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The basic concept of fractals and multifractals are introduced for pedagogical purposes, and the
present status is reviewed. The emphasis is put on illustrative examples with simple mathematical
structures rather than on numerical methods or experimental techniques. As a general characteriza-
tion of fractals and multifractals a thermodynamical formalism is introduced, establishing a connec-
tion between fractal properties and the statistical mechanics of spin chains.

I. Fractals

1. Introduction

The surface-to-volume ratio for usual macroscopic
bodies (sphere, cube, etc.) is small since this ratio is
inversely proportional to the linear size of the system,
and the latter is characterized by a large number in
appropriate (atomic) units. There exist, however,
porous or hairly objects with a large surface-to-
volume ratio. They may play a fundamental role in
natural phenomena. Efficient catalysis, e.g., requires
materials with large surface area. The need of a rapid
gas exchange explains the existence of the large
surface-to-volume ratio observed in the lung. The area
of the human lungs respiratory surface (measured with
the resolution of 100 um) is as large as that of a tennis-
court (of order 10* m?) while the volume enclosed by
it is of a few litres [1] (of order 103 m ™ 3). The general
importance of such systems was recognized by B. Man-
delbrot. He also coined the name fractal and worked
out a new type of geometry for their mathematical
description [2]. (For further references on fractals, see
[3-9]).

The following observation leads to a broad defini-
tion of fractals: Experience shows that in such systems
the surface area depends on the resolution used in the
measurement. Typically, this area diverges as the reso-
lution is increased. The area of usual objects also
depends on the resolution but it converges very fast to

* Chapters I and II are based on a talk given at the Winter
School on Fractals, Budapest, January 1216, 1987.
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a finite limiting value. In the case of fractals the resolu-
tion dependence can, however, be followed over
several orders of magnitude. Since not only surfaces or
curves can be fractals but also dust-like objects, it is
useful to extend the definition by introducing the con-
cept of the observed volume. Let d=1, 2, 3 denote the
Euclidean dimension of the geometric entity the set of
interest is embedded in. (More precisely, d should be
the smallest possible such dimension.) For a fixed grid
of d-dimensional cubes of size [ the observed volume
V(1) is the total volume of the boxes needed to cover
the object, i.e. of boxes containing part of the set
(Fig. 1). An object will be called fractal if its observed
volume depends on the resolution (grid size) over several
orders of magnitude and follows a power law behaviour
with a nontrivial exponent. This dependence can be
observed over an infinite range of the resolution in the
case of fractals generated by mathematical construc-
tions. Such fractals have no smallest or no largest
scale.

a) l b)

Fig. 1. a) A set (dots) and a grid of size [. L denotes the
diameter of the set. b) Boxes (black) needed to cover the set.
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2. Fractal Dimension

It is intuitively appealing to think of a hairly surface
as an object of dimension larger than 2. More ramified
surfaces should have larger dimensions. This idea is
formulated in a quantitative manner by the concept
of the fractal dimension [2].

Let L be the diameter (more generally, a character-
istic linear size) of the set to be investigated. Using the
aforementioned grid of box-size [, the number of cubes
needed to cover the set is denoted by N (I, L) (Figure 1).
This number can depend only on a dimensionless
quantity which must be

e=IJL, (1

1.e. the box-size expressed in units of L. Therefore, we
have N(I, L)= N (¢). The number of nonempty cubes
increases with a decresing box-size.

It is easy to find the precize form of N (¢) for usual
geometric objects. As a simple example, we consider
first a straight line segment of length L. Let us use a
grid obtained by dividing the segment into equal
pieces of length [. Their number is obviously L/I. Thus,
N(e)=¢ ! for a straight line segment. In the more
general case of compact d-dimensional objects (like a
sphere) N (¢) ~¢~ ¢ is obtained, provided the box size [
is sufficiently small, since the volume of such bodies
goes with the d-th power of their linear size L. The
symbol ~ means here and in the following that the
proportionality constant, not written out explicitly, is
independent of the resolution.

Next, we show that the rule found for compact
object must be modified for noncompact ones. Let us
consider the so-called triadic Cantor set [10, 2] which
is constructed as follows. One begins with the unit
interval. The middle third of the interval is removed,
leaving two intervals of length 1/3. Next one removes
the middle third of each of these two intervals, leaving
four intervals of length 1/9, and this is then repeated
with the remaining pieces again and again (Figure 2).
The Cantor set is then the set of the points not
removed by this procedure. Let us use a grid obtained
by dividing the unit interval into 3™ equal intervals (m
is a fixed integer). As follows from the construction,
the number of such pieces (of size 3~ ™) needed to cover
the Cantor set is 2”. Since L =1 we have e =[=3"".
Consequently, N(g) =2m =g In2/In3 = g~0.631

The example illustrates the general finding that
N (¢) exhibits a power-law behaviour also for noncom-
pact objects. The exponent is, however, not an integer
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Fig. 2. The first steps in constructing the triadic Cantor set.
For the resulting fractal D, = 0.631.

and is smaller than the Euclidean dimension of the
space the object is embedded in.

Thus, the following definition seems to be quite
plausible. Let us consider the e-dependence of N (¢) for
an arbitrary object at sufficiently fine resolution. The
relation

N(g)~¢e Do, )

with ¢ €1, defines a positive quantity D, the so-called
fractal dimension. (It is worth noting that there exist
also other variants in the definition of fractal dimen-
sion [2, 3, 5].)

Remarks :

1. Fractals obtained from mathematical construc-
tions can be divided into two main classes according
to their rule of construction. To the first class belong
fractals generated by defining structures on finer and
finer scales (see the triadic Cantor set and Examples I,
IIT below). Consequently, such fractals have no
smallest scale. In this case L= const, and (1) and (2)
imply

N(l, L)~ 1P, (2a)

In order to model aggregation-like phenomena, fractals
constructed by growth processes (Examples II, IV) are
used. Then the grid size [ can be kept constant, and D,
is to be deduced from the relation *

N(l, L)~ LPo. (2b)

* If [ is proportional to the particle size, N(l,.L) b_ecomes
proportional to the mass M (L) of the cluster with diameter
L. Thus M (L)~ LP° follows, which is a widely used relation
for growth processes.
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Fig. 3. A typical In N (¢) vs. In(1/¢) plot.

The resulting fractals have no largest scale. By an ap-
propriate rescaling of the linear size, however, this
second class can be made equivalent to the first one.
This is exactly the physical meaning of the fact that
the number of nonempty cubes depends only on the
ratio €.

2. Since N(¢) cannot be larger than the number
of cubes needed to fill the space, D, < d is obtained.
For compact geometrical objects, (2) holds with the
Euclidean dimension, D, =d.

3. It has been mentioned that ¢ must be much
smaller than unity in (2). In physical examples, there
exists also a lower cut-off for ¢ since the fractal struc-
ture is replaced by some other patterns when ap-
proaching the microscopic scales. Therefore, a straight
line in the In N (¢) vs. In(l/¢) diagram can be observed
in a range of ¢ only (Figure 3). This range must extend
over several decades in order to imply the existence of
a fractal structure.

