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Using the concept of distributions, the square root of the operator — A + m2 is taken in a 
mathematically well defined way for one component wave functions. A new representation of proper 
Lorentz transformations for one component wave functions makes it possible to construct a relati- 
vistic quantum mechanics for spin 0, comprising a Lorentz invariant wave equation, a scalar 
product, and a positive definite density satisfying, together with a current, a continuity equation, and 
coupling of scalar and vector potentials.

Some interesting consequences of the theory concerning the concept of particle trajectory and 
velocity of propagation of the probability amplitude are discussed in detail. As an example of 
practical application a perturbation theory for discrete states is set up.

A  L o re n tz  In v a r ia n t  S c h rö d in g e r  E q u a tio n  fo r  S p in  0

Introduction

Relativistic one particle wave equations are derived 
by giving the operator ^J — A + m2 a mathematically 
well defined meaning in configuration (jc) space.

It is well known that, for spin 0, ^J — A + m2 can be 
given a meaning with the help of Fourier representa­
tion of the wave function, but the corresponding wave 
equation is abandonned every time for various rea­
sons, one of them being the difficulty to couple a vec­
tor potential, see e.g. [1].

Now, the mathematical tool of distributions [2] al­
lows to set up a mathematically well defined and con­
venient representation of J  — A + m2 and the corre­
sponding Lorentz invariant quantum mechanics, i.e. 
wave equation, scalar product, positive definite den­
sity, continuity equation, coupling of scalar and vector 
potentials.

Whenever it was possible to take the square root of 
— A + m2 in a mathematically well defined way, the 
corresponding one particle theory was physically 
meaningful. The outstanding examples are

spin 4: y j — A + m2 = — ix-d + mß, Dirac's equation, 
spin 1, m = 0: J  — A = Jcu rl curl — grad div = curl,

after imposing the subsidiary condition div = 0, giving 
Maxwell's equations for the wave function <P = E+ i B. 
(In this case h drops out exactly.)
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So there is good reason, too, to take the spin 0 
theory seriously. A spin 0 equation would be useful for 
various reasons.

1. It could fill up an unsatisfactory gap in quantum 
field theory. The idea of quantum field theory is to 
construct a many particle theory with suitable 
statistics by quantizing a one particle equation. In 
case of spin 0 particles we possess the quantum field 
theory of the Klein-Gordon equation only, but we 
lack the quantum mechanical one particle equa­
tion.

2. One particle equations with a potential can serve as 
approximations in cases when field theoretic meth­
ods are too cumbersome, for instance to describe 
bound states.

3. One particle equations complete the physical pic­
ture of a particle in a convenient way, cf. Dirac's 
equation for electrons or Maxwell's equations for 
photons.

The construction of one particle quantum mechan­
ics for spin 0 is not possible in a straight forward 
manner. Indeed, one needs a generalization of the fa­
miliar representation of scalar Lorentz transforma­
tions to assure the Lorentz invariance of the scalar 
product. The new generators again contain distribu­
tions [3]. They show a certain parallelism to the gener­
ators of the transformation of a Dirac wave function. 
The Lorentz invariant spin 0 theory is complete in the 
sense that it comprises a Lorentz invariant scalar 
product, and a conserved positive definite density. Its 
particles, however, aquire some very unusual features.
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So the concept of particle trajectory looses its meaning 
unless for states of definite momentum, i.e. plane 
waves, and the amplitude of a particle initially located 
in one space point shows a non-vanishing probability 
for propagation with velocity ^>1 (h = c=  1) during 
the very first time interval of order 1/m, i.e. some 
10"23 sec for pions, although there are no states with 
r>  1.

Since the theory is based on established physical 
principles only, it seems reasonable to discuss these 
phenomena extensively.

