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Incomplete and imperfect data characterize the problem of constructing electron density represen-
tations from experimental information. One fundamental concern is identification of the proper
protocol for including new information at any stage of a density reconstruction. An axiomatic
approach developed in other fields specifies entropy maximization as the desired protocol. In
particular, if new data are used to modify a prior charge density distribution without adding
extraneous prejudice, the new distribution must both agree with all the data, new and old, and be
a function of maximum relative entropy. The functional form of relative entropy is ¢ = — ¢n(g/7),
where ¢ and 7 respectively refer to new and prior distributions normalized to a common scale.

Entropy maximization has been used to deal with certain aspects of the phase problem of X-ray
diffraction. Varying degrees of success have marked the work which may be roughly assigned to
categories as direct methods, data reduction and analysis, and image enhancement. Much of the
work has been expressed in probabilistic language, although image enhancement has been somewhat
more physical or geometric in description. Whatever the language, entropy maximization is a specific
and deterministic functional manipulation. A recent advance has been the description of an al-
gorithm which, quite deterministically, adjusts a prior positive charge density distribution to agree
exactly with a specified subset of structure-factor moduli by a constrained entropy maximization.

Entropy on an N-representable one-particle density matrix is well defined. The entropy is the
expected form, and it is a simple function of the one-matrix eigenvalues which all must be non-neg-
ative. Relationships between the entropy functional and certain properties of a one-matrix are
discussed, as well as a conjecture concerning the physical interpretation of entropy. Throughout this
work reference is made to informational entropy, not the entropy of thermodynamics.
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Kohn theorem.

1. Introduction

Entropy, like the die so often invoked in its discus-
sion, has many faces. Although its functional form is
the same in thermodynamics and information physics,
in this work there is no further consideration of ther-
modynamic entropy. The term entropy in connection
with information and the work of Shannon (vid. Shan-
non and Weaver [1]) is actually something of an acci-
dent. When he found a well-behaved measure of uncer-
tainty associated with a probability distribution for n
outcomes, Shannon considered calling it information
or uncertainty, but John v. Neumann persuaded him to
call it entropy. Whatever good reasons there may be
for a parallel, or, in certain cases, even an equivalence
between information measures and thermodynamics,
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von Neumann’s were focused on limiting to one the
names of the functional form (Denbigh and Denbigh
(2D

Some notable uses of informational entropy are in
spectral factorization or autocorrelation deconvolu-
tion, analysis of communications networks, analysis of
populations and probabilities for a wide range of
practical problems, image enhancement and recon-
struction, and a logic of consistent inference. These
and other applications provide forms immediately
adaptable to many crystallographic problems. But the
predominant crystallographic use of informational
entropy is in the extraction of optimal electron density
functions from diffraction data, and the present dis-
cussion will be limited to various aspects of this gen-
eral phase problem of X-ray diffraction.

The language of probability and statistics was not
used in the first applications of entropy maximization
to determination of an electron density function
(Collins [3, 4]), and in this paper it will be used only
incidentally. In contrast, probabilistic concepts were a
critical part of the antecedent work of Gull and
Daniell [5], and they played an important rdle in much
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of the early crystallographic discussion of entropy
maximization (Wilkins, Varghese, and Lehman [6],
Navaza, Castellano, and Tsoucaris [7], Bricogne [8]),
and continue to do so (e.g., Bricogne [9], MacLachlan
[10], Gilmore, Henderson, and Bricogne [11, 12]). The
viewpoint of the present discussion is that of the gen-
eral phase problem as a physical problem, in order to
emphasize the physical nature of charge density.

The common presumption of a (nonphysical) uni-
form distribution of atoms in a unit cell insufficiently
constrains entropy maximization and other known
direct methods for phasing structures of substantial
complexity, or perhaps one should say, phasing data
sets of limited resolution. On the probabilistic side,
immediate advantage is expected from a better distri-
bution of atoms, and Bricogne, in his papers, has em-
phasized moving away from the uniform distribution
to updated, physically realistic, non-uniform distribu-
tions expressed in the joint distribution of structure
factors. On the physical side, more deterministic con-
straints are sought for charge density, and here the
search is in the direction of a quantum-mechanically
informed entropy maximization.