4. Fractals are selfsimilar objects, i.e. they look the
same on many different scales in the range where (2)
holds. This is consistent with the fact that a scaling
form

N(ie)=i"PoN(e), (3)

where 4 1s an arbitrary positive number, follows from
(2). Among usual geometrical objects there are also
selfsimilar ones (e.g. line, plane) but they are simple.
Fractals are, thus, nontrivial selfsimilar objects.

The fractal dimension turned out to be a very good
characteristic of different structures in nature [2].
Moreover, in certain cases D, proved to be universal,
Le. the same for a class of systems. In many cases
(coast line: D, =~ 1.25, landscape: D, = 2.2) the origin
of this universality is not yet known, in other cases,
however, (polymer coil: D, = 1.66, the region of active,
nonlaminar flow in fully developed rurbulence: D, =
2.8-3.0) the physical reasons of the universality seem
to be understood [2].

Report

The aim of this report is to give a tutorial introduc-
tion to help new-comers from different fields of science
to learn recent notions and concepts related to fractals.
For this reason, mainly mathematical examples with
simple recurrent structures will be used which are best
suited for clarifying concepts like multifractality or
thermodynamical formalism. Nevertheless, the general
results and relations we obtain hold for all fractal
objects. The article is not intended to be a historical
survey or a complete review of the field, as reflected
also in the choice of references which are concentrated
only on a few phenomena mentioned in the paper.
Even these selections are necessarily incomplete, but
the author hopes they are sufficient to help the reader
in further orientation.

3. Thin Fractals - Fat Fractals

If the fractal dimension D, of a set is smaller than
the Euclidean dimension d, the observed volume

V(l) = N(e) I* ~ LPo 4~ Do (4)

depends, actually, on the grid size [ in the range where
(2) holds. Such system are, therefore, fractals. We call
them thin fractals since V(I) would vanish in the limit
[— 0. Such fractals are, in a mathematical sense, ob-
jects of measure zero in the d-dimensional space.

It is worth mentioning that D, = d does not neces-
sarily imply that the object is a usual body. In several
cases a power law behaviour

Vih—VO0)~ L7 D (5)

has been found [2, 11, 12], where >0 is a new expo-
nent (not a dimension!) and V/(0) is the finite limiting
value of the observed volume obtained for / — 0. Such
objects are also fractals. These fractals are called fat
[11] since their d-dimensional volume is nonzero.

A simple analytically tractable example is obtained
by modifying the construction of the triadic Cantor
set in such a way [11] that, at the n-th stage, the
fraction of each interval removed is (1/3)", rather than
1/3 (e.g. at the second stage the middle ninth of each
interval is removed).

Fat fractals are also common in nature. Examples
include [2] the vascular system, the branching struc-
ture of bronchia in the lung, river networks, and the
top of certain trees which are with a very good accu-
racy space filling objects.

In what follows we shall mainly deal with thin
fractals.
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Fig. 4. Schematic construction of a one-scale fractal.

C) ﬁm

Fig. 5. The first steps in constructing a Koch curve (r = 0.3).
The fractal dimension of the resulting fractal is D, =
In4/In(1/0.3) =1.151.

4. Deterministic Fractals

We study a few classes of fractals which are con-
structed by dererministic rules. First, exactly selfsimi-
lar objects possessing a recursive structure will be con-
sidered.

One-Scale Fractals

The rule of construction for such fractals can be
schematically represented as on Figure 4. One starts
with a single object of linear size /. In the next step
this object is divided into N identical pieces each of
which is a reduced version of the original object by the
same factor r < 1 (hence the name one-scale fractal).
The procedure is then repeated in the next step so that
N of the newly created pieces of size [, r* are arranged
inside a piece of size [,r exactly in the same way as
these parts are arranged inside the original object
(Fig.4). The fractal is then obtained by applying this
rule subsequently ad infinitum.
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Consequently, the fractal can be divided into N
identical parts, each being rescaled versions, by a fac-
tor r, of the complete set. Let N, (¢) denote the number
of boxes on a grid of size [ < L (L is the diameter of the
fractal) needed to cover one such part. Then the num-
ber of boxes needed to cover the complete fractal is

N(e)=NN,(e). (6)

Due to the similarity, N, (¢) is the same as the number
of boxes needed to cover the complete set with boxes
of size l/r:

Ni(e)=
By putting (6), (7), and (2) together,

N (e/r). (7)

B In N
T In(1/r)

®)

is obtained, which is an exact result for one-scale
fractals [2].

Example I: Koch’s Curve

The construction of a Koch curve [13, 2] proceeds
as follows. Let us cut out from the unit interval the
interval (r, 1 —r), where 1/4<r=<1/2 is a parameter.
To the two newly created endpoints a V-shaped curve
is added, both sides of which are straight and of
length r, as shown on Fig. Sa. The same process is
repeated with all sides of length r, and then again and
again (Fig. 5b, ¢) ad infinitum.

By comparing this rule with the general scheme we
find N = 4. The fractal dimension of a Koch curve is
therefore D, =In 4/In(1/r). It is worth noting that the
length of this curve (the analogue of the surface area)
diverges with the resolution: the length measured by
bars of length ™, m>1 fixed, is 4™, as follows from the
construction.

Example II: Snowflake Fractal

The construction rule [14] shown in Fig.6 can be
considered as a model for aggregation processes. The
“seed” configuration (n=0) is a symmetric cross built
by five particles. The configuration at the n-th stage is
obtained by adding to the four corners of the (n — 1)-th
stage configuration the cluster corresponding to the
(n—1)-th stage of the growth. By reducing the n-th
stage configuration by a factor 3" one finds a series of
objects of the same linear size [14]. The rule of con-
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Fig. 6. The first steps in constructing a snowflake fractal with

a growth process.
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Fig. 7. Schematic construction of a multi-scale fractal.
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Fig. 8. The first steps in constructing a two-scale Cantor set
(r, =0.25,r, = 0.4). For the resulting fractal D, = 0.611. The
codes associated with the intervals will be explained in
Section 14.

struction corresponds then to that represented in
Fig.4 with parameters N =35, r=1/3. Consequently,
the dimension of the fractal is Dy =1n 5/In 3 = 1.465.

Multi-Scale Fractals

The essential difference between the construction of
multi-scale and one-scale fractals is the fact that the
starting object is now divided into N parts which are
not all identical. However, all of these are reduced
versions of the original object by certain factors r; <1,
J=1, 0., N (all r; cannot be identical) [2, 15]. The
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procedure is then repeated in a similar way ad infini-
tum (Figure 7). Consequently, the resulting fractal can
be divided into N parts, each being rescaled versions
of the complete fractal. Let N; () denote the number of
boxes on a grid (size | <L) needed to cover the j-th
such part. The number of boxes needed to cover the
complete fractal is

N(e) = j—i N;i(e) . 9)
From the similarity property,

Nife)= N (e/r;) (10)
follows. These relations and (2) then yield [2, 3]

% rpe=1 (11)

j=1

which is an exact (implicit) equation for the dimension
of multi-scale fractals. For r; =... =ry=r result (8)
1s, of course, recovered.

