particular 
outcome. This is the problem solved by Shannon's 
entropy, or just entropy. Fougere [13] set out Shan-
non's desiderata or axioms in the following form. If S 
is the measure of uncertainty: 

1. S = S(p1,p2, p„)- The information depends 
upon the entire set of probabilities. 

2. If all Pi are equal, then S is a monotone increasing 
function of n. With more possibilities to choose 
from, the information in a choice is greater. 

3. S is additive for compound independent events. 
If events A and B are independent, S (A B) = 
S(A) + S(B). 

4. S does not depend upon how the problem is set up. 

For example, 

1 1 1 
2 ' 6 ' 3 

, 1 1 \ 1 / 1 2 
= 2 ' 2 / + 2 \ 3 ' 3 

The intermediate state corresponding to the right-
most term occurs with probability j and is so 
weighted. That is, the information in the probabil-
ity assignment A = B = C = | , must be the 
same as in the assignment A = j, D = j, with reso-
lution of intermediate state D by probability as-
signment B = C = 

Shannon showed that, within a positive factor, 

S= - Z Pi In Pi, (1) 

and that only this functional form, now associated 
with his name, satisfies the assumptions. 

Shore and Johnson [14] established the uniqueness 
of the entropy functional in an especially useful way. 
They showed that if new data were used to modify a 
prior distribution without adding extraneous preju-
dice, then the new distribution must both agree with 
all the data, new and old, and be a function with 
maxium relative entropy having the form 

a= - e l n ( e / T ) . (2) 

This established consistent inference as a requirement 
sufficient to determine the entropy formula. 

The most general statement of the outcome of 
Shore and Johnson's [14] axioms is given by Skilling 
[15]. Skilling abandons the limitation of dealing with 
probability distributions and considers positive (not 
necessarily normalized) distributions in general. The 
problem posed is to devise a ranking scheme by which 
to order images reconstructed from observational in-
formation. The ranking is to consist in assigning a 
number S to each image f , such that for any pair of 
images the better has a greater S. An acceptable form 
of S is determined by the satisfaction of four assump-
tions or axioms which Skilling summarizes informally 
in statements of their justification. The substance of 
his informal statements is: 

Axiom I. Subset independence. Information about one 
domain of an image should not affect the re-
construction in a different domain, provided 
there is no constraint directly linking the do-
mains. 

Axiom II. Coordinate invariance. The same answer is 
expected when the same problem is solved in 
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two different coordinate systems, in that the 
reconstructed images in the two systems 
should be related by the coordinate transfor-
mation. 

Axiom III. System independence. If all that is known 
about an image / is its (independent) marginal 
distributions and a2, the recovered image is 
to be, within a positive constant factor, the 
uncorrelated reconstruction f = ala2. Any 
other choice of / would imply correlation for 
which there is no evidence. 

Axiom IV. Scaling. In the absence of any additional 
information, the initial measure of the image is 
to be recovered. If all that is known about a 
simple well behaved function is its mean, any 
acceptable reconstruction must have the same 
mean. 

In consequence of these axioms, there is an entropic 
regularization formula to be maximized when select-
ing an optimal image f . The same form arises in a 
parallel analysis for selection of a prior model m, and 
Skilling combines them, in the discrete case, in the 
entropy form 

S = U f i - m i - f M f i / m i ) ] , (3) 

which can be used to rank and select image-model 
pairs. 

In the present context, charge density Q is an image, 
and its prior model i will often be taken as the uniform 
distribution corresponding to the correct electron 
count. S has certain interesting properties conceptu-
ally useful in the discussion of charge density distribu-
tion. 

1. S = 0 is a global maximum achieved when Q and t 
coincide. The decrease of S from its global maxi-
mum is a measure of the deviation of Q from its 
prior model T. 

2. Relative to a prior uniform distribution, any change 
which preserves X; Qi a n d diminishes Q? will in~ 
crease S; the flatter the density, the greater its en-
tropy (Collins and Prince [16]). 

3. Equation (1) is the form suitable for ranking sets of 
spatially unrelated nonnegative numbers normal-
ized to a fixed but arbitrary scale, e.g., a set of 
probabilities; its global maximum and minimum 
are achieved, respectively, when all members of a 
set are equal, and when all members but one are 
zero. 