Initially, a heuristic foundation is given for use of
entropy in the physical context, and straightforward
development leads to some applications. Then a quan-
tum-mechanically structured formalism is given for
entropy maximization on a density matrix. Finally, a
conjecture is made concerning physical interpretation
of entropy on a one-particle density matrix.

2. Entropy

Given a set of possible events each with a probabil-
ity p;, Shannon [1] posed the problem of finding a
measure of how much “choice” is involved in the selec-
tion of an event, or of the uncertainty of a particular
outcome. This is the problem solved by Shannon’s
entropy, or just entropy. Fougere [13] set out Shan-
non’s desiderata or axioms in the following form. If S
is the measure of uncertainty:

1. S=S(py,P2,---»P,)- The information depends
upon the entire set of probabilities.

. If all p; are equal, then S is a monotone increasing
function of n. With more possibilities to choose
from, the information in a choice is greater.

3. S is additive for compound independent events.
If events A and B are independent, S(AB)=
S(A4) + S(B).

. S does not depend upon how the problem is set up.
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For example,

111 11 1 /12
S<§’8’§>=S<E’E>+ES<§’§>'

The intermediate state corresponding to the right-
most term occurs with probability 1 and is so
weighted. That is, the information in the probabil-
ity assignment A =3, B=%, C =3, must be the
same as in the assignment A =1, D = 1, with reso-
lution of intermediate state D by probability as-

signment B=1, C =2

2.
Shannon showed that, within a positive factor,

S=-—-2plnp, 1
and that only this functional form, now associated
with his name, satisfies the assumptions.

Shore and Johnson [14] established the uniqueness
of the entropy functional in an especially useful way.
They showed that if new data were used to modify a
prior distribution without adding extraneous preju-
dice, then the new distribution must both agree with
all the data, new and old, and be a function with
maxium relative entropy having the form

o= —¢ln(e/7). @

This established consistent inference as a requirement
sufficient to determine the entropy formula.

The most general statement of the outcome of
Shore and Johnson’s [14] axioms is given by Skilling
[15]. Skilling abandons the limitation of dealing with
probability distributions and considers positive (not
necessarily normalized) distributions in general. The
problem posed is to devise a ranking scheme by which
to order images reconstructed from observational in-
formation. The ranking is to consist in assigning a
number S to each image f, such that for any pair of
images the better has a greater S. An acceptable form
of S is determined by the satisfaction of four assump-
tions or axioms which Skilling summarizes informally
in statements of their justification. The substance of
his informal statements is:

Axiom I. Subset independence. Information about one
domain of an image should not affect the re-
construction in a different domain, provided
there is no constraint directly linking the do-
mains.

Axiom II. Coordinate invariance. The same answer is
expected when the same problem is solved in
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two different coordinate systems, in that the
reconstructed images in the two systems
should be related by the coordinate transfor-
mation.

Axiom III. System independence. If all that is known
about an image f is its (independent) marginal
distributions a, and a,, the recovered image is
to be, within a positive constant factor, the
uncorrelated reconstruction f =a,;a,. Any
other choice of f would imply correlation for
which there is no evidence.

Axiom IV. Scaling. In the absence of any additional
information, the initial measure of the image is
to be recovered. If all that is known about a
simple well behaved function is its mean, any
acceptable reconstruction must have the same
mean.

In consequence of these axioms, there is an entropic
regularization formula to be maximized when select-
ing an optimal image f. The same form arises in a
parallel analysis for selection of a prior model m, and
Skilling combines them, in the discrete case, in the
entropy form

§S=21fi—m;— filn(fym)], ©)
1

which can be used to rank and select image-model

pairs.

