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Using the concept of distributions, the square root of the operator —A+m? is taken in a
mathematically well defined way for one component wave functions. A new representation of proper
Lorentz transformations for one component wave functions makes it possible to construct a relati-
vistic quantum mechanics for spin 0, comprising a Lorentz invariant wave equation, a scalar
product, and a positive definite density satisfying, together with a current, a continuity equation, and

coupling of scalar and vector potentials.

Some interesting consequences of the theory concerning the concept of particle trajectory and
velocity of propagation of the probability amplitude are discussed in detail. As an example of
practical application a perturbation theory for discrete states is set up.

Introduction

Relativistic one particle wave equations are derived
by giving the operator \/—A + m? a mathematically
well defined meaning in configuration (x) space.

It is well known that, for spin 0, \/ — 4+ m* can be
given a meaning with the help of Fourier representa-
tion of the wave function, but the corresponding wave
equation is abandonned every time for various rea-
sons, one of them being the difficulty to couple a vec-
tor potential, see e.g. [1].

Now, the mathematical tool of distributions [2] al-
lows to set up a mathematically well defined and con-
venient representation of V/TZH— m? and the corre-
sponding Lorentz invariant quantum mechanics, i.e.
wave equation, scalar product, positive definite den-
sity, continuity equation, coupling of scalar and vector
potentials.

Whenever it was possible to take the square root of
— A+ m? in a mathematically well defined way, the
corresponding one particle theory was physically
meaningful. The outstanding examples are

- F 2 . 9 + . 5 %
spin §: \/ —A4+m?= —ia-0+mf, Dirac’s equation,
spin 1, m=0: —A= V”curl curl —gradﬂdTv' =curl,
after imposing the subsidiary condition div=0, giving

Maxwell’s equations for the wave function @ = E+i B.
(In this case h drops out exactly.)
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So there is good reason, too, to take the spin 0
theory seriously. A spin 0 equation would be useful for
various reasons.

1. It could fill up an unsatisfactory gap in quantum
field theory. The idea of quantum field theory is to
construct a many particle theory with suitable
statistics by quantizing a one particle equation. In
case of spin 0 particles we possess the quantum field
theory of the Klein-Gordon equation only, but we
lack the quantum mechanical one particle equa-
tion.

. One particle equations with a potential can serve as
approximations in cases when field theoretic meth-
ods are too cumbersome, for instance to describe
bound states.

3. One particle equations complete the physical pic-
ture of a particle in a convenient way, cf. Dirac’s
equation for electrons or Maxwell’s equations for
photons.

[89)

The construction of one particle quantum mechan-
ics for spin 0 is not possible in a straight forward
manner. Indeed, one needs a generalization of the fa-
miliar representation of scalar Lorentz transforma-
tions to assure the Lorentz invariance of the scalar
product. The new generators again contain distribu-
tions [3]. They show a certain parallelism to the gener-
ators of the transformation of a Dirac wave function.
The Lorentz invariant spin 0 theory is complete in the
sense that it comprises a Lorentz invariant scalar
product, and a conserved positive definite density. Its
particles, however, aquire some very unusual features.

Please order a reprint rather than making your own copy.
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So the concept of particle trajectory looses its meaning
unless for states of definite momentum, i.e. plane
waves, and the amplitude of a particle initially located
in one space point shows a non-vanishing probability
for propagation with velocity v>1 (h=c=1) during
the very first time interval of order 1/m, i.e. some
10~ 23 sec for pions, although there are no states with
v>1.

Since the theory is based on established physical
principles only, it seems reasonable to discuss these
phenomena extensively.

The work comprises the following sections:

. The wave equation

. Iteration of the wave equation
Behaviour under Lorentz transformation
. Continuity equation. Scalar product

. The finite Lorentz transformation

Plane wave solutions

Coupling of potentials

Perturbation theory

I Y

1. The Wave Equation
a) The Wave Equation in Momentum Space

It is generally agreed that in momentum (k) space
one uses as a relativistic Schrodinger equation

io, P(t.k)y=w(k) P(t. k) (1)

for the wave function ¥(r, k) in momentum space,
with o (k)= (k?*+m?)"/2, the energy of a free particle of
mass m and momentum k, as (multiplicative) energy
operator in momentum space.

b) The Wave Equation in Coordinate Space

To a multiplication of two k-space functions there
corresponds in coordinate (x) space the folding inte-
gral of the corresponding x-space functions. Thus, if
we denote the x-space wave function by ¥ (¢, x) and
the (formal) Fourier transform of w(k) by Q(x), (1)
reads in x-space

16, ¥(t.x)=[dx” Qx—x) ¥ (1 x), (2)
where
P(t.x) =Q2n ¥ [dkdexp(ik-x) P(t, k), (3)

Qx—x)=02n) ? [dk® exp(ik - (x—x") w (k). (4)

The Fourier transform (4) does not exist as a proper
function of x. But it has a mathematically well defined
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meaning as a so-called tempered distribution, i.e. a
linear functional of sufficiently rapidly decreasing
functions ¥ (x) for x >« [4].