3. Entropy, Exponential Density, 
and Structure Factor Fitting 

There is a continuing need for methods to construct 
optimal charge density functions from available data. 
A substantial advance was made with the introduc-
tion of direct entropy maximization on the charge 
density to the crystallographic literature (Collins [4]), 
and with the demonstration of its corresponding im-
plied exponential representation as a competent 
model (Collins and Mahar [17]). The intent of that 
work was to obtain, for biological macromolecules, 
optimal density maps based on the imperfect data 
characteristic of X-ray diffraction experiments. Con-
strained entropy maximization and the consequent 
exponential model of density necessarily yield posi-
tive-definite results. Other favorable results shown in 
various simulations include partial defeat of series ter-
mination error, improvement of initial phase assign-
ments, resolution enhancement, and opportunity for 
proper handling of information in addition to the 
Fourier coefficients of density. An example of the pos-
sible accuracy and precision of entropy maximization 
on density is given elsewhere in this volume by Takata, 
Kubota and Sakata [18]. 

The formalism first presented by Collins [4] led to 
an algorithmic application conveniently described as 
iterative adjustment of the logarithm of density to 
improve the agreement between observed and calcu-
lated structure factors. The reconstruction procedure 
was based on 

QK = EXP Im k + Z0j[Fo(hj) 
j 

~ Fc (hj)] exp [— 2nihj • rk] , (4) 

where Qk is the current iterate of charge density sam-
pled at rk, xk is the corresponding prior model sample, 
9j is a collection of constants that weight and scale the 
difference density coefficient, and Fc (hj) is the Fourier 
transform of T sampled at reciprocal lattice vector hj, 
corresponding to the observed structure modulus 
\F0(hj)\; the phase angle assigned to |F0 | can be held at 
its initial value or updated for each iteration. A suc-
cessful outcome for this reconstruction procedure de-
pends on the use or discovery of a good model. For 
problems at atomic resolution or better, the procedure 
is quite generally an excellent means for adjusting a 
positive-definite density to bring it into closer agree-
ment with observed structure moduli. It is fast and 
stable, and in the case of abundant accurate data, it 
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can be used to generate an unambiguous solution to 
the phase problem. 

Sjölin, Prince, Svensson, and Gilliland [19] used a 
dual method to find a complete solution to the prob-
lem of exactly fitting structure moduli given initial 
estimates of their phases. This may be stated as a 
s tandard nonlinear programming problem (Collins 
and Prince [16]) in the form 

maximize £ , 
i 

subject to G c(a) - G 0 = 0 , 

(5 a) 

(5 b) 

where the entropy of a density map is to be maxi-
mized, Gc(a) is a vector of structure moduli \Fc(hj)\ 
obtained from Fourier inversion of the map, G0 is the 
corresponding vector of observations |F0(AJ)|, and a is 
a vector of multipliers to be determined. With respect 
to Qi, maximization of 

ß = Z f f , + a t [ G c ( a ) - G J 
i 

yields the dual function 

C (a) = maximum a{ + a1" [Gc (a) - G j j . 

(6) 

(7) 

to be optimized in an unconstrained minimization 
with respect to a. The uniform density is used as the 
model function, and 

I Fc (hj) | = £ Qi cos [2 n h i • - a (A,-)], (8) 

where a is the phase associated with |FC|. At the max-
imum of Q, 

Qk = exp <*j cos [2 nhj rk- a (A,)] (9) 

the final expression for a positive-definite exponential 
model of density. 

The solution of (5) is completed by minimization of 
c (a) by a Newton method to evaluate the elements of 
a. After / iterations, this gives the vector of multipliers 
as 

a i = a , _ 1 - H [ C ( a ) ] - 1 F C ( a ) , (10) 

for which the gradient V and an approximation to the 
Hessian matrix H of £ are needed. The gradient of £ 
has the notably simple form 

F C (a) = G c (a) — G c . (ID 
Because the system of equations to be solved is likely 
very large, it may be desirable to use quasi-Newton 
methods, or the t runcated-Newton methods (Nash 
[20]) recently shown to be especially effective (Decar-

reau, Hilhorst, Lemarechal, and Navaza [21]), and 
these methods can build an approximation to the Hes-
sian matrix of £ without its direct computat ion. It is 
important to recognize that the Hessian matrix is pos-
itive-definite [16,19]. If for an initial phase assignment 
a solution to (5) exists, then it is unique. 