The work comprises the following sections:

1. The wave equation
2. Iteration of the wave equation
3. Behaviour under Lorentz transformation
4. Continuity equation. Scalar product
5. The finite Lorentz transformation
6. Plane wave solutions
7. Coupling of potentials
8. Perturbation theory

1. The Wave Equation

a) The Wave Equation in Momentum Space

It is generally agreed that in momentum (k) space 
one uses as a relativistic Schrödinger equation

id, <P(t,k) = (o(k) k) (1)

for the wave function *P(t,k) in momentum space, 
with io(k) = {k2 + m2)1/2, the energy of a free particle of 
mass m and momentum k, as (multiplicative) energy 
operator in momentum space.

b) The Wave Equation in Coordinate Space

To a multiplication of two A-space functions there 
corresponds in coordinate (x) space the folding inte­
gral of the corresponding x-space functions. Thus, if 
we denote the x-space wave function by T(t,x) and 
the (formal) Fourier transform of w(k) by ß(x), (1) 
reads in x-space

id, V(t, x) = jd x '3 ß (x -x ')  V(t, x), (2)

where

*F(f,x) = (27r)_3/2 jd/c3 exp(i A • x) *P{t, k), (3)
ß (x -x ')  = (2 7i)-3 J d/c3 exp(i A • (x - x')) co(k). (4)

The Fourier transform (4) does not exist as a proper 
function of x. But it has a mathematically well defined

meaning as a so-called tempered distribution, i.e. a 
linear functional of sufficiently rapidly decreasing 
functions *P(x) for x-+oo [4].

To be definite, the value of the functional ß  is de­
fined by

j dx'3 ß (x -x ')  ^(x')

= J'dx'3 Jd/c3 oj(k) exp(z A ■ (x —x')) f(x ') 
= Jd/c3exp(/A x)w(A) ^(A). (5)

Let us abbreviate expression (5) by writing simply 
ß  f .  Thus (2) takes on the form

j6fß  = ß f  (6)

Remarks:

1) ß  is evidently a real Hermitean, that is symmetric 
operator. We have, for two wave functions <P, f :

j dx3 <P* (x) (ß •F) (x) = j dx3 (Q f)* (x) f  (x)
= jd.x3(ß f*)(x) *F(x). (7)

2) There exist arbitrary powers of the distribution ß, 

ß"(x- x') = (2 Tl)-3 f die3 con(k) exp(ik (x — x')). (8) 

In particular, the inverse of ß  is given by 

ß _1(x-x ')
= (2k)~ 3 Jdfc3 co-1 (k) exp(; k -(x-x')). (9)

3) The operator ß(x) is non-local. It has a mean range 
of order m_1:

= (j dx3 r2 Q(x)/f dx3 ß(x))1/2 = ̂ 3 /m .

2. Iteration of the ß-Equation

Iterating (6) reproduces, of course, the Klein-Gor­
don equation; for

-a ,2 <F = ß 2 f

and ß 2 (x — x') = (— zl + m2) <5 (x — x').

3. Behaviour under Lorentz Transformation

We shall prove the Lorentz invariance of (6) by 
showing: There exists a representation of the Lorentz 
group such that any solution of (6) remains a solution 
after transformation.
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a ) Commutators

Let us list a few useful commutators:

[x,Qn] = ndxQn~2 (10)

Especially n = 1

[x, ß] = 6xß _1, (11)
[6x,ß] = 0. (12)

Analogously for the y and z components. 
The velocity operator, using (11), is given by

u = x = i[Q, x] = - i d Q - 1 =p/Q, (13)

in accordance with the classic relativistic expression 
for the velocity.

The second time derivative vanishes because of (12):

x = i[ß ,i]  = 0. (13a)

It is interesting to compare these results with the be­
haviour of the corresponding quantities in case of the 
Dirac equation: As is well known [5], in the latter case 
x is not constant but consists of two terms, one corre­
sponding to (13), the other being known as the so- 
called "trembling motion". (13 a) does not show trem­
bling motion, but we shall see (Sect. 4d) that we do 
have to pay a corresponding price for the reconcilita- 
tion of the principles of quantum mechanics and rela­
tivity. Finally, let us note the Hermiticity of ut:

j" dx3 <P* (w; f )  = j dx3 (u, <P)* V (14)

for two arbitrary square integrable functions <£, f .

b) Representations of the Proper Lorentz Group 
for Spin 0

Under an infinitesimal Lorentz transformation in 
direction x, with infinitesimal velocity v,

t' = t — vx, t = t' + vx',
x' = x — vt, x = x' + vt', (15)

a wave function T(t,x) is usually transformed accord­
ing to

r{ t,x )= ¥ { t,x )  + vLx lF{t,x), (16)

with the generator Lx given by

Lx = xdt + tdx. (17)