In the present context, charge density ¢ is an image,
and its prior model 7 will often be taken as the uniform
distribution corresponding to the correct electron
count. S has certain interesting properties conceptu-
ally useful in the discussion of charge density distribu-
tion.

1. S =0is a global maximum achieved when ¢ and t©
coincide. The decrease of S from its global maxi-
mum is a measure of the deviation of ¢ from its
prior model .

2. Relative to a prior uniform distribution, any change
which preserves 3; 0, and diminishes ¥, o? will in-
crease S; the flatter the density, the greater its en-
tropy (Collins and Prince [16]).

3. Equation (1) is the form suitable for ranking sets of
spatially unrelated nonnegative numbers normal-
ized to a fixed but arbitrary scale, e.g., a set of
probabilities; its global maximum and minimum
are achieved, respectively, when all members of a
set are equal, and when all members but one are
zero.
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3. Entropy, Exponential Density,
and Structure Factor Fitting

There is a continuing need for methods to construct
optimal charge density functions from available data.
A substantial advance was made with the introduc-
tion of direct entropy maximization on the charge
density to the crystallographic literature (Collins [4]),
and with the demonstration of its corresponding im-
plied exponential representation as a competent
model (Collins and Mahar [17]). The intent of that
work was to obtain, for biological macromolecules,
optimal density maps based on the imperfect data
characteristic of X-ray diffraction experiments. Con-
strained entropy maximization and the consequent
exponential model of density necessarily yield posi-
tive-definite results. Other favorable results shown in
various simulations include partial defeat of series ter-
mination error, improvement of initial phase assign-
ments, resolution enhancement, and opportunity for
proper handling of information in addition to the
Fourier coefficients of density. An example of the pos-
sible accuracy and precision of entropy maximization
on density is given elsewhere in this volume by Takata,
Kubota and Sakata [18].

The formalism first presented by Collins [4] led to
an algorithmic application conveniently described as
iterative adjustment of the logarithm of density to
improve the agreement between observed and calcu-
lated structure factors. The reconstruction procedure
was based on

Q) = eXp [ln T + ng [F, (h))
— F.(h)lexp[—2mih;- rk]], @)

where g, is the current iterate of charge density sam-
pled at r,, 7, is the corresponding prior model sample,
0;1s a collection of constants that weight and scale the
difference density coefficient, and F, (k;) is the Fourier
transform of t sampled at reciprocal lattice vector h;,
corresponding to the observed structure modulus
|F, (h;)|; the phase angle assigned to | F,| can be held at
its initial value or updated for each iteration. A suc-
cessful outcome for this reconstruction procedure de-
pends on the use or discovery of a good model. For
problems at atomic resolution or better, the procedure
is quite generally an excellent means for adjusting a
positive-definite density to bring it into closer agree-
ment with observed structure moduli. It is fast and
stable, and in the case of abundant accurate data, it
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can be used to generate an unambiguous solution to
the phase problem.

Sjolin, Prince, Svensson, and Gilliland [19] used a
dual method to find a complete solution to the prob-
lem of exactly fitting structure moduli given initial
estimates of their phases. This may be stated as a
standard nonlinear programming problem (Collins
and Prince [16]) in the form

maximize ¥ o;, (5a)
i

subject to G.(a) — G, =0, (5b)

where the entropy of a density map is to be maxi-
mized, G, (a) is a vector of structure moduli |F, (k;)|
obtained from Fourier inversion of the map, G, is the
corresponding vector of observations | F, (k;)|, and a is
a vector of multipliers to be determined. With respect
to ¢;, maximization of

Q=3%o0;+a'[G.(a) — G,] (6)

yields the dual function

{ (a) = maximum [z o, +a'[G (a) — Go]], (7

to be optimized in an unconstrained minimization
with respect to a. The uniform density is used as the
model function, and

|Fo (k)| =2 g;cos[2mh;-r;— o (h))], )
where « is the phase associated with |F,|. At the max-
imum of Q,

gk=exp[zajcos[2nhj~rk—a(h,.)]], ©9)
J
the final expression for a positive-definite exponential
model of density.