Prince's method, in spite of being similar in appear-
ance to much antecedent work, is a profound depar-
ture from prior related analyses. Specifically, Prince's 
method is the first to use as constraints only modulus 
information in the computat ion of an exponential 
density. That is, al though initial phase assignments 
are used, phases are fixed and not adjustable parame-
ters of the optimization. (In practice, bad choices are 
occasionally made for phases, and implementation 
must allow for alternate choices in these cases.) The 
difference between Prince's method and others is em-
phasized by their multipliers. Prince's multipliers a j 
are real, and, e.g., those of Lemarechal and Navaza 
[22] are complex, as are those of Bricogne [8], which, 
though real, are in the ordered pairs commonly repre-
sented as complex variables. It should be noted that 
Prince's method, although it can be used in solution of 
the phase problem, is here referred to only in its al-
gorithmic sense of finding the map of maximum en-
tropy that can be inverted to yield exact magnitudes 
for a subset of moduli which have been assigned 
phases. 

4. Entropy on a Density Matrix 

For many years it has been known that the ordinary 
electron density function of crystallography is a con-
traction of the fully elaborated quantum-mechanical 
representation of an electronic ground state (vid. 
McWeeny and Sutcliffe [23]). It will be clear that in this 
section the discussion refers to a state of idealization 
hopelessly beyond reach of protein crystallography. 
Nevertheless, the power and success of entropy maxi-
mization on ordinary charge density suggests that en-
tropy maximization in the context of a more general 
underlying reality may unveil additional power for 
dealing with the phase problem. 

The sufficient information for one-electron proper-
ties, among which is charge density, is carried by the 
one-electron, or one-particle density matrix for a sys-
tem. Schmider, Smith and Weyrich [24] give a good 
summary of the relationship between quantum chem-
istry and crystallography. They begin with an iV-elec-
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tron wavefunction W, which is formed with itself into 
a dyadic product, and contract the product to a one-
particle reduced density matrix, or one-matrix, y (1,1'), 
where the number 1 stands for the four space-spin 
coordinates of electron one. It is to be noted that by 
this construction the density matrix is iV-repre-
sentable, that is, there exists an N-particle dyadic 
product based on a many-particle wave function of 
correct properties, whose contraction is the one-ma-
trix. The corresponding spin-free or spin-traced one-
matrix is g(r,r'), and its so-called diagonal is that 
portion for which r = r', and q (r, r) = g (r), the ordi-
nary charge density. (From here on the notions "den-
sity matrix" and "one-matrix" are used interchange-
ably in the sense of the latter, with and without spin.) 

Here the useful forms for a one-matrix are either the 
eigenvalue equations 

7 ( 1 , 1 ' ) = £ n jz j i I )XT(I ' ) , (12a) 
j= i 

where the eigenvalues rij are the occupation numbers 
of the natural spin orbitals Xj, a n d 

f?(r , r ' )= £ n ^ , ( r ) ^ f ( r ' ) , (12b) 
i=i 

in which an eigenvalue nt is the occupation number of 
(spin-free) natural orbital ij/h or an expansion in the 
orthogonal basis functions </>,-, 

e(r,r') = ZPki<t>i(r)(t>t(r'). (13) 
i,k 

For a one-matrix y (representing a fermion system) to 
be N-representable, it suffices that the one-matrix has 
eigenvalues which sum to N and lie in the range [0,1] 
(Coleman [25]). In the case of the spin-traced one-ma-
trix g, the required eigenvalue range becomes [0,2]; the 
eigenvalues must again sum to N. 