To be definite, the value of the functional Q is de-
fined by

fdx? Q(x—x) ¥ (x)
=[dx? [dk?® w (k) exp(ik-(x—x') P (x)
=[dk? exp(i k- x) w(k) P (k). (5)

Let us abbreviate expression (5) by writing simply
QY. Thus (2) takes on the form

i0,Q=Q% (6)
Remarks:
1) Q is evidently a real Hermitean, that is symmetric
operator. We have, for two wave functions @, ¥':
[dx? @*(x) (Q P) (x)=[dx> (2 P)* (x) ¥ (x)
=[dx*(Q¥P*)(x) P (x). (7)
2) There exist arbitrary powers of the distribution €,
Qx—x)=2n)"? j di3 " (k)yexp(ik-(x—x')). (8)
In particular, the inverse of Q is given by
Q Yx—x)
=Qn) 7 [dklw (k) exp(ik-(x—x).  (9)

3) The operator Q(x)is non-local. It has a mean range

of order m™ %

Y. G = (dx?r? Q(x)/fdx? Q(x))!/* = \,’Ex"m.

2. Iteration of the 2-Equation
Iterating (6) reproduces, of course, the Klein-Gor-
don equation; for
—-¥P=0%Y

and Q*(x —x)=(—A4+ m?) d(x—x).

3. Behaviour under Lorentz Transformation

We shall prove the Lorentz invariance of (6) by
showing: There exists a representation of the Lorentz
group such that any solution of (6) remains a solution
after transformation.
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a) Commutators

Let us list a few useful commutators:

[x, Q=nd Q" ? (10)
Especially n=1
[x, Q]=0,0Q71, (11)
[0,,Q]=0. (12)
Analogously for the y and z components.
The velocity operator, using (11), is given by
u=x=i[Q x]=—id0Q '=p/Q, (13)

in accordance with the classic relativistic expression
for the velocity.
The second time derivative vanishes because of (12):

F=i[Q, ¥]=0. (13a)

It is interesting to compare these results with the be-
haviour of the corresponding quantities in case of the
Dirac equation: As is well known [5], in the latter case
X is not constant but consists of two terms, one corre-
sponding to (13), the other being known as the so-
called “trembling motion”. (13a) does not show trem-
bling motion, but we shall see (Sect. 4d) that we do
have to pay a corresponding price for the reconcilita-
tion of the principles of quantum mechanics and rela-
tivity. Finally, let us note the Hermiticity of u;:

[dx® @* (u, W)= [ dx>*(u; §)* ¥ (14)

for two arbitrary square integrable functions @, V.

b) Representations of the Proper Lorentz Group
for Spin 0

Under an infinitesimal Lorentz transformation in
direction x, with infinitesimal velocity v,

t =t—vx, t=t'+vx,

xX'=x—vt, x=x+vt, (15)

a wave function Y (t, x) is usually transformed accord-
ing to

Y (t,x)=Y(t x)+vL, Pt x), (16)
with the generator L, given by
L.=x0,+10,. (17)

Correspondingly, we have
L,=y0,+10,,
L,=z98,+t0,
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for Lorentz transformations in y and z direction, re-
spectively. Together with the generators of pure rota-
tions,

M, =—i(yd,—z0,),
x\/l).z —i(:e_\.f.\’a:),

M_=—i(x3,—y0,), (18)

the L, represent the Lie algebra of the proper Lorentz
group, i.e. the set of commutators

(L., L]=iM_; [L,,M]=iL_; [M,, M,]=iM.. (19)

It is important to note, however, that these generators
are not the only possibility to transform a spin O wave
function. In fact, the new generators L;, defined by

L=L.+i%3,Q '=L,—9u,,
L=L,+i%03,Q ' =L,—9%u,,

L.=L_+i%0.Q '=L_—3u., (20)

where 3 is an arbitrary parameter (real or even com-
plex) and where we have denoted the operator
—i0,Q7 ! (the velocity operator) by u;, together with
M, (18) again fulfill the algebra (19), i.e. the commuta-
tors

[L..LJ=iM_ [L,,M]=iL_; [M,,M,]=iM..(21)

Their validity is easily proved with the help of (10) and
(12).