Example IIl: Two-Scale Cantor Set

This fractal is obtained by dividing the interval
[0, 1] as shown in Fig. 8 [16]. We initially replace the
unit interval with two intervals of length r, and r,
(ry +r,<1). At the next stage of the construction the
same process is applied to each of these two intervals.
The procedure is then repeated again and again. The
general formula (11) yields for the dimension

rie+rlo=1.

(12)

(The one-scale Cantor set is obtained as the limiting
case ry=r,=r. Then Dy=In 2/In(1/r). For the triadic
Cantor set r=1/3 and D,=0.631.)

Example IV: Two-Scale Snowflake Fractal

This is a generalization [17] of Example II. The
“seed” configuration is now a single particle. The con-
figuration at the n-th stage is obtained by adding the
twice enlarged version of the cluster corresponding to
the (n — 1)-th stage of the growth to the four corners of
the (n— 1)-th stage configuration (Figure 9). Reducing
the object obtained after n steps by a factor 5" the
general scheme (Fig.7) can be applied. Since r, =1/5,
r,=...=rs=2/5 we find

57 P04+4(512)7Po=1 (13)

as an equation for D,. Its solution is D, = 1.601.
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Fig. 9. The first steps in constructing a two-scale snowflake
fractal by means of a growth process.

5. Fractal functions *

There exist continuous functions given by simple
formulae, which are nowhere differentiable. The graph
of such a function turns out to be a fractal curve.
These fractals are also deterministic ones.

We consider, first, the Fourier series

1 —cos(y"t)
~(2—=D)n 2
/4

C(t)= i

n=—aox

(14)

the so-called Weierstrass-Mandelbrot function [2, 18].
In the range of parameters

1<D<2, y>1, (15)

C (1) is continuous but the series defining dC(t)/dt di-
verges everywhere.

By a formal replacement n — n+1 the scaling rela-
tion

Clyty=y>""C(t) (16)

follows from (14) with y > 0. Consequently, the graph
of C(t) on the interval t,<t<vyt,, t, arbitrary, can
be obtained by magnifying the graph in the range
to/y<t<t, with factors y and y*~? in horizontal and
vertical directions, respectively. This nontrivial sym-
metry, the so-called self-affinity [2, 19], can clearly be
observed in Figure 10. The fractal dimension ** of the

* Sections 5, 6 provide an outlook on certain important
fields of fractals but can be omitted when reading the paper
as an introduction to the subject of multifractals.

** For self-affine sets a nontrivial fractal dimension, called
the local dimension, can be obtained only by using a very fine
grid. On long scales, (2) yields a trivial integer value (in our
case unity) for D, [19, 9].
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graph of C(t) has been shown [18] to be

Dy=D (17)

in the parameter range (15). As a further consequence
of (16) the curve C(t) possesses no scale at all, which is
also demonstrated on Figure 10.

The first example, of great historical importance, for
a continuous but nowhere differentiable function was
given by Weierstrass [20]. It is defined as
W)= 3 cos(y"t)

=B (18)
:0 i

This function is more complicated than C(t) since a
scaling relation holds now only up to an additive
smooth function. For n=0 in (18),

Wy t)=y>"2 W(t)+cos(t). (19)

Consequently, the graph of W(t) does have a largest
scale, W(t) has a maximum (Figure 11).

For the local fractal dimension of the graph, (17)
has been shown to hold [21] in the parameter range
given by (15).

6. Random Fractals

Fractals which are generated by nondeterministic
rules are called random. In order to illustrate the dif-
ference between the construction of deterministic and
random fractals, let us consider the following example.
In the first step of the deterministic construction the
upper right quarter of a square is cut out. Then the
same procedure is repeated in all remaining squares
(Figure 12a). Modifying this rule by choosing sto-
chastically which of the four quarters of the square in
question is deleted, a random fractal is obtained
(Figure 12b). Although the geometrical appearance of
these two sets is quite different, their fractal dimen-
sions coincide since the number of boxes needed to
cover them is the same.

There exist also random fractal functions. The most
extensively studied phenomenon connected with them
is diffusion or Brownian motion. The displacement x (t)
of a Brownian particle moving along a line is a sto-
chastic variable with zero average and with variance

ey ~t, (20)

where the bracket denotes averaging over several
realizations. Relation (20), implies usual diffusion. The
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C(t)

Fig. 10. The, Weierstrass-Mandelbrot function for
D =15, y=2. The plot was obtained by keeping
Fourier components with |n|<10 in (14).

W(t)

e
ik, Bk
ey b B

Fig. 12. Deterministic fractal (a) and a random version (b)
of it. The objects are exhibited here as obtained after five
steps of construction. The fractal dimension is for both cases
D,=1In3/In2=1.585.

graph of x(r) was proved [2, 22] to be a fractal curve
with local fractal dimension D, = 1.5 (Figure 13b).
The fractional Brownian motion [2, 22] is an exten-
sion of the concept of the usual Brownian motion. The
displacement x(t) of a particle following such a mo-
tion in one dimension is — by definition — a stochastic
variable with zero average and with variance
(XD ~ 121, (21)

where 0<H < 1. For H+1/2 this corresponds to an
anomalous diffusion with correlated increments. Such

Fig. 11. The Weierstrass function for D = 1.5, y =2
when it is 2z-periodic. The plot was obtained by
keeping Fourier components with n < 10 in (18).
Note that the fractal dimensions of the curves
2T  shown on Figs. 10 and 11 are the same.

correlations extend to arbitrarily long time scales and
have a large effect on the visual appearance of the
traces (Figure 13). The graphs are self-affine fractal
curves with a local fractal dimension [2, 22]

D,=2—H. (22)

Fractional Brownian motion is used when making
computer simulations of fractals like mountainous
terrains or clouds [2, 22].

Fractals in nature are typically random ones. The
field of applications in physics is also extremely broad
and ranges from percolation [23] and pattern formation
through growth processes [4, 5, 24, 25] to chaos [26]
and rurbulence 2, 27, 28].

Despite this great practical relevance we shall, in
what follows, mainly be interested in deterministic
fractals which are best suited for an elementary intro-
duction of further new concepts.

7. Fractal Dimension for Composite Fractals

Several fractals proved to be composite, i.e. to be
unions of fractal subsets. Let us assume that a com-
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(a) H=0.2
D°=1.8
X (t) (b) H=0.5
DO=1'5
(c)H=0.8 Fig. 13. Traces of fractional Brownian motion
D=1.2 at three different values of the parameter H
0 (after [22]).

plete set of linear size L consists of m fractal subsets,
and let N, (¢), ¢ =[/L, denote the number of boxes of
size | needed to cover the k-th subset on a grid. For
small box size N, (¢) ~ & P8’ where D is the fractal
dimension of the subset. Since the overlap among dif-
ferent covers vanishes with decreasing box size, the
number of boxes needed to cover the complete set is
N(e)= kZI Ny (&) . (23)
On the right hand side the contribution with the
largest D% dominates for ¢ — 0, thus, from (2)

D, =max D . (24)

The fractal dimension of the complete set is the same
as the largest dimension of the subsets.