For the entropy on a density matrix, Jaynes [26] has 
given the form 

S = - tr [g (r, r') In g (r, »•')], (14) 

the trace of the matrix, which may be computed as 

S = - £ rij In r i j + , (15) 
j= i 

Differing scales for rij lead to values of S differing by a 
constant. Certain of Jaynes' inequalities show that his com-
monly used unit-normalization is not an essential feature of 
the eigenvalue equation for entropy. For a spin-traced singlet 
system with eigenvalues in the range [0,2], S = — In(n./2) 
is the entropy that properly accounts for the spin-tracing; the 
entropy arising from creation of two natural spin orbitals 
from one natural orbital is - In (1/2). 

where the eigenvalues rij are those of (12). Evidently, 
entropy on an iV-representable fermion one-matrix is 
well defined and can be calculated. 

Rearrangement of 

0(r) = ^ Z m ) e x p [ - 2 7 u A - r ] , (16) 
' i 

the Fourier synthesis of charge density, is one way to 
construct a density matrix with explicit reference to 
structure factors. For a crystal unit cell of volume V, 
define 

Tik = Thi_hk; £i(r) = F - 1 / 2 exp [ — 27t A; • r]. (17) 

Then, if by any assignment 

I Tik = & {h, T) = Fh, (18) hi~hk = h 

Q(r,r') = Z T i k U r ) t i ( r ' ) (19) 
ik 

is a full density matrix carrying the charge density as 
its diagonal, provided that experimental |Fh | has been 
correctly phased. Clearly, because the elements Ttj are 
restricted only to satisfy (18), (19) cannot be expected 
to give the true density matrix without additional con-
straint. If assignment of values for T is additionally 
required to give a density matrix with nonnegative 
eigenvalues, then the entropy is well defined, both on 
a density matrix and on the charge density itself, so 
long as it also is nonnegative. 

Macromolecular crystallography involves, for its 
smaller structures, unit cells containing tens of thou-
sands of electrons. For these cases computationally 
tractable number representations of density matrices 
are not likely to substantially exceed a rank of 103 in 
T. Of course if the rank of T is an order of magnitude 
smaller than the number of electrons in a unit cell, the 
eigenvalues of T, which must sum to N, will violate 
their iV-representability upper bound, and (19) can 
only be an approximation. Even so, if value assign-
ments in T are governed by maximization of the en-
tropic regularization formula, and are constrained by 
J5"(A,T) = Fh, the approximate density-matrix diago-
nal will suffer only the usual imperfections of data 
limitation, and the eigenvalues will be as nearly equal 
as possible. 

5. Physical Interpretation of Entropy: A Conjecture 

Entropy on a density matrix is a particularly simple 
functional in that it involves only eigenvalues. A one-
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matrix representation of independent or uncor rec ted 
fermions is characterized by idempotence, and its ei-
genvalues must therefore be 0 or 1. In quantum-me-
chanical calculations for real chemical systems, in-
spection shows the eigenvalue spectrum to change in 
ways that increase the entropy of the one-matrix, as 
electron correlation is accounted for, and it is evident 
that the eigenvalues carry information about the cor-
relation. 

Reconstruction of a one-matrix requires constraint 
beyond mere agreement with a set of (phased) struc-
ture factors. The maximization of entropy is an addi-
tional constraint, but it does not have certain claim on 
physical significance. Electron correlation is a physi-
cal phenomenon and the correlation energy is func-
tionally related to the eigenvalues or occupation num-
bers rij. If correlation energy is defined as 

£ c o r = £ 0 - £ H F ^ 0 , (20) 

where £ 0 is the true ground-state energy and £ H F is 
the Hartree-Fock or independent-particle energy, its 
maximum is zero and corresponds to an independent-
particle state. Such a state is equally well characterized 
by a zero of entropy on the one-matrix. 

Correlation energy and entropy on a one-matrix 
have, with a sign reversal, the same qualitative sense 
of change as eigenvalues change. It would be desirable 
to link the two in a definite relationship involving the 
eigenvalues. If a functional 2£ is to be usefully related 
to the correlation energy, it may be required to share 
some of the correlation energy's properties. The prop-
erties required here are 

1. If there is a , it must depend on the entire set of 
eigenvalues ny, Y. j n j = N. 

2. If there is a J f , it must decrease as the measure of 
departure from idempotence ^-(n,- — n j ) increases 
from zero. 