Remark: On comparing with the transformation of
a Dirac spinor under (15), which is effected by the
generator L —1/2«,, and remembering that there
x=Ii[H, x]=«,, we find that this corresponds to a value
of $=1/2. Indeed it will turn out in Sects. 4 and 5 that
we should choose this value for 3. For the time being

we replace (16) by
Y (t,x)=¥(t x)+vL, ¥t x), (22)

for fixed but arbitrary 9.
¢) Lorentz Invariance of the Wave Equation

o) Proper Lorentz Transformations

It is sufficient to show the Lorentz invariance for
one direction, x say. So in the wave function we shall
only write the arguments ¢, x.

Let ¥(z, x) be a solution of (6). We find that ¥’ (t, x)
from (22) will also be a solution if

(i0,—-QL.¥
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vanishes. But this is so, because
[i6,—Q L ,]=i0,+0,2719,,
which, factoring out id, Q7 1,
=id, Q 1(Q—-id,)=0

when acting on Y.

f) Space Inversion
For space inversion we define as usually
Y (x)="Y(—x).

Using Q(x —x')=Q(x'—x), one easily verifies that for
any solution ¥(x) of (6) also ¥(—x) is a solution.

v) Time Inversion

It is easily verified that the usual time reversed func-
tion

Yt x)=Y(—t x)*

solves (6) if ¥ (r, x) does.

4. Continuity Equation. Scalar Product
a) Continuity Equation

Using the identity —Q+m? Q™ '=4Q ™!, one veri-
fies that with a solution ¥ of (6) a continuity equation
is fulfilled,

0,0+divj=0, (23)
for the density
o=12(Y* ¥+ (e ¥)*+ (u )
+m*(Q™H*(Q7 ) (24)
and the current
J=12(P*(u W)+ (u P)* V). (25)

The density is evidently positive definite. Equation
(23) gives rise to a norm constant in {ime:

fdx3 g=const. (26)

With the help of (7) and (14), it may be given the
familiar form
fdx*e=12fdx*¥Y*(1 +u?+m? Q") ¥

—[dxPx . (27)
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For (23) to hold it is only required that ¥ fulfills (6).
As (6) holds in any Lorentz frame, it follows that (23)
holds in any Lorentz frame. In the non-relativistic
limit, nQ~'—1, u* -0, we regain the familiar expres-
sions

g= P,
Jj=1/2im) (P*(©F)—(0¥*) V).

b) Scalar Product

Equation (24) suggests that we define a scalar prod-
uct for two solutions @ and ¥ of (6):

(@, V)=1/2[dx*(@* ¥+ (u D)* - (u V)

+m*(Q T P)*(Q 1Y), (28)
but this reduces simply to (cf. (27))
(D, ‘1’)=.[d.\'3 oY, (29)

Let us investigate the behaviour of (29) under a
Lorentz transformation according to (22) with arbi-
trary 3. We find, by making use of (6) and (14),

(. ¥)=[dx> &* ¥
=(D,¥)+uv(l —29)§d,\’3 D*(u, V).

Thus, our scalar product will be Lorentz invariant if
we choose

3=1/2.
We replace (22) by

V' =¥+v-(L-(1/2u)?,

P =P*tp-(L+(1/2)u) V*,

L =x0,+t0

(30a)
(30Db)

for a Lorentz transformation with infinitesimal veloc-
ity v.