Correspondingly, we have

Ly = yd, + tdy, 
L, = zdt + tdz

for Lorentz transformations in y and z direction, re­
spectively. Together with the generators of pure rota­
tions,

Mx= - i ( y d : - z d y), 
My= —i(zdx — xdz),
Mz= - i ( x d y- y  S J, (18)

the L, represent the Lie algebra of the proper Lorentz 
group, i.e. the set of commutators

[Lx, Ly] = i Mz; [Lx,M y] = iLz; [Mx,M y] = iMz. (19)

It is important to note, however, that these generators 
are not the only possibility to transform a spin 0 wave 
function. In fact, the new generators Lf, defined by

Lx = Lx + iSdxQ~1 = L x — 9ux, 
Ly = Ly + i9dyQ~l = L y — 3uy, 
Lz = Lz + i$dzQ~1 = L z — Suz, (20)

where .9 is an arbitrary parameter (real or even com­
plex) and where we have denoted the operator 
—/a ,ß _1 (the velocity operator) by m;, together with 
M, (18) again fulfill the algebra (19), i.e. the commuta­
tors

[Lx, Lx] = i M ,; [Lx, My] = i Lz; [Mx, My] = i Mz. (21)

Their validity is easily proved with the help of (10) and 
(12).

R em ark : On comparing with the transformation of 
a Dirac spinor under (15), which is effected by the 
generator Lx—\/2olx, and remembering that there 
x = i [H, x] = ax, we find that this corresponds to a value 
of ,9= 1/2. Indeed it will turn out in Sects. 4 and 5 that 
we should choose this value for For the time being 
we replace (16) by

•F (r, x) = «P (t, x) + v Lx «F (t, x), (22)

for fixed but arbitrary <9.

c) Lorentz Invarianee of the Wave Equation

oc) P ro p e r  L o re n tz  T ra n s fo rm a tio n s

It is sufficient to show the Lorentz invarianee for 
one direction, x say. So in the wave function we shall 
only write the arguments t, x.

Let f(r, x) be a solution of (6). We find that V (r, x) 
from (22) will also be a solution if

( id -Q ) LXV
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vanishes. But this is so, because

[ i0 ,-ß , I , ]  = i03e + 0xß - 10r,

which, factoring out idxQ~l, 

= idxQ '1(Q -id t) = 0 

when acting on f .

ß) S pace  In v e rs io n

For space inversion we define as usually

V (x )= lP (-x ) .

Using ß  (x — x) = ß  (jc' — x), one easily verifies that for 
any solution 'P(x) of (6) also ¥ ( — x) is a solution.

y) T im e In v e rs io n

It is easily verified that the usual time reversed func­
tion

T(t, x )= Y (- t , x)* 

solves (6) if f  (r, x) does.

4. Continuity Equation. Scalar Product

a) Continuity Equation

Using the identity —Q + m2 Q~ 1 = AQ~1, one veri­
fies that with a solution f  of (6) a continuity equation 
is fulfilled.

d,a -I- div y' = 0, 

for the density

a =  1/2(Y* Y + {u Y)* ■ [u V) 
+ m2(ß -1)*(ß~1 ¥))

and the current

y = l/2(»P*(«f *P)H-(m <P)* f ) .

(23)

(24)

(25)

The density is evidently positive definite. Equation 
(23) uives rise to a norm constant in time:

( d.v3 rr = const. (26)

With the help of (7) and (14), it may be given the 
familiar form

' d.v3 (7 = 1/2]" dx3 f*  (1 + u2 + m2 Q~2) «F 
= jd x 3 V* V. (27)

For (23) to hold it is only required that f  fulfills (6). 
As (6) holds in any Lorentz frame, it follows that (23) 
holds in any Lorentz frame. In the non-relativistic 
limit, mQ~1 -> 1, u2 ->0, we regain the familiar expres­
sions

a=Y * f ,
7= 1/(21 m) (f*  (0*F) —(ß*F*) f).