3. If there is a J f , it must allow partit ioning of eigen-
values in sets following the pattern r = 7"i u r2, for 
which S (£) = 2 (TJ + & (£2). This is to reflect the 
known utility of partit ioning orbital sets, and dis-
tinguishing shells and principal energy levels for 
computational approximation. 

4. If there is a it must allow subsequent elabora-
tion of an orbital following, for a two-particle ex-
ample, the pattern 

2t (0.9,0.8,0.2,0.1) = 2 (0.9,0.8,0.3) 

+ 0.3 iT (0.33,0.67). 

This is to reflect the change in correlation energy as 
the appropriately weighted addition of correlation 
energy arising from the subsystem in the course of 
its creation. 

The form of is definite and unique as discussed in 
paragraph 2. It is, of course, with sign reversed, the 
functional form of entropy, and the conjecture is that 
the four properties are indeed properties of electron 
correlation energy, thus establishing 

£COr = * I > j - l n rij, (21) 
j 

where x is a positive constant to be determined. Then 
a physical interpretation of entropy on a density ma-
trix is that it is proportional to the negative of corre-
lation energy. 

6. Conclusion 

Entropie regularization formulas have proven to be 
powerful tools in dealing with the phase problem. In 
the past decade, there have been numerous reports of 
structure solutions aided by entropy maximization. 
There also have been several reports of structures 
solved on the basis of entropy maximization. In a 
certain sense these have been special cases, e.g., small 
structures of few atoms, small structures with unusu-
ally large and accurate data sets, structures with spe-
cial delimiting features readily identified on the basis 
of few phased reflections, or simulated solutions of 
known structures. The largest problem currently 
solved by entropy maximization methods is a simula-
tion of the structure solution of recombinant bovine 
chymosin, a protein of 323 amino-acid residues [19]. 
In spite of the various reported successes, additional 
constraint is desireable to increase the productivity of 
entropy maximization algorithms. 

Direct methods began as algebraic exploitation of 
the positivity of charge density, and were given an 
enduring foundation through elaboration of conse-
quent inequality relationships among structure fac-
tors (Karle and Haup tman [27]). Exponential density 
is a feature of entropy maximization and imposes on 
charge density the requirement of positivity. Density 
matrices are quantum-mechanically specialized repre-
sentations that can carry positive charge density as 
well as other information true of an electronic system. 
Entropy on density matrices has been presented in the 
hope of discovering additional power for phase deter-
mination and enhancement of charge density images, 
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especially for biological macromolecules. It also seems 
reasonable that entropic regularization will provide 
added control to the reconstruction of density ma-
trices using information from diverse sources. 

Entropy on density matrices brings two proposi-
tions to a need for resolution. The propositions are a 
principle and a theorem, both of which continue to be 
controversial in some ways, but also continue to stand 
against challenge. They are Jaynes' maximum entropy 
principle (JMEP, Jaynes [28]), and the Hohenberg-
Kohn theorem (HKT, Hohenberg and Kohn [29]). An 
informal summary of the H K T (see also Berrondo and 
Goscinski [30] for a stronger statement in terms of the 
density matrix) is that charge density alone suffices to 
delimit the ground state of a nondegenerate electronic 
system fully. Similarly, J M E P is that a maximum-en-
tropy distribution is maximally noncommittal to all 
matters other than satisfaction of given constraints. If 
in the present context both propositions are applica-
ble, then entropy maximization on a one-matrix in 

agreement with charge density should suffice to deter-
mine the one-matrix. If this is true, entropy regulariza-
tion formulas provide the connection implied by H K T 
between diagonal and off-diagonal portions of a one-
matrix. Moreover, if true, this connection is unusually 
well suited to computat ional application. On the 
other hand, if information in addition to charge den-
sity is required to constrain entropy maximization in 
the reconstruction of one-matrices, J M E P assures 
that the needed additional information or constraint 
is not more than the essential minimum. 

Decision of the conjecture given as (21) will be im-
portant whatever the resolution of J M E P and HKT. If 
it is correct, the conjecture points the way to deeper 
physical understanding of the role of one-matrices in 
representing electronic systems. Even if it is incorrect, 
the decision likely can be made only by further illumi-
nating the relationship between the eigenvalue spec-
trum of a one-matrix and the correlation structure of 
the electronic system it represents. 
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