This relation tells us that simple and complete
fractals cannot be distinguished by measuring the
fractal dimension alone. Consequently, a more detailled
description of fractals requires the introduction of fur-
ther parameters characterizing different subfractals.
How this can be done will be discussed in the next
sections.

I1. Multifractals

8. Fractal Measures

In several phenomena fractals appear not only as
strange geometrical objects but provide stages on
which “something is going on”. Physical processes on
fractals may generate stationary distributions (mea-
sures). Fractals with time independent distribution on
them are called fractal measures (for a quantitative
definition see the end of Section 11). The quantity
which may be distributed on a given fractal depends

on the physical system in question. Here we mention
only a few examples. On random resistor networks
[29] the voltage or current distribution can be mea-
sured. For aggregation processes the probability that
a given site is the next to grow, the so-called growth
probability, gives a distribution [30, 31]. In the case of
fully developed turbulence the velocity difference in-
side eddies is a quantity defining a measure [27, 28]. It
is to be noted that different distributions may exist on
a fractal leading to the existence of different fractal
measures on the same support.

It is a recent observation [27, 32, 30, 16] that non-
trivial distributions can be considered as analysers of
strange sets. They open up different fractal subsets by
e.g. selecting subsets giving the dominating contribu-
tions to different moments of the distributions. If this
1s the case, the system will be called multifractal [32, 30,
16, 33]. Different distributions may lead to different
multifractal properties. It may happen that a fractal
with a given measure is a multifractal but with anoth-
er one it is not.

The following simple example illustrates how a
nontrivial distribution selects different fractal subsets
of its support.

9. An Example for Multifractals

We consider here a probability distribution on the
unit interval constructed by a simple rule [34]. In the
first step the middle third of the interval is made more
(or less) probable than the outer thirds. Let the proba-
bility of each of these pieces be p,, and the probability
of the middle third be p, =1—2p, (Figure 14a). In
the next step each piece is divided again into thirds,
and the probability is redistributed whithin each of
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these nine pieces so that the ratios within each third
are the same as those of the first stage distribution
(Figure 14b). The procedure is repeated again and
again (Figure 14 ¢, d). The distribution becomes so in-
homogeneous that its internal regular structure can be
seen only on a logarithmic scale (Figure14e). The
density of the asymptotic distribution obtained after

ig. 14. The first steps in constructing the distribution described

in the text (p,=0.114). a) n=1, b) n=2, ¢) n=3, d) n=6,
e) the logarithm of the distribution obtained after 6 steps (after
[34]).

an infinite number of steps is then discontinuous
everywhere.

When studying the properties of this distribution
one has to use a grid of finite size. Now not only the
number of boxes is important but also the measures
inside boxes, the so-called box probabilities. Let us
take a grid obtained by subdividing the unit intervals
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into intervals (boxes) of size [ =& = (1/3)" with n > 1. It
follows from the construction described above that
the box probabilities can take on one of the values

(25)

B =pipy ",
where m is an integer between 0 and n. Since the
number of boxes 3" > n, there must be a degeneracy in
the distribution:

n
()
m

is the number of boxes with the same measure P,,. For
the sake of definitness we assume p, >p,.

First, we ask which boxes give the main contribu-
tion to the total probability when refining the grid.
Although the most probable box is that in the middle,
with content By =p%, it is alone. Its contribution is
negligible for n —» oo since p, <1. The most rarified
boxes (P, = p') are numerous, nevertheless the proba-
bility in such boxes is also negligible since (2p,)" — 0.
It is, therefore, plausible that, for large n, columns very
close to some medium hight give the main contribu-
tion. More precisely, for n - oo there exists a single
index m = m, (n) between 0 and n, so that only boxes
with B, contribute to the total probability: N,, P, —1.
Consequently, none of the other boxes are important
from the point of view of the total measure. An easy
calculation (see Appendix) yields

(26)

m;/n=2p, (27)

(note that m/n is a quasi continuous quantity for
n>1).

The number N, of the relevant boxes increases, of
course, exponentially with n. Since the resolution is
e=(1/3)", N,,, can be written as

N, , (28)

=
i.e. these boxes cover a fractal subset of the unit inter-
val, and f; is the dimension of this subset. From

(26)-(28)

_2piInp,+pyInp,
In1/3

fi (29)
is obtained.

Next, we investigate the g-th power of the box prob-
abilities, where — o0 <g < oo is a parameter. The total
amount of these quantities is Y. N,, P71 = (2p% + p%)"

Similarly to the previous case, columns of a certain
height contribute only to this sum. At a fixed g, boxes
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with B, are found to dominate, where
2p]
s PN (30)
no 2pi+ph

Their number increases again exponentially with n.
We can, therefore, write

N =¢Ja.

mgq

(31)

This means that a subset of fractal dimension f, gives
the dominant contribution to the sum of the g-th
power of the box probablities. Note that for g=+1 this
subset is different from that contributing to the total
measure. In our example (32)

1
In(1/3)

. 2 p%1npf +p%ln pl
fq—[ e e +p%>}
is obtained as can be checked easily.

By increasing (decreasing) the exponent g, boxes
with higher (lower) probabilities, i.e. fractal regions
with denser (more rarified) occupation are selected. In
fact, the limit ¢ > oo picks up the most probable box
which is alone. Consequently, f, =0. The opposite
limit selects the least probable boxes. Their number is
2", therefore f__ =In2/In3. These limiting results
can be obtained also from (32).

We have, thus, demonstrated that the contribution
of the sum of different powers of the box probabilities
is dominated by different fractal subsets. The spectrum
f, of their fractal dimension provides a characteristic
of this multifractal. The example also illustrates that
an inhomogeneous distribution on a non-fractal sup-
port (here the unit interval) can be multifractal.

In addition to the fractal dimension also the content
of those boxes which contribute, i.e. the probability
F,,, belonging to each of them, is an important quanti-
ty. Since, however, F, depends on n (or ¢), it is better
to introduce an e-independent parameter, the crowd-
ing index o,, by writing

g = €70 (33)
From (25) and (30)
_2pilnp, +pilnp, 1 (34)

o
g 200 +p8  In(1)3)

is found. The values of «, lie in the range between
o, =Inp,/In(1/3) and «__ =In p,/In(1/3). (For the
particular choice of p; used in constructing Figs. 14-17
(p; =0.114) we obtain o, =0.234 and «_  =1.981.)
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Fig. 15. The g-dependence of the fractal dimension f,, (32),
and of the crowding index %,, (34), for the multifractal con-
structed in the previous Figure.