b) Scalar Product

Equation (24) suggests that we define a scalar prod­
uct for two solutions <P and f  of (6):

(0. W) = 1/2 jd x 3(<£* V + (uQ)*-(u lP)
+ m2(Q~l 0)* (ß _1 f)), (28)

but this reduces simply to (cf. (27))

($, f )  = jd x 3 (P* "P. (29)

Let us investigate the behaviour of (29) under a 
Lorentz transformation according to (22) with arbi­
trary ,9. We find, by making use of (6) and (14),

(</>', f ')  = jd x 3 <£>'* V
= (<£, «P) + i ; ( l - 23) jd x 3 <*>*(!<, «P).

Thus, our scalar product will be Lorentz invariant if 
we choose

3 = 1/2. 

We replace (22) by

T  = {F + v (L -{ l/2 )u )lF, 
<f>'* = Y* + v (L  + (l/2)u) f* , 
L = x0( + r6

for a Lorentz transformation with infinitesimal veloc­
ity v.

c) Expectation Values

The expectation value <P> of an operator P in a 
state is given by the scalar product of f  and P 
So because of (29) we put

(P> = jd x 3 •P* P f .  (31)

d) Transformation of Density and Current

Although (23) is Lorentz-invariant. the quantities o 
and j  do not transform like a usual four vector. Rather

(30a) 
(30b)
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one finds under (30)

<7' = l/2 (y*  y  + (u V)* ■ (u T ) + n r ( Q '1 V)*
( ß - 1 V')) = ( \ + v L ) a - v j - v S ,  (34) 

/  = l /2 ( f  '* (w f  + f  ')* T) 
= ( \ + v  L ) j - v a  — v x , (35)

where the three-vector S is defined by 

Si = (l/2);i-(l/4 ) ((« V)*-{Uiii>P)
+ {uiu'P)*-(ulF))-(l/4)m 2 ((Q~llF)* 
• ( m , 1 lF) + (uiQ~1 )* (ß_1 «F)) (36)

and the 3 x 3-tensor t by

T. . = (1/4) ( — f*  (U,. Uj f )  -  (M, U; «?)* f

+ (l/2)(«p* «P-(««P)*-(«y) 
— m2{Q~1 f )* (ß _1 f)) (37)

(The calculation is somewhat lengthy, but does not 
present difficulties. For calculations like this it is use­
ful to note the commutators

[Ui, Lj]= -ö ij + UiUj 
[Q~\ Li] = uiQ~1,

(38 a) 
(38 b)

which hold if acting on solutions of (6).)
If S and T both vanish, a, j  transform correctly like 

a four-vector. They do vanish, for instance, for plane 
waves. In general, however, S and x do not vanish.

Let us make two comments:
The first concerns the transformation of (23). If o,j 

do not transform like a four vector, the right hand side 
of (23) will not vanish identically after transformation 
but only for solutions of (6). This might suggest the 
existence of new conservation laws. Indeed, substitu­
tion of (34) and (35) into

0, <T' + div/ = 0

leads to

v ■ (0, S+div t) = 0, (39)

Equation (39) holds for arbitrary v, so we have

e(S+divr = 0 (40)

and as a consequence 

J dx3 S, = const.

But this is a trivial result, since 

j dx3 S, = 1/2 j dx3 tF* ii, (l 
identically,

m2 ß -2) f  = 0

because the expression in the parentheses does so.
Equation (40) is again valid in every Lorentz frame, 

so the same type of argument may be applied to (40), 
and so on. But each time we arrive only at trivial 
conservation laws. A proof is outlined in the Ap­
pendix.

The second comment concerns the concept of parti­
cle trajectory.

Vanishing of S, x means that the quantity v=j/a 
transforms like a velocity field. So j/o may be looked 
at as a field of (possible) particle trajectories. For non- 
vanishing S and x this is no longer the case. This is the 
price we have to pay for the absence of trembling 
motion as mentioned in Section 3 a.