The solution of (5) is completed by minimization of
{(a) by a Newton method to evaluate the elements of
a. After | iterations, this gives the vector of multipliers

as
a=2a_,— H[l(@)] 'V{(a),

for which the gradient V and an approximation to the
Hessian matrix H of { are needed. The gradient of {
has the notably simple form

Vc(a) = Gc(a) = Go'

(10)

(1)

Because the system of equations to be solved is likely
very large, it may be desirable to use quasi-Newton
methods, or the truncated-Newton methods (Nash
[20]) recently shown to be especially effective (Decar-
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reau, Hilhorst, Lemaréchal, and Navaza [21]), and
these methods can build an approximation to the Hes-
sian matrix of { without its direct computation. It is
important to recognize that the Hessian matrix is pos-
itive-definite [16, 19]. If for an initial phase assignment
a solution to (5) exists, then it is unique.

Prince’s method, in spite of being similar in appear-
ance to much antecedent work, is a profound depar-
ture from prior related analyses. Specifically, Prince’s
method is the first to use as constraints only modulus
information in the computation of an exponential
density. That is, although initial phase assignments
are used, phases are fixed and not adjustable parame-
ters of the optimization. (In practice, bad choices are
occasionally made for phases, and implementation
must allow for alternate choices in these cases.) The
difference between Prince’s method and others is em-
phasized by their multipliers. Prince’s multipliers a;
are real, and, e.g., those of Lemaréchal and Navaza
[22] are complex, as are those of Bricogne [8], which,
though real, are in the ordered pairs commonly repre-
sented as complex variables. It should be noted that
Prince’s method, although it can be used in solution of
the phase problem, is here referred to only in its al-
gorithmic sense of finding the map of maximum en-
tropy that can be inverted to yield exact magnitudes
for a subset of moduli which have been assigned
phases.

4. Entropy on a Density Matrix

For many years it has been known that the ordinary
electron density function of crystallography is a con-
traction of the fully elaborated quantum-mechanical
representation of an electronic ground state (vid.
McWeeny and Sutcliffe [23]). It will be clear that in this
section the discussion refers to a state of idealization
hopelessly beyond reach of protein crystallography.
Nevertheless, the power and success of entropy maxi-
mization on ordinary charge density suggests that en-
tropy maximization in the context of a more general
underlying reality may unveil additional power for
dealing with the phase problem.

The sufficient information for one-electron proper-
ties, among which is charge density, is carried by the
one-electron, or one-particle density matrix for a sys-
tem. Schmider, Smith and Weyrich [24] give a good
summary of the relationship between quantum chem-
istry and crystallography. They begin with an N-elec-
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tron wavefunction ¥, which is formed with itself into
a dyadic product, and contract the product to a one-
particle reduced density matrix, or one-matrix, y (1, 1’),
where the number 1 stands for the four space-spin
coordinates of electron one. It is to be noted that by
this construction the density matrix is N-repre-
sentable, that is, there exists an N-particle dyadic
product based on a many-particle wave function of
correct properties, whose contraction is the one-ma-
trix. The corresponding spin-free or spin-traced one-
matrix is ¢(r,r’), and its so-called diagonal is that
portion for which r =/, and g(r,r) = ¢(r), the ordi-
nary charge density. (From here on the notions “den-
sity matrix” and “one-matrix” are used interchange-
ably in the sense of the latter, with and without spin.)
Here the useful forms for a one-matrix are either the
eigenvalue equations
0
y(1,1) = .Zl n; (1) 2y (1), (12a)
j=
where the eigenvalues n; are the occupation numbers
of the natural spin orbitals x;, and
ao
err)= ’Zl my ()Y (r), (12b)
in which an eigenvalue n, is the occupation number of
(spin-free) natural orbital ¥, or an expansion in the
orthogonal basis functions ¢,;,

o(rr)= Z’Z‘Badh(r) o (r). (13)
For a one-matrix y (representing a fermion system) to
be N-representable, it suffices that the one-matrix has
eigenvalues which sum to N and lie in the range [0, 1]
(Coleman [25]). In the case of the spin-traced one-ma-
trix g, the required eigenvalue range becomes [0, 2]; the
eigenvalues must again sum to N.