The spectra f, and «, are exhibited in Fig. 15 for a
case p, >p, . Note that the multifractal properties are
lost for the parameter values p,=p,=1/3 when
f,=2,=1, since the density is then constant over the
whole interval. A similar case is obtained for p, =0,
p1=1/2when f, =2, =In 2/In 3. This corresponds to
the familiar triadic Cantor set with a uniform distribu-
tion on it.

10. Characterization of General Multifractals

In order to describe multifractal properties a uni-
form grid of size [, as introduced in Section 1, is used
again. Let P denote the measure or probability inside
the i-th box: for empty boxes P, vanishes. A central
quantity [35, 15, 36] is

VAU DI i (35)
the sum over all boxes of the g-th power of the box
probabilities, —oc <g< . y, depends only on the
dimensionless number ¢=1[/L, where L is the linear
size of the support: y,(l, L) = z,(e). For ¢ =0, (35)
yields the number of boxes needed to cover the sup-
port. Since the distribution should be normalized,
71(e)=1 holds.

The properties of the previous example turn out to
be typical for multifractals. For ¢ -0 the contribution
to y,(e) with a given g comes from a subset of all
possible boxes. These boxes cover a fractal, i.e. their

number N, (¢) depends on ¢ as
N,(e) ~ & Ju, (36)

where f, is the fractal dimension of the subser. Fur-
thermore, the content of each contributing box is ap-

Fig. 16. The f(«) spectrum for the multifractal of Sect. 9 as
obtained from (32) and (34) by eliminating g. The straight line
is the diagonal f=a.

proximately a constant, F,. The crowding index a, for
these boxes is defined by the asymptotic relation

P ~e%. (37)

A multifractal is then characterized by the spectra f,
and o,.

Since y,(¢) = N(¢), the quantity f, is the fractal
dimension D, of the support. It follows from the prop-
erty of composite fractals (Section 7) that f,>f, for
q+0 since the multifractal is the union of all sub-
fractals with dimension f,. The function f, vs. ¢ in-
creases until it reaches its maximum D, and then de-
creases. As higher powers select denser regions, , is
monotonously decreasing (see Figure 15).

A simple fractal corresponds in this picture to the
special case f, =o,=D,.

The elimination of the variable g between f, and «,
leads to a new characteristic, to the so-called f(x)
spectrum [16]. Direct definitions of o and f(x) can be
given as follows. For ¢ >0 around each point of the
fractal one finds

P~ (38)

where o is position dependent. Relation (38) defines
the set of crowding indices [16] (or Holder exponents
[2]) «. At any fixed ¢ there exist, however, several
boxes with a given crowding index, say, . Their num-
ber N, (¢) increases with ¢ like

N,(e) ~¢e I, (39)

L.e. these boxes cover a subset of fractal dimension
f(x). The variable » may take on values from a range
[¢,,2%_ ], and f(«) turns out to be, in general, a
single humped function with D, as its maximum [16]
(Figure 16). The f () spectrum of a simple fractal con-
sists of a single point.
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Before turning to the question how «, and f, can be
obtained from f() it is worth introducing the concept
of generalized dimensions.

11. Generalized Dimensions

The quantity y,(e) is found to follow a power law
behaviour as ¢ - 0:

(g-1)Dg
:

Xqe)~¢ (40)

where D, is the so-called order q generalized dimension
[35, 27, 15, 36]. The factor (¢ —1) has been pulled out
in the exponent to ensure automatically the relation
71(e)=1. Consequently, the D,’s are positive numbers.
Their values monotonously decrease with g [15]
(Figure 17). For simple fractals all the D’s coincide.

It is easy now to connect the generalized dimen-
sions and the spectra 4> %, Since the contribution
to y,(¢) is given by boxes with content P, we have
Z4(€) = N,(¢) P}. This implies via (36), (37) and (40)

(g=1)D,=qo,—f,. (41)

For g =0 the relation D, =f is recovered. Further-
more, as f, is finite, D, , =a. , follows.

In order to find the relation to the f(«) spectrum let
us notice that y, (&) can be written (see (35), (38), (39))
for e >0 as

X&) ~ [ &7/ ® du, (42)

when o is a quasi continuous variable. Since ¢ is very
small, the integral will be dominated by the value of «
which makes the exponent minimal. This immediately
leads to (41) with the conditions

d
ﬁu) =q; f,=f(x).
o

%q

(43)

%, is, therefore, that particular value of the crowding
index for which the derivative of f(«) is exactly g.
As a consequence, also the spectra f(«) and (1—¢g) D,
are connected: they are Legendre transforms of each
other (see (41)).

The case of the order 1 generalized dimension is of
special importance. From (41) and its derivative taken
at ¢ =1 we find

Dy=u=f .

This relation together with (43) explains why the f,
and «, curves touch each other at g =1 (Fig. 15) and

(44)
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Fig. 17. The D, spectrum for the multifractal of Section 9.

why f(x) is tangent to the diagonal exactly at a point
where f(a) = o = D, (Figure 16). Furthermore, by per-
forming the limit ¢ —»1 in (35) and (40) one obtains

—> PInP~D,In(l/e). (45)

The quantity D, thus measures how the information
(left hand side) scales with In(1/¢). Therefore D, has
been called the information dimension [37, 34]. More-
over, this concept has been used to give a precise
definition of fractal measures [34]: a distribution is
said to be a fractal measure if its fractal dimension
exceeds its information dimension. In this sense the
example of Sect. 9 is a fractal measure and, moreover,
all fractal measures are multifractals. (The value of p,
used in Fig.14 was chosen in such a way that
D, =1In 2/In 3, i.e. the same as the fractal dimension of
the triadic Cantor set. The fractal dimension of the
support is, of course, unity in this example.)

It is worth noting that despite their name, the gener-
alized dimensions D, (¢ #0, 1) are not dimensions. as
expressed by (41). This can also be seen from the fact
that all D, with a negative g are in the example of
Sect. 9 larger than 1 (Fig. 17). Nevertheless, the spectra
D, and f(x) (or f, and «,) provide equivalent charac-
terizations of multifractals. (For another interpretation
of D, see [27].)

Finally, we mention that distributions on fat frac-
tals can also be multifractals characterized not only by
D, but by another set of exponents y, obtained by
generalizing (5) [38].

12. Fractals Measures with an Exact Recursive
Structure

The class of fractal measures possessing an exact
recursive structure provides analytically tractable
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cases. We consider measures for which the rule of
construction is based on that of multi-scale fractals
(Section 4, Fig. 7). Now the redistribution of the mea-
sure is also to be defined. Let p; be the probability

associated with the j-th piece which is the reduced
N

version of the original one by a factor r;, Z p;j=1 At
j=1

the next stage of construction each piece is further
divided into N pieces, each with a probability reduced
by a factor p; and size by a factor r;, etc. The support
of the resulting measure can, therefore, be divided into
N parts, each being a rescaled version of the complete
support, by a factor r;. Each such part carries an
amount p; of the total measure. From this similarity
property

Xq.i€) =P} x,(e/r;) (46)
follows, where y, ;(¢) stands for the quantity defined
by (35), evaluated for the j-th piece by using a grid of
size | (¢ = /L, L is the linear size of the support). For
the complete system

N
1@ =2 1408 . (47)
=il
From these relations and from (40)
N q
Pj
2, oo, 8]

is obtained, which is an exact equation for the general-
ized dimension D, [15]. For ¢ =0, of course, (11) is
recovered.