5. The Finite Lorentz Transformation

a) The Finite Transformation of an Arbitrary Function

The finite transformation belonging to the repre­
sentation (20) in direction x, say, with velocity v, is 
given by

exp (wLx) = exp(w (Lx — $ ux)),
ux = — 16 Q ~1; tanh w = v. (41)

Let us represent the function f(r , x) as a Fourier 
transform for both variables t and x:

*F(r, x) = (27i)~1 jd/c0 d/cj V ik ^ k J  

• exp( — ik0t + ik l x)

with independent variables k0, 
Consequently,

exp (wLx)Y(t, x)

= J'dk0 dkx (exp(w Kx) *P) exp( — ik01 + ik x x)

where we have defined

(42)

K = K -S kJco ik J .
dk! dkc

(43)

(44)

In order to evaluate exp(u'XJ "F^q, /cj we proceed 
as follows. Introduction of polar coordinates g, a,

k0 = —i g cos a , 
k j = o sin a ,

g = (k2- k 2)112, 
y. = arctan (k1/ik0) (45)
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exp(wKv) *P(a) = exp(w (— i 6a — 3 u(a)) ^(a), (46)
u{oc) = kl/co(kl) = (g/m) sin a ■ (1 +{g2/nr) sin2a)~1/2.

Let us call the unknown function (46) for the moment 
g(a, w). Obviously we have

reduces the problem to the evaluation of

g(oc, 0)=«P(a) (47)
and

exp(wKx) g(a, 0) = g(a, w). (48)
Partial differentiation of (48) with respect to w leads to 
the following partial differential equation for g(a, w):

idag + dwg + $ug = 0

with the boundary condition (47). 
A general solution reads [6]

g(oc, w) = {ig cos ot + (m2 + g2 sin2a)1/2)

(49)

(p(oc-iw),

where cp is an arbitrary function.
Making use of (47), this leads to the final result

exp(wlv) V(t,x) = $dk0dki [(co(kl) - k 0)/((D(k\)-k'0)f
■ «P(/c0, k j ) exp(— i k01' + ikx x'), 

where (50)

k'o 

and

= A

= A

A = cosh co — sinhco 
sinhco cosh co (51)

(52)

Specializing D = 1/2, we end up with

<P'(t, x) = jd/c [cosh w -  (k/oj(k 1)) sinh w]1/2 <P(/c)
• exp( — ico(k) t' + ik x') (54)

with t' and x' from (52).
Let us apply (54) to a plane wave with momentum 

q, i.e. ${k) = ö{k-q), V* <P = 1; one finds

y *  i f  = coshvv — (q/a>(q)) sinhw 
= (1 —uv)/(\ —v2)1'2, (55)

Under (50) an arbitrary function *P(f, x) transforms 
under the representation generated by Lx. For 3 = 0 
we regain the familiar result for the transformation of 
a scalar function *P.

b) Transformations of the Solutions of the Q-Equation

If we want to apply (50) to a solution of (6), we must 
represent the solution in the form (42). Equation (6) 
requires

k0 = a)(kl),

so we put

f (k 0,k l )=<P(k1)ö(k0-CD(kl)).

Carrying out the integration over k0 in the (5-function 
and applying l'Hospitafs rule we find

<F'(f, x) = jd/c j [cosh w -  (kjw (k,)) sinh wf •Pf/c,) 
•exp(-/'«(/c1)f' + ;/c1 x'). (53)

where u = q/co{q), t; = tanhu\ Equation (55) is exactly 
the change of normalization due to Lorentz contrac­
tion.

If we define the distribution

i f  (w; x —x') = (27i)_ 1 jd/cJ^(w; k)
•exp (ik(x-x ')), (56)

where

k) = [cosh w — (k/a>(/c)) sinhvv]1/2, 

we can give (54) the concise form

•P'(r, x) = Jdx" i f  (w ;x'-x") "P^x"), (57) 

t' and x' being given by (52) as before.

6. Plane Wave Solutions

Because of (12) there exist solutions of (6) for fixed 
momentum, i.e. plane waves. (6) requires

k0 = co(k) = (k2 + m2y 2

with a unique sign of to. Negative frequences do not 
appear: for spin 0 particles there exists no Pauli prin­
ciple and therefore no hole theory to prevent the par­
ticles from falling into negative energy states.