For the entropy on a density matrix, Jaynes [26] has
given the form

§=—trlo(r,r)lng(rr)], (14)
the trace of the matrix, which may be computed as
S=— Y njlnn;",

j=1

(15)

" Differing scales for n; lead to values of S differing by a
constant. Certain of Jaynes inequalities show that his com-
monly used unit-normalization is not an essential feature of
the eigenvalue equation for entropy. For a spin-traced singlet
system with eigenvalues in the range [0,2], S = — 3 ;n;1n(n;/2)
is the entropy that properly accounts for the spin- tracmg, the
entropy arising from creation of two natural spin orbitals
from one natural orbital is — In(1/2).
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where the eigenvalues n; are those of (12). Evidently,
entropy on an N-representable fermion one-matrix is
well defined and can be calculated.
Rearrangement of
1

g(r):?ZF(h[)exp[—Znihi-r], (16)
the Fourier synthesis of charge density, is one way to
construct a density matrix with explicit reference to
structure factors. For a crystal unit cell of volume ¥
define

Ti=Th-ns SiN= V- Y2exp[—2nh;-r]. (17)

Then, if by any assignment

2 Tu=7hT)=FE, (18)
hi—h,=h
e(rr)= Zk T Ci(r) G () (19)

is a full density matrix carrying the charge density as
its diagonal, provided that experimental | F,| has been
correctly phased. Clearly, because the elements T; ; are
restricted only to satisfy (18), (19) cannot be expected
to give the true density matrix without additional con-
straint. If assignment of values for T is additionally
required to give a density matrix with nonnegative
eigenvalues, then the entropy is well defined, both on
a density matrix and on the charge density itself, so
long as it also is nonnegative.

Macromolecular crystallography involves, for its
smaller structures, unit cells containing tens of thou-
sands of electrons. For these cases computationally
tractable number representations of density matrices
are not likely to substantially exceed a rank of 10 in
T. Of course if the rank of T is an order of magnitude
smaller than the number of electrons in a unit cell, the
eigenvalues of T, which must sum to N, will violate
their N-representability upper bound, and (19) can
only be an approximation. Even so, if value assign-
ments in T are governed by maximization of the en-
tropic regularization formula, and are constrained by
Z (h,T) = F,, the approximate density-matrix diago-
nal will suffer only the usual imperfections of data
limitation, and the eigenvalues will be as nearly equal
as possible.

5. Physical Interpretation of Entropy: A Conjecture

Entropy on a density matrix is a particularly simple
functional in that it involves only eigenvalues. A one-
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matrix representation of independent or uncorrelated
fermions is characterized by idempotence, and its ei-
genvalues must therefore be 0 or 1. In quantum-me-
chanical calculations for real chemical systems, in-
spection shows the eigenvalue spectrum to change in
ways that increase the entropy of the one-matrix, as
electron correlation is accounted for, and it is evident
that the eigenvalues carry information about the cor-
relation.

Reconstruction of a one-matrix requires constraint
beyond mere agreement with a set of (phased) struc-
ture factors. The maximization of entropy is an addi-
tional constraint, but it does not have certain claim on
physical significance. Electron correlation is a physi-
cal phenomenon and the correlation energy is func-
tionally related to the eigenvalues or occupation num-
bers n;. If correlation energy is defined as

Ecor . EO = B*F = 05 (20)

where E, is the true ground-state energy and EYF is
the Hartree-Fock or independent-particle energy, its
maximum is zero and corresponds to an independent-
particle state. Such a state is equally well characterized
by a zero of entropy on the one-matrix.