If the support is a one-scale object. i.e. if r; = r for all
J, the implicite equation (48) can be solved, yielding

N
ln< p pj)
1 i=1

D =
q—1 Inr

q

(49)

This result applies also to the example of Sect. 9,
where N=3,r=1/3 and p, =p;.

Note that in cases when the probability is dis-
tributed uniformly on a one-scale support (p;=1/N),
multifractal properties are lost since D, =2, =f,
=1In N/In(1/r) for all ¢q. For measures on multi-scale
fractal supports, the property of multifractality is
more persistent. Even a wniform distribution of the

N
probability, i.e. the choice p; = rj< ¥ rj>. leads to a
[ \j=1
nontrivial D, spectrum, as can be seen from (48).
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13. Geometrical Multifractality

Fractals on which a measure is distributed with a
constant density form an interesting class, since in
such cases multifractality, if present, manifests purely
geometrical properties. The multifractal spectra can
then be considered to characterize the fractal support
itself. An example is provided by the two-scale Cantor
set of Sect. 4 if the measure associated with an interval
appearing in the construction (Fig. 8) is chosen to be
proportional to the length of the interval (to the
Lebesgue measure). Multifractal properties then re-
flect the heterogeneity in the size-distribution of these
intervals.

Such geometrical multifractality [17] is of special
importance for growing structures, where a distribu-
tion of constant density always exists and is of phys-
ical relevance. This is due to the fact that such systems
are built up by identical particles and, therefore, the
mass distribution on the growing structure is uniform.
The multifractal properties with respect to this mea-
sure can be analysed along the lines described in
Sect. 10 by chosing the box probability P. to be pro-
portional to the mass, or the number of particles,
inside box i.

As an example, let us consider the two-scale snow-
flake fractal of Section 4. By reducing the object ob-
tained after n steps of construction by a factor 5" the
general scheme worked out in the previous Section
can be applied. The cluster consists of a smaller cen-
tral and four larger pieces each having the overall
shape of a square (Figure 9). Since the masses of these
different sqaures are 1/17 and 4/17 parts of the total
mass, one obtains [17] from (48)

(171_)(1 Stqfl)Dq+4(71477)q(g)(q—l)Dq:L (50)
The D, values lie in the range between D =In(17/4)/
In(5/2)=1.579 and D__ =In17/In5=1.760. The
numbers appearing in (50) are linear size and area
ratios of the five main squares, with respect to the data
of the whole cluster, which reflects the fact that the
multifractality is in this case of geometrical origin.

It is worth mentioning that a growing structure
may be a multifractal, say, with respect to the growth
probability and, simultaneously, a geometrical multi-
fractal, i.e. a multifractal, with respect to the homoge-
neous mass distribution on the structure. The spectra
for these two multifractals are then, of course, differ-
ent.
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In the next sections we introduce the so-called ther-
modynamical formalism, the importance of which in
natural sciences has been realised only very recently.
Besides providing a broad theoretical framework, us-
ing the language of classical statistical mechanics,
this method possesses also practical relevance since it
yields more accurate results than a direct application
of the definitions of Chapts. I and II. The formalism is
expected to become a widely used characterization of
fractals and multifractals in the near future.

III. The Thermodynamical Formalism for Fractals
and Multifractals

The thermodynamical formalism has been worked
out in mathematics for describing fractal properties of
chaotic dynamical systems [39]. It has recently been
developed into a powerful technique [40—46], acces-
sible also to experimentalists, providing more accu-
rate results for the multifractal properties than box
counting methods described in the previous sections.
The concept of thermodynamical potentials has al-
ready been extended [47] for fractals which appear
beyond the scope of dynamical systems. Based on
these developments, we go here one step further and
show how the thermodynamical formalism, built on
an underlying spin system, can be worked out for such
fractals. We shall see that the thermodynamical poten-
tials arising in the formalism give the most general
characterization of fractal and multifractal objects.

14. Encoding

Fractals are, in general, organized in a hierarchical
way which is often reflected in their rules of construc-
tion. The fact that this hierarchy can be encoded is the
basis for the thermodynamical formalism. To illus-
trate the concept of encoding, let us take again a sim-
ple example: the two-scale Cantor set of Sect.4 (see
Figure 8). The number of intervals used to approach
the fractal doubles in each step, thus, at the n-th stage
of construction there are 2" intervals. Each of them
can, therefore, be denoted by a binary number of
length n. Let us apply the following rule: At the first
stage the intervals of length r, and r, are associated
with the symbols 0 and 1, respectively. In general, the
last digit of the code for “daughter” intervals is 0 or 1
depending on whether their length were obtained by
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multiplying the length of their “mother” interval by r,
or r, (Figure 8). Note that each code specifies an inter-
val uniquely, but there is a degeneracy in the length of
the intervals.

Several fractals can be encoded in a similar way.
The encoding consists of two important items: i) the
“ABC”: the number k of independent symbols needed,
and 1i) the “grammar”: the rules telling us which sym-
bol sequences are allowed. In the previous example
the grammar was trivial, all binary sequences occurred.
In general, however, this is not the case and certain
sequences are to be excluded. Such hierarchies can
then be represented by a k-nary (binary, ternary, ...)
tree which in the case of nontrivial grammars is not
complete. Nevertheless, the number W (n) of elements
at the n-th level of the tree grows rapidly. For large n

W(n) ~ exp(Kyn), (51)

where K, is an important characteristic, the topolo-
gical entropy [26] of the hierarchy. On a k-nary tree
K, < In k, where the equality holds for a trivial gram-
mar when the number of allowed sequences is just k".

Unfortunately, there is no general recipe for encod-
ing a hierarchy. Only intuition and a detailed knowl-
edge of the particular physical process might help to
find the encoding of the fractal generated.

15. Statistical Analogy — Thermodynamical Potentials

In what follows we assume that the encoding has
been found. Let s;s,...5,={s;} =S, denote a code
occurring at the n-th stage of the hierarchy, where the
elements s; can take on values 0,1,...,k—1, and
J=1,..., W(n) is a subscript specifying the code. To
each code there is a box covering the part of the fractal
which is associated with that particular code. In con-
trast to boxes of a uniform grid, these boxes fit to the
fractal structure in a natural way providing an “opti-
mal” coverage. For the sake of simplicity we assume
that the boxes are d-dimensional cubes where d is the
dimension of the space the fractal is embedded in. (An
extension for more general cases can also be worked
out.) The size of the cube associated with a code S, is
denoted by [, =1({s;}). Let ¢, =¢({s;})=1,/L repre-
sent the length scales measured in units of the diame-
ter L of the fractal. It is worth introducing [41, 47] for
a given code of length n the quantity

1
E;=E({s))=——lne,. (52)
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In the limit n — oo the value of E is positive and lies
generally in an interval (E_, E,) [41, 47]. In other
words, the characteristic exponents E tell us how
rapidly the length scales decrease with increasing n. As
n grows, there are, in the coverage, more and more
boxes of the same size belonging to a given value of E.
Their number W (n, E) increases exponentially [41, 47],
Le. for large n we can write

W(n, E) ~ eS®" (53)

The spectrum S(E) characterizes the length scale dis-
tribution of the fractal. The maximal value of S is, of
course, the topological entropy K, (Fig. 18 a). Illustra-
tive examples will be given below.