The expectation value of the velocity squared does 
not exceed the velocity of light (1 in our units) for 
arbitrary wave packets, from which we conclude that 
no signal can be transmitted faster than c:

<«2><1.

Nevertheless, the Hamiltonian Q being nonlocal, it is 
interesting to discuss the propagation of the ampli­
tude *P in more detail.

For this purpose we study the solution of (6) with 
the initial condition *F(r = 0) = <5(x). It is obviously 
given by

<P (r, x) = (2 7i)~3 j dk3 exp( -  ico t + i k ■ x),
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which [7]
= id ,(2 n r i \dk3(\/w) 

•exp( — icot + ik • x) 
= idt(2iA( + )) = dt(iA + A{1)).

The first term, A, vanishes outside the light cone [8], 
but the second, A(1\ does not. Is this a catastrophe? 
Let us investigate to what extent it is one. Denoting 
the corresponding part of f  by ^ ,

we have [9] for t2 — r2< 0, or s = r —t>  0,

where Kn{z) is the modified Bessel function of nth order 
and z = m {r2 - 12)1'2 = m (s2 + 2 s t)1'2.

Performing the differentiation and using recurrence 
relations [10]. we get

¥ W (2  K x(z)-zK 0(z))l(z*). (58)

Besides the factor t, the right hand side depends only 
on z. The functions K0(z) and K { (z) [11], have a singu­
larity in z = 0, drop off rapidly for values z > 0 and for 
z > l vanish like exp( — z)<exp( — ms). Thus, Tl (z)/t 
describes a "layer" of thickness of the order \/m 
around the sphere r = t. If we follow the development 
of (58) with time, we find a spherical wave of the 
following shape: At f = 0, *F vanishes outside r = t = 0.

As t starts growing, the "layer" in which f ^ O , is 
being built up. But soon the exponential slope of K0 
and Ki will dominate the factor r, and from there on, 
the thickness of the layer will stop increasing.

For a rough estimate let us adopt a simplified 
model:

fi (r, s) = f exp (— ra (s2 + 2 s r)1/2).

From 6, fj =0 we find for the time t0 when ^  at a 
fixed distance s = n/m, « = 1,2,... outside the sphere 
r = t reaches its maximum value,

r0 = (l/ra)(l/« + ( l+ l/(« 2))1/2).

Thus, after a time interval of the order 1/ra the layer 
of thickness 1 /m will be developed, but from there on 
it simply travels with the surface, without further in­
creasing. (In fact, it will even shrink during the expan­
sion of the sphere because of the term 2st in z.)

If in the propagation of f  there were really involved 
speeds v> \, the thickness of the layer outside r = r 
would have to grow for all times. Since this is not the

case, no signal can be transmitted with v> 1 on a 
macroscopic scale. On a microscopic scale, i.e. during 
the development of the layer, or, correspondingly, 
within t< \jm  (some 10"23 sec for pions, the lifetime 
of pionic resonances, for instance), there is a non- 
vanishing probability for an apparent v> 1. Unless we 
assume different upper limits for v for times < \/m and 
>1 /«i, respectively, we must ascribe the development 
of the layer to some other mechanism. (In some re­
spect it looks as if for a spin 0 particle the influence of 
a finite extension cannot be neglected in certain cases. 
After all. the assumed initial condition is highly singu­
lar, d(jc) not being a normalizable wave function.)

7. Coupling of Potentials

a) Coupling of Scalar Potential, Radial Equation

We introduce a scalar potential F into (6) by equat­
ing id, to the total energy Q+ V. Thus we arrive at

idl V = (Q +V )lf'. (59)

Let us emphasize that iterated (59) is no longer equiv­
alent to the Klein-Gordon equation with potential. 
Putting, in case of a time-independent V,

V(t,x) = exp(-iE t) *P(x),

we get the stationary equation

(ß+F)<F = £«F. (60)

In case of a spherical V (r) one can set up a radial 
equation in analogy to the nonrelativistic Schrödinger 
theory.