¢) Expectation Values

The expectation value {P) of an operator P in a
state ¥ is given by the scalar product of ¥ and P V.
So because of (29) we put

{Py=ldx* P*P ¥, (31)
d) Transformation of Density and Current

Although (23) is Lorentz-invariant, the quantities o
and j do not transform like a usual four vector. Rather
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one finds under (30)
d=12(P* ¥+ V) (u¥)+m*(Q L ¥)*

Q') =(14+v-Lyo—v-j—v-S, (34)
F=12P* W)+ ¥y )
=(1+v-L)j—vo—v-1, (35)
where the three-vector § is defined by
Si=(1/2)j;—(1/4) (u P)* - (u;u 'P)
+(uu V) () —(1/4m* (Q™ ' P)*
(W QTN+, QTR (QTIY) (36)
and the 3 x 3-tensor t by
7;=(1/4) (= V* (u;u; V) —(u; u; yy*xy
+(u; P)* (u; )+ (u; ¥)* (u; V)
+(12)(P*Y — (uP)* (u'P)
—mI(QTPY* QT Y) oy (37)

(The calculation is somewhat lengthy, but does not
present difficulties. For calculations like this it is use-
ful to note the commutators

[t;. Li]l= =0+ u;u;
Q@' L]=uQ "',

(38a)
(38b)

which hold if acting on solutions of (6).)

If S and 7 both vanish, o, j transform correctly like
a four-vector. They do vanish, for instance, for plane
waves. In general, however, S and t do not vanish.

Let us make two comments:

The first concerns the transformation of (23). If g, j
do not transform like a four vector, the right hand side
of (23) will not vanish identically after transformation
but only for solutions of (6). This might suggest the
existence of new conservation laws. Indeed, substitu-
tion of (34) and (35) into

0,0 +divj =0
leads to
v-(0,S+divr)=0, (39)
Equation (39) holds for arbitrary v, so we have
0,S+divt=0 (40)

and as a consequence

fdx?S;=const.
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But this is a trivial result, since
fdx3S;=1/2fdx* P*u,(1—u>—m* Q%) ¥ =0
identically,

because the expression in the parentheses does so.

Equation (40) is again valid in every Lorentz frame,
so the same type of argument may be applied to (40),
and so on. But each time we arrive only at trivial
conservation laws. A proof is outlined in the Ap-
pendix.

The second comment concerns the concept of parti-
cle trajectory.

Vanishing of S, r means that the quantity v=j/c
transforms like a velocity field. So j/o may be looked
at as a field of (possible) particle trajectories. For non-
vanishing § and  this is no longer the case. This is the
price we have to pay for the absence of trembling
motion as mentioned in Section 3a.

5. The Finite Lorentz Transformation
a) The Finite Transformation of an Arbitrary Function

The finite transformation belonging to the repre-
sentation (20) in direction x, say, with velocity v, is
given by

exp(wL )=exp(w(L,—%u,)),
u,=—id,Q7'; tanhw=v.

(41)

Let us represent the function ¥ (t, x) as a Fourier
transform for both variables r and x:

P(t,x)=(2n) ' [dkodk, P(ko, k)
cexp(—ikgt+ik, x) (42)
with independent variables k., k, .
Consequently,
exp(wL,) P(t. x)
=[dk, dk, (exp(wK,) P)exp(—ikot+ik,x) (43)

where we have defined

N 2 d
R =Eg—tk, =

=R _ 9k, Jw(k,).
+=Roge, TRigk, TPl

(44)
In order to evaluate exp(w K ) ¥ (k,. k,) we proceed
as follows. Introduction of polar coordinates ¢, x,

ko= —igcosua, o=(k}—k3)'?,

k,=osinx, ax=arctan(k,/ik) (45)
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reduces the problem to the evaluation of
expwK ) P(x)=exp(w(—i0,—Ju(x) P(z),  (46)
u()=k,/w(k,)=(o/m)sina-(1+(g?/m?) sin®a)~ 2.
Let us call the unknown function (46) for the moment
g(x. w). Obviously we have

9(2,0="7 (2) (47)
and

exp(wK,) g(a 0)=g (2 w). (48)

Partial differentiation of (48) with respect to w leads to

the following partial differential equation for g(x, w):
i0,g+0,9+3%ug=0 (49)

with the boundary condition (47).
A general solution reads [6]

g(o, w)=(i o cos a+(m*+ 02 sin?0)'?) "% o (x—iw),

where ¢ is an arbitrary function.
Making use of (47). this leads to the final result

expwL,) (t, x)=[dkodk, [((k,)— ko) (k) —ky)]*
P kg, ky)exp(—ikot +ik, x),
(50)

—smhw) (51)

where

ko\ (ko . coshw
<k/1>_/1<k1>‘ A_<~sinhw
and
X X

Under (50) an arbitrary function ¥ (t, x) transforms
under the representation generated by L. For 3=0
we regain the familiar result for the transformation of
a scalar function V.

coshw

b) Transformations of the Solutions of the Q- Equation

If we want to apply (50) to a solution of (6), we must
represent the solution in the form (42). Equation (6)
requires

ko=w(k,),
SO we put
P (ky. k)= (k)0 (ko—w(k,)).