Another characteristic can be obtained by consider-
ing the sum of the length scales raised to a power f.
This sum changes with n also in an exponential fash-
ion [41, 47], i.e. we have *

Tei=X el ({s})~ e Prom, (54)
J {si}
where —oc <f<oo, and the sum is taken over all
allowed sequences of length n (n>1). We note by pass-
ing that exp { — f F(f})} appears also as an eigenvalue
of an operator which can explicitly be constructed for
fractals organized on a k-nary tree [46].

Two special values of SF(f) follow immediately
from (54). For =0 the sum is just the number of
allowed sequences, thus

ﬂF(ﬁ)|B:0= —-K,.

Fractals are asymptotically selfsimilar: the coverage
obtained at the n-th level is similar to that obtained at
the 2n-th level, for n> 1. The role of the similarity
ratios defined in Sect. 4 (see Fig. 7) is then played just
be the ¢;'s. A comparison of (11) with r;=¢;,
N =W (n), and (54) shows that

BEB)g=p,=0.

This means that the sum of the length scales raised to
a power f remains finite in the n—oo limit if f is
chosen to be the fractal dimension. For fractals associ-
ated with dynamical systems relation (56) is the so-
called Bowen-Ruelle formula obtained in [39]. (Strict-
ly speaking, the particular f value for which F(f)
vanishes was proved to be the so-called Hausdorff
dimension [2] which, however, coincides with D dis-
regarding very exotic examples.)

(55)

(56)

* The quantity (— fF(f)) is often called the pressure func-
tion [39]. We prefer to call F(f)) the free energy as follows
from the statistical analogy (cf. table in the next column).
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It is worth noting the parallelism between the pres-
ent formalism and that of statistical mechanics. The
key observation is that any allowed sequence {s;} can
be associated with a microstate of a chain of n, in
general interactive, spins (for k = 2 Ising model, other-
wise k-state Potts model). Thus, the analogy can be
summarized as follows:

Fractal characteristics Meaning in statistical mechanics

code {s;} microstate

n number of spins

n— o thermodynamic limit
s inverse temperature

ef =exp(—BE,n) Boltzmann factor
> partition sum

J

E energy per spin (in a macrostate)
w number of microstates
S entropy per spin

F free energy per spin

Relations (53) and (54) correspond to a microcanon-
ical and canonical description, respectively. In the
thermodynamical limit these ensembles are equiva-
lent, consequently, f F(f) and (— S(E)) are Legendre
transforms of each other, i.e.

F=E—f7*s,
where
dS/dE = [f B

(57a)

(57b)

They both decribe a new spectrum of fractal properties.
S(E) is typically a single humped function, while  F(f)
is monotonic increasing with a nonpositive second
derivative (Figure 18).

The quantity f F(f)is a linear function for one-scale
fractals only. Using (51) and (54) BF (f) = fE, — K, is
obtained, where E, is the energy value characterizing
all the boxes.

In the example of the two-scale Cantor set, the
length scales can be expressed as e({s;})=r{"r; ",
where m is the number of 0’s occurring in the (binary)
code {s;}. This number uniquely specifies, via (52), an
exponent E (m/n). Based on the fact that the multiplic-
ity of intervals characterized by a given ratio m/n, or

E(m/n), is just <n> = W(n, E), it is easy to check, using
m
(53) and (54), that (58)
E—I‘L1 E—E_ E+_Eln E.—E
SE=—— "TaE AE 4E )

and

BF(B)= —In(e "5 +e PE) (59)
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Fig. 18. Thermodynamical properties for the two-scale snowflake fractal (Fig.9). — a) The plot of the entropy function

S(Ey=—[(E—E_)/AE]In (E—E_)/4E]—
b) The plot of the free enerey(heavv line) B F(B)= —In(4(0.4)

[(E. ~E)/AE]) In ((E. ~FE)(4 4E)], where AE<E. —E_and E_=0916, E. =1.609.

+(0.2)%). For comparison also plots of the Gibbs potentlal (see

Sect. 16) are shown. The latter is taken w1th respect to a measure defined with an exact recursive structure, as described in

Sect. 12, on the two-scale snowﬂake fractal. Here the particular parameter values p, =0.12, p,=..

Thus, fG(f, p)=—In(4(0.22
p=2and p=-2, respectively

2
5

o)

1 -

0 1 2 3
0 T
1 8 2

Fig. 19. f(x) spectra with respect to distributions (60) for the

two-scale snowflake fractal. The values 6 =0, 1, 2 and 3 are
taken and the spectrum is obtained via (63). The case g =2
corresponds to the D, spectrum defined by (50). Note that for
o = D, measure (60) is not a multifractal since there exists
then a single index x = D,=1.601 only (see (56), (61)). For
g — D, the widths of the spectra tend to zero.

where E_ =In(1/r,), E, =In(1/r;)and AE=E, —E .
Here we have assumed, without loss of generality, that
r,>r, . These results show that the thermodynamical
potentials of the two-scale Cantor set are those of n
noninteractive two-state systems with energy levels
E_, E, (e.g. spins in magnetic field) [48].

The two-scale snowflake fractal (Fig. 9) might seem
to be a less trivial example. In this case the “ABC”
must have 5 elements, but the fractal still shares the
thermodynamics with n independent spins. They are
now 5-state spins, the lowest energy level of which is
4 times degenerated (E_=1n(5/2)=0916,E. =In 5=
1.609). It is recommended that the reader derive the

.=ps=0.22 are ehosen

)P (0.4)” + (0.12)7 (0.2)). Dotted and dash-dotted lines correspond to ﬁG B, p) at fixed “pressure”

expressions for the potentials given in the caption to
Figure 18.

In more general cases without exact recursive fea-
ture the associated spin chain is interactive. Infinite
range interactions might lead to a qualitatively new
phenomenon, to a phase transition [49] reflected by
nonanalyticities in the thermodynamical potentials.
(A simple example is provided by a fractal the cover-
age of which contains a single box with an exponent
E.., while all other box sizes scale with another value
E,>E,. This leads to F(f)=E, for pf>f. and
PF(p)=PE,—K,, otherwise. At . =K /(E,—E) a
first order transition occurs.) A detailed discussion of
the phenomenon is beyond the scope of this paper. It
is worth noting, however, that methods worked out to
handle phase transitions (like transfer matrix, finite
size scaling) can successfully be used also in the ther-
modynamical description of fractals [49], while the
eigenvalue formalism mentioned after (54) provides a
new technique [46, 44].

16. Relation to the Multifractal Spectrum —
the Gibbs Potential

It is clear from the definition (52)—(54) that both
S(E) and F(p) reflect purely geometrical properties of
the fractal. They have, therefore, a priori nothing to do
with the multifractal spectrum characterizing also a
distribution on the fractal. For an important class of
fractal measures, however, f(x) can be shown to be
closely related to S(E).
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Let us consider measures * with the following prop-
erty: the probability inside a box is proportional to a
power ¢ of the box size (— o0 <o < o) for all boxes
[41, 44, 45]. By taking into account normalization this
means

P=P((sh) ==
2 €]

ocF(e)n—cEyn

(60)

~e
I
o is a parameter of the measure. The crowding index

(38) for boxes with a certain value of E is thus

x=0—o0F(0)E, (61)

ie. a unique function of E. The number of boxes
with a given « (or E) must behave as a power of
e=exp(—En):

eS(E)nN(e—En)vf(z) (62)
from which
S(E)
f@="2"| _or (63)

o—

follows. In such cases, therefore, the entropy function
uniquely specifies the f(x) spectrum. Geometrical
multifractality as defined in Sect. 13 corresponds to
the choice o = d. Figure 19 exhibits the f(x) spectra
obtained in this way for a few values of ¢ in the case
of the snowflake fractal shown on Figure 9.

When the probabilty of a box depends on the size
in a more complicated way than power law, S(E) is no
longer related to f(«) in any simple manner. It is
then worth including also powers of the probabilities
P, = P({s;}), 1.e. the measures of boxes specified by {s,}.
into a partition sum [16, 36, 43, 47]. Let us consider

Y PP e =3 PP({s;}) S ({si}) ~ e7FOPPm (64)

J {si}
where — oo <p<oo. In the language of statistical
mechanics this is the analogue of an isoterm-isobar
ensemble [48]. The parameter p is the *“pressure”, —In P,
plays the role of a fluctuating volume divided by the
temperature, and Gp(f3, p) represents the Gibbs poten-
tial per spin. The subscript P is to remind us that the
potential now depends on the distribution.

The free energy is recovered from the Gibbs
potential for p=0. A completely different charac-

teristic of purely probabilistic nature is the sum Y Py,
J

* Called Gibbs measures in dynamical systems [39].
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— 20 <q< . Since the distribution P, is normalized,
the sum scales with n [50] as

S Pf~etmaKan (65)
J

which defines a new set of parameters, that of the Ks.
Using the terminology of dynamical systems, we call
K, the order q generalized entropy [50] with respect to
the distribution P. (The g =0 case corresponds to the
topological entropy.) From (64) and (65)

BGp(B, p) p=0=(q—1)K,. (66)
P=q

Thus, the spectra fF(f) and (p— 1) K, are obtained as
restrictions of f G, (f, p) on two orthogonal axes p =0
and f =0, respectively. To determine the multifractal
spectrum some intermediate point of the f— p plane is
needed: Using again the fact that fractals are asymp-
totically selfsimilar and recalling (48) (with p;=P;,
r;=¢;, N=W(n)) we obtain

BGp(B, p) B=(1-q) Dy =0

p=q

(67)

as an implicit equation for the spectrum of generalized
dimensions D, with respect to the measure P. Equa-
tions (66), (67) are extensions of (55), (56). They mean
that D, and K, can be obtained from the plot
S Gp(f, q) vs. p by cutting it with the horizontal and
vertical axes, respectively. In view of this, the two
important spectra D, and K, appear only as partial
characterizations of a fractal measure, a much richer
description of which is given by the Gibbs potential
Gp(f, p) itself. Figure 18 b shows also plots of the po-
tential [ Gp(f, p) at fixed values p for a distribution
having an exact recursive structure, as defined in
Sect. 12, on the two-scale snowflake fractal.
It is worth noting that for measures of type (60)

PGp(B.p)=(B+aop) F(f+ap)—apF(o), (68)
and

:BF(ﬂ)lﬂ:(lfq)Dq+aq:q0-F(0-)? (693)

agq
K:
q q—l

(F(oq)— F(a)), (69b)
Le. all quantities can be expressed in terms of the free
energy alone.

Distributions on one-scale fractal supports from
another interesting special class. Such cases are char-
acterized by a single energy value £, and consequently

PGp(f.p)=PE,+(p—1)K,, (70)
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i.e. the plot f Gp(f, p) vs. B is a staight line for all fixed
p. From (67) the explicit relation E, D, = K, follows
then between dimensions and entropies. The example
of Sect. 9 belongs to this class with E,=In 3.
Finally, we mention that there is an essential differ-
ence in calculating the multifractal spectrum via (39),
(40) and via the thermodynamical formalism. When
introducing D, and f(x) we used a uniform grid. The
organization of the fractal, however, defines a range of
length scales and a coverage of the set by boxes of
different size. This is why the equations specifying the
multifractal spectrum appear now in different forms.
The knowledge of the encoding helps to find an “op-
timal” coverage which is optimal also in the sense that
the asymptotic regime in n is reached for this coverage
much faster than by refining a uniform grid. In other
words, the application of the thermodynamical for-
malism provides an increased precision in describing
the scaling properties of multifractals. In particular,
this is the case at phase transition points, which are
very difficult to locate by means of other methods.

IV. Closing Remarks

Although it is not been the aim of this report to give
a complete overview of what has been done on the
field of fractals and multifractals, it is worth illustrat-
ing the wide range of recent applications in natural
phenomena by few examples. We do not go into a
detailed discussion of the results since many of them
have recently been reviewed [51, 52, 8, 9]. Rather we
give here a pictorial comparison of f(a) spectra ob-
tained for different systems in numerical or laboratory
experiments (Fig. 20) [52-56].

In the case of chaotic motion the most important
distribution on strange attractors is the so-called nat-
ural measure [26], the distribution describing how
often a given part of the attractor is visited by chaotic
trajectories, in the long time limit. This defines a
fractal measure, which under special conditions [40,
41, 44, 45] can be also of type (60). The field of dynam-
ical systems is the one where the thermodynamical
formalism has successfully been applied. Recent for-
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mulations are based on the set of all unstable periodic
orbits [57, 53] which can uniquely be encoded. Phase
transitions have been found to be typical for chaotic
attractors [49]. Figure 20a exhibits the f(x) spectrum
for the Hénon attractor, in which a straight line seg-
ment, the sign of a phase transition, can clearly be seen
[53].

In growth phenomena, like DLA [24, 30, 31] the
growth probability distribution on the cluster is a
fractal measure. The broad range of the crowding in-
dex observed (Fig. 20b) [54] is a consequence of the
fact that the distribution is concentrated on the tips
and the bulk is practically screened. The maximal o
value is, therefore, rather large.

A quite different example is that of the voltage dis-
tribution on the backbone of a percolating cluster in a
random resistor network [29, 55]. The range of «
values is narrower than that for the DLA [55], but the
shape of the middle parts of