Correlation energy and entropy on a one-matrix
have, with a sign reversal, the same qualitative sense
of change as eigenvalues change. It would be desirable
to link the two in a definite relationship involving the
eigenvalues. If a functional & is to be usefully related
to the correlation energy, it may be required to share
some of the correlation energy’s properties. The prop-
erties required here are

1. If there is a Z, it must depend on the entire set of
eigenvalues n;; 3 ;n; = N.

2. If there is a 2, it must decrease as the measure of
departure from idempotence Y ;(n; — n}) increases
from zero.

3. If there is a %, it must allow partitioning of eigen-
values in sets following the pattern I' = I, u I, for
which & (I') = Z (I}) + & (I,). This is to reflect the
known utility of partitioning orbital sets, and dis-
tinguishing shells and principal energy levels for
computational approximation.

4. If there is a %, it must allow subsequent elabora-
tion of an orbital following, for a two-particle ex-
ample, the pattern

#(09,0.8,0.2,0.1) = Z (0.9,0.8,0.3)
+0.32(0.33,0.67).
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This is to reflect the change in correlation energy as
the appropriately weighted addition of correlation
energy arising from the subsystem in the course of
its creation.

The form of 2 is definite and unique as discussed in
paragraph 2. It is, of course, with sign reversed, the
functional form of entropy, and the conjecture is that
the four properties are indeed properties of electron
correlation energy, thus establishing

E. =xYn;lnn;, (21)
J

where x is a positive constant to be determined. Then

a physical interpretation of entropy on a density ma-

trix is that it is proportional to the negative of corre-

lation energy.

6. Conclusion

Entropic regularization formulas have proven to be
powerful tools in dealing with the phase problem. In
the past decade, there have been numerous reports of
structure solutions aided by entropy maximization.
There also have been several reports of structures
solved on the basis of entropy maximization. In a
certain sense these have been special cases, e.g., small
structures of few atoms, small structures with unusu-
ally large and accurate data sets, structures with spe-
cial delimiting features readily identified on the basis
of few phased reflections, or simulated solutions of
known structures. The largest problem currently
solved by entropy maximization methods is a simula-
tion of the structure solution of recombinant bovine
chymosin, a protein of 323 amino-acid residues [19].
In spite of the various reported successes, additional
constraint is desireable to increase the productivity of
entropy maximization algorithms.

Direct methods began as algebraic exploitation of
the positivity of charge density, and were given an
enduring foundation through elaboration of conse-
quent inequality relationships among structure fac-
tors (Karle and Hauptman [27]). Exponential density
is a feature of entropy maximization and imposes on
charge density the requirement of positivity. Density
matrices are quantum-mechanically specialized repre-
sentations that can carry positive charge density as
well as other information true of an electronic system.
Entropy on density matrices has been presented in the
hope of discovering additional power for phase deter-
mination and enhancement of charge density images,
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especially for biological macromolecules. It also seems
reasonable that entropic regularization will provide
added control to the reconstruction of density ma-
trices using information from diverse sources.
Entropy on density matrices brings two proposi-
tions to a need for resolution. The propositions are a
principle and a theorem, both of which continue to be
controversial in some ways, but also continue to stand
against challenge. They are Jaynes’ maximum entropy
principle (JMEP, Jaynes [28]), and the Hohenberg-
Kohn theorem (HKT, Hohenberg and Kohn [29]). An
informal summary of the HKT (see also Berrondo and
Goscinski [30] for a stronger statement in terms of the
density matrix) is that charge density alone suffices to
delimit the ground state of a nondegenerate electronic
system fully. Similarly, JMEP is that a maximum-en-
tropy distribution is maximally noncommittal to all
matters other than satisfaction of given constraints. If
in the present context both propositions are applica-
ble, then entropy maximization on a one-matrix in
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