Carrying out the integration over k, in the J-function
and applying I'Hospital’s rule we find
¥'(t,x)= [dk, [coshw—(k,/m(k,))sinh w]* P (k,)

cexp(—iw(k)t'+ik, x'). (53)
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Specializing 4 = 1/2, we end up with
¥'(t.x)= [dk [coshw —(k/w (k,))sinh w]' 2 P (k)

cexp(—iw(k)t'+ikx') (54)

with " and x’ from (52).
Let us apply (54) to a plane wave with momentum
g.i.e. P(k)=03(k—q), ¥* ¥ =1: one finds

PP =coshw—(q/w(q)) sinhw

=(1—uv)/(1—0v?)'2, (55)

where u=¢q/w(q), v=tanhw. Equation (55) is exactly
the change of normalization due to Lorentz contrac-
tion.

If we define the distribution

Pw:x—x)=02n) ! jdk?(w; k)

~exp(ik(x—x"), (56)
where
P (w: ky=[coshw — (k/m(k)) sinhw]'2,
we can give (54) the concise form
P'(t, x)=f dx" L (w; x' —x") P (¢, x"), (57)

t" and x’' being given by (52) as before.

6. Plane Wave Solutions

Because of (12) there exist solutions of (6) for fixed
momentum. i.e. plane waves. (6) requires

ko= (k)=(k?4+m?)"?

with a unique sign of «. Negative frequences do not
appear: for spin 0 particles there exists no Pauli prin-
ciple and therefore no hole theory to prevent the par-
ticles from falling into negative energy states.

The expectation value of the velocity squared does
not exceed the velocity of light (1 in our units) for
arbitrary wave packets, from which we conclude that
no signal can be transmitted faster than c:

*y<1.

Nevertheless. the Hamiltonian Q being nonlocal, it is
interesting to discuss the propagation of the ampli-
tude ¥ in more detail.

For this purpose we study the solution of (6) with
the initial condition ¥(t=0)=0(x). It is obviously
given by

P(t,x)=02n) > [dk> exp(—iwt+ik-x),
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which [7]
=i0,2n) 7 [dk*(1/w)
exp(—iwt+ik-x)
=i,(2i4')=0,(id + 4.

The first term, 4, vanishes outside the light cone [8],
but the second, A", does not. Is this a catastrophe?
Let us investigate to what extent it is one. Denoting
the corresponding part of ¥ by ¥,,

W, =2, 4,
we have [9] for t? —r*<0, or s=r—1t>0,
lPl \al(Kl(:)//:)~

where K, (z) is the modified Bessel function of n'® order
and z=m@r* =) 2=m(s>+2s1) 2.
Performing the differentiation and using recurrence

relations [10], we get

Y ~t(2K,(z)—z Ko (2)/(23). (58)
Besides the factor ¢, the right hand side depends only
on z. The functions K, (z) and K, (z) [11], have a singu-
larity in z=0, drop off rapidly for values z>0 and for
z2 1 vanish like exp(—z)<exp(—ms). Thus, ¥, (2)/t
describes a “layer” of thickness of the order 1/m
around the sphere r=t. If we follow the development
of (58) with time, we find a spherical wave of the
following shape: At t=0, ¥ vanishes outside r=t=0.

As t starts growing, the “layer” in which ¥, #0, is
being built up. But soon the exponential slope of K|,
and K, will dominate the factor ¢, and from there on,
the thickness of the layer will stop increasing.

For a rough estimate let us adopt a simplified
model:

Y (t,s)=texp(—m(s*+2s1)"?).

From 0, ¥, =0 we find for the time t, when ¥, at a
fixed distance s=n/m, n=1,2,... outside the sphere
r=t reaches its maximum value,

to=(1/m) (1/n+(1+1/(n?)').

Thus, after a time interval of the order 1/m the layer
of thickness 1/m will be developed, but from there on
it simply travels with the surface, without further in-
creasing. (In fact, it will even shrink during the expan-
sion of the sphere because of the term 2st in z.)

If in the propagation of ¥ there were really involved
speeds v>1, the thickness of the layer outside r=t
would have to grow for all times. Since this is not the
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case. no signal can be transmitted with t>1 on a
macroscopic scale. On a microscopic scale, i.e. during
the development of the layer, or, correspondingly,
within 1 <1/m (some 10~ 22 sec for pions, the lifetime
of pionic resonances, for instance), there is a non-
vanishing probability for an apparent v> 1. Unless we
assume different upper limits for v for times <1/m and
Z 1/m, respectively, we must ascribe the development
of the layer to some other mechanism. (In some re-
spect it looks as if for a spin 0 particle the influence of
a finite extension cannot be neglected in certain cases.
After all, the assumed initial condition is highly singu-
lar, d(x) not being a normalizable wave function.)

7. Coupling of Potentials
a) Coupling of Scalar Potential, Radial Equation

We introduce a scalar potential V' into (6) by equat-
ing i 0, to the total energy Q+ V. Thus we arrive at

i, ¥=(Q+V)W. (59)

Let us emphasize that iterated (59) is no longer equiv-
alent to the Klein-Gordon equation with potential.
Putting, in case of a time-independent V,

Y(t,x)=exp(—iEt) Y(x),
we get the stationary equation

(QL+V)¥P=EY. (60)

In case of a spherical V' (r) one can set up a radial
equation in analogy to the nonrelativistic Schrodinger
theory.

Making use of the familiar ansatz

Y(t,x)=u(r)/rYy"
and expanding Q(x—x')=Q(]x—x'|) into Legendre

polynomials, one finally arrives [12] at the radial equa-
tion

jfdr’ S, (ro ) u (r')+ V (r) u(r)=Euy(r), (61)
0

where the radial distribution S,(r, 1) is defined by

Si(r.ry=2n"" [ dkw(kykrj(kr) k¥ j,(kr)
’ (62)

with the spherical Bessel functions j,(z) defined by
[13].
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b) Remark Concerning the Continuity Equation

It is interesting to observe that in the presence of a
potential V (r), (23) aquires a local source term. Using
(59) instead of (6), one finds instead of (23)

3,0 +divj=0, (63)

the source g being given by
O=U120)u?)* uV¥) —uV¥* (u¥)
+m QTP QTIVY)—(QTLV P (QTY).
In the nonrelativistic limit, Q™' —1/m, u>*-0, Q, of
course, vanishes. Since
[Qdx*=0,
from (63) still follows (26).

¢) Coupling of Magnetic Field

The coupling of a magnetic field to (6) may be ac-
complished in the usual way according to the principle
of minimal coupling, i.e. the replacement

p—op—eA, or —i0-> —i0—eA,

A being the vector potential of the magnetic field. If we
use Coulomb gauge, for which p and 4 commute,
pA=A-p, (64)

we can argue as follows.
First we note that —i 0 is equivalent to the distribu-

tion

plx—x)=Q2n) 3 [dk*k exp(ik-(x—x)),
and —i0—e A is equivalent to

(2n) *[dk*(k—e A(x)) exp(ik - (x—x')).
Consequently, and because of (64), we can couple a
magnetic field to (6), replacing Q from (4) by

Qe x)=12m) 3 [dk>((k—e A (x)* +m?)'?

cexplik - (x—x')). (65)

Equation (65) may be cast into a more elaborate form.
Making use of ¢/Ck being the generator of a transla-
tion in k-space:

)
explA-— | f(k)=f(k+ A
p( 8k>‘f ( A )
for arbitrary f (k), and applying partial integration. we
may write the wave equation with magnetic field
i0,¥ =0, V={dx” explie A(x)

(x—x) Q(x—x") ¥(x). (66)
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In the nonrelativistic limit we regain the Schrodinger
equation in a magnetic field in Coulomb gauge. In this
limit

Qx—x)=md(x—x)—2m) ' 45 (x—x),
and the right hand side reduces to

mY—2m)~ N AY —2ieA- OV +(—ie A)? P).

8. Perturbation Theory for Discrete States
a) Energy Shift of First Order

Assuming that the relativistic corrections intro-
duced by (6) are small enough we set up a perturbation
theory according to familar methods, not in the poten-
tial V, though, but in the kinetic energy.

We designate the nonrelativistic limit of w by w,,

wo=m+k*/2m.
Let Q, be the corresponding distribution in x-space

Qo(x—x)=2n) *[dk* o, (k) exp(ik - (x—x'))

(67)

and

AV=0Q-Q,, (68)
1.€:

QV=02n) 3 [dk’ w, (k) exp(ik - (x—x')),

W, =0—w0,. (69)
Let us split ¥ (x) into

Y=¥%,+Y, (70)

¥, being a solution of

Qo+ V)YV =E,¥,, (71)

i.e. of the Schrodinger equation for the eigenvalue E,,,
and ¥, being small of first order. Substituting (70) into
(60). using (68) and (71), designating the difference
E—E, by E, (small of first order) and neglecting the
terms of second order Q¥ E, ¥,, we find in the
familiar way

E, =jd oy, (72)

b) Application to Central Potential

Q'Y being a function of |x—x'| just like Q. we can
apply the methods of section 7a to find in case of
central potential

(73)

0

E,= [ dko, (k) |, k)
)
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where we have defined 4,,(k) by

(k)= (2/m)" 2 [ dru, (r) krji(kr),

0

(74)

and u,,(r) is the radial part of the unperturbed, i.e.
nonrelativistic wave function

Yo(x)=r"tu,(r) Y,".

Summary

Obviously, there exist at least two essentially differ-
ent one-component wave functions, transforming ac-
cording to the generators L; and L, respectively. We
might call them “Lorentz scalar” and “Dirac scalar”
function, respectively. If for a spin 0 meson one
chooses a Dirac scalar wave function, one can set up
a complete relativistic one-particle quantum mechan-
ics, comprising the essential tools of wave equation,
scalar product, conserved positive definite density.
Scalar and vector potentials may be coupled. The
nonlocal nature of the wave operator leads to some
unusual features of the particle: current and density
are in general not connected by a local velocity field
(Sect. 4); reconcilation of nonlocality with the (some-
what singular) initial condition ¥ (r=0)=0d(x) d(x)
being a nonnormalizable wave function) leads to an
apparent v>1 for the amplitude at very short times,
although no states with v>1 exist (section 6); in the
presence of an external potential a source term ap-
pears in the continuity equation, which, however, does
not destroy conservation of the norm (section 7).

Appendix

1) Both §; and 7;; are bilinear forms of the type (let
us call it M for the moment)

M=% (4, ¥)* (B, ¥) (A1)

(k is not a covariant index; in t;, for instance, we
might put

A =—1/4, B, =u,u

Ay,=—(1/4)u;u and so on.

T £
Nevertheless, in what follows we shall apply dummy

index summation, omitting the X, to simplify writing.)
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In (A1), ¥ is a solution of (6), 4,. B, are hermitean
operators with the following properties:

A, B,=0 identically
(dummy index summation) (A2)
Let us call this sum the trace of M.
[, A ]=[Q, A ]=[u. A,]=0,
likewise for the B,. (A3)
From (A2) it follows
fdx*M=0. (A4)

2) If we subject M to a Lorentz transformation (30),
the result M’ is of the shape

M=(1+v- L)M—v-«a, (A5)

where « is again of the type (A1); for,

M'=(A, P)* (B, ¥)=(A (¥ +v- (L—(1/2)w) P))*
“(By(W+v-(L—(1/2)u) ¥))=(A, P)* (B, V)
+o- (A P)* (B (LY —(1/2)u'P))
+(A (LY — (1/2)u ¥)* (B, V)

Extracting the generator L, we find finally

M=(1+v-LyM—v-(—(A,V)* (B, L1¥)

—([Ai, L]1?)* (B, ¥)
+(1/2) (A, P)* (Byu W) +(1/2) (A, u ¥)* (B, V)

The term proportional to v is the o from (AS5). Its trace
vanishes, indeed

— Ay By, L]—[Ay, L] By +(1/2) A, B, u
+(1/2)A,uB,=—[A,B,, L1+ A, B,u=0
identically because of (A2).
3) Now let us assume that a Lorentz invariant con-

tinuity equation holds for two bilinear forms M, N of
the type (A1),

3, M +div N =0. (A6)

As just demonstrated, we have under Lorentz trans-
formation

M=(1+v L)YM—v-o, N=(14+v-L)N—v-f3,

where o, f are again of type (A1). From the Lorentz
invariance of (A6) it follows

0=0,M'+divN' =v-OM
+v-0,N—v-(0,a+divf)
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for arbitrary v and therefore
N)+div(f—IM)=0 (A7)
(Here I is a unit tensor, to allow writing OM =
div(IM).)

From the new continuity equation (A7) we derive
the conservation law

O, (o —

d
ajdx“(z—N)-—-O,

which, because of the shape of 2 and N, is nothing new.
Moreover, (A7) is again of the type (A6), so, starting
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