Making use of the familiar ansatz 

V{t,x) = u,(r)/r Y™

and expanding Q(x — x') = ß(|x  — jc'|) into Legendre 
polynomials, one finally arrives [12] at the radial equa­
tion

)  dr'S, (r, r') ut(r')+V(r) ul(r) = Eul(r), (61)
o

where the radial distribution S,(r, r') is defined by

Sl(r,r') = 2n~1 ] dkoj(k)krj,(k r) k r' j,(k r')
(62)

with the spherical Bessel functions j,(z) defined by 
[13].
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It is interesting to observe that in the presence of a 
potential V(r), (23) aquires a local source term. Using 
(59) instead of (6), one finds instead of (23)

9,(7 + div j= Q , (63)

the source q being given by 

Q = (1/2 0 (u «F)* ■(uVT)-(uV <F)* • (u <F)
+ m2(ß~1 K f M ß " 1 V Y f W 1 <P).

In the nonrelativistic limit, ß _1->l/m, w2->0, Q, of 
course, vanishes. Since

J Q dx3 = 0,

from (63) still follows (26).

c) Coupling of Magnetic Field

The coupling of a magnetic field to (6) may be ac­
complished in the usual way according to the principle 
of minimal coupling, i.e. the replacement

p -> p  — eA, or — id — id — eA,

A being the vector potential of the magnetic field. If we 
use Coulomb gauge, for which p and A commute, 

p A = A p, (64)

we can argue as follows.
First we note that —id is equivalent to the distribu­

tion
p (jc -  x ) = (2 n)~3 J dk3 k exp (i k ■ (x -  x')),

and —id — eA is equivalent to
(2 7i)~3 J dk3 (k -e  A (x)) exp (i k (x -- x')).

Consequently, and because of (64), we can couple a 
magnetic field to (6), replacing ß  from (4) by

h) Remark Concerning the Continuity Equation

Qm (x, x') = (2 tt)" 3 J dk3 ((A -e A  (x)2 +, 
• exp (/A • (x —x')). (65)

Equation (65) may be cast into a more elaborate form.
Making use of ö/öA being the generator of a transla­

tion in A-space:

^ \ f ( k ) = f ( k  + A)exp A

for arbitrary /  (A), and applying partial integration, we 
may write the wave equation with magnetic field

idt{P = QM f  = Jdx'3 exp(ieA(x)
•(x-x')) ß (x -x ')  <F(x'). (66)

In the nonrelativistic limit we regain the Schrödinger 
equation in a magnetic field in Coulomb gauge. In this 
limit

Q (x-x') = m 0 (x -x ') - (2 m r1A0(x-x'), 

and the right hand side reduces to

m V -(2m )~1 (AV - 2 i  e A ■ dV + ( - i  e A)2 V).

8. Perturbation Theory for Discrete States

a) Energy Shift of First Order

Assuming that the relativistic corrections intro­
duced by (6) are small enough we set up a perturbation 
theory according to familar methods, not in the poten­
tial V, though, but in the kinetic energy.

We designate the nonrelativistic limit of w by w0,

co0 = m + k2/2m.

Let Q0 be the corresponding distribution in x-space

ß 0 (x -  x') = (2 tt) " 3 J dk3 0Jq (k) exp (/ A • (x -  x'))
(67)

and

i.e.
ß (1) = ß - ß 0, (68) 

Q(11 = (2 n)~3 J dk-3 ̂  (A) exp(i A (x -  x')),
OJ, = 0) — (Or

Let us split <P(x) into

"P0 being a solution of

(ß0+F)«P0 = £ 0 «P0

(69)

(70)

(71)

i.e. of the Schrödinger equation for the eigenvalue £ 0, 
and 'P, being small of first order. Substituting (70) into 
(60), using (68) and (71), designating the difference 
£ — £ 0 by £i (small of first order) and neglecting the 
terms of second order ß 11' ^ ,  E x "P1; we find in the 
familiar way

£! = J dx3 *P0* ß ( 1' *P0. 

hj Application to Central Potential

(72)

ß (1) being a function of |x — x'| just like ß. we can 
apply the methods of section 7 a to find in case of 
central potential

£j = J dk co{ (k)\unl(k)\2, (73)
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where we have defined u„,(k) by

u jk ) = (2/n)112] d ru j^ k r j^ k r ) ,  (74)
o

and unl(r) is the radial part of the unperturbed, i.e. 
nonrelativistic wave function

«Po(x) = r~1unl(r) Y,m.

Summary

Obviously, there exist at least two essentially differ­
ent one-component wave functions, transforming ac­
cording to the generators L, and L,, respectively. We 
might call them "Lorentz scalar" and "Dirac scalar" 
function, respectively. If for a spin 0 meson one 
chooses a Dirac scalar wave function, one can set up 
a complete relativistic one-particle quantum mechan­
ics, comprising the essential tools of wave equation, 
scalar product, conserved positive definite density. 
Scalar and vector potentials may be coupled. The 
nonlocal nature of the wave operator leads to some 
unusual features of the particle: current and density 
are in general not connected by a local velocity field 
(Sect. 4); reconcilation of nonlocality with the (some­
what singular) initial condition Y(t = 0) = <5(at) ^ (at) 
being a nonnormalizable wave function) leads to an 
apparent v> \ for the amplitude at very short times, 
although no states with v> \ exist (section 6); in the 
presence of an external potential a source term ap­
pears in the continuity equation, which, however, does 
not destroy conservation of the norm (section 7).

Appendix

1) Both S, and Tfj- are bilinear forms of the type (let 
us call it M for the moment)

M = Z(AkV)*(Bk<F) (Al)

(k is not a covariant index; in x^, for instance, we 
might put

= —1/4, B1 = uiuj ,
A2 = — (1/4)u,:Uj, B2 = 1 and so on.

Nevertheless, in what follows we shall apply dummy 
index summation, omitting the I , to simplify writing.)

In (AI), V is a solution of (6), Ak, Bk are hermitean 
operators with the following properties:

AkBk = 0 identically
(dummy index summation) (A2)

Let us call this sum the trace of M.

[8„A k] = [C2, Ak] = [u, Ak] = 0,
likewise for the Bk. (A3)

From (A2) it follows

jd x 3M = 0. (A4)

2) If we subject M to a Lorentz transformation (30), 
the result M' is of the shape

M' = (\ + v ■ L) M — v ■ ot, (A5)

where a is again of the type (Al); for,

M' = (Ak f ')* (Bk tF') = (Ak(lF + v  (L-(1/2) u) <F))* 
• (Bk («P ■+ v ■ (L-  (1/2) u) <F)) = (Ak «F)* (Bk <F) 
+ v((AkV)*(Bk(LV-(\/2)uV)) 
+ (Ak(L V -(\/2 )u n * (B k <F))

Extracting the generator L, we find finally 

M = ( \+ v  L) M - v ( - ( A kV)* [Bk,L] «P) 
-d A k,L]V)*(Bk IP)
+ (1/2) (Ak <P)* (Bku V) + (l/2) (Aku *P)* (Bk «P))

The term proportional to v is the a from (A5). Its trace 
vanishes, indeed

- A k[Bk,L ]-[A k,L] Bk + ( 1/2) AkBku 
+ (1/2) AkuBk = — [Ak Bk, L] + AkBku = 0

identically because of (A2).
3) Now let us assume that a Lorentz invariant con­

tinuity equation holds for two bilinear forms M, N of 
the type (Al),

5, M + div N = 0. (A6)

As just demonstrated, we have under Lorentz trans­
formation

M' = {\ + vL)M  — vcc, N' = ( l + v L ) N - v ß ,

where a, ß are again of type (Al). From the Lorentz 
invarianee of (A6) it follows

0 = 6(M' + divAT = i>-eM 
+ v d tN -v { d tx + div ß)
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for arbitrary v and therefore
e,(a-yV) + div(/?-/M) = 0. (A7)

(Here / is a unit tensor, to allow writing SM = 
di v(/M).)

From the new continuity equation (A7) we derive 
the conservation law

— fdx3(a-iV) = 0, 
d r

which, because of the shape of a and N, is nothing new. 
Moreover, (A7) is again of the type (A6), so, starting

from (40), the successive continuity equations do not 
furnish any non-trivial information.
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6

6 = gradient, e;=
9X:'
a e

Sv, oM> and so on
dx doc 9w

, respectively and
so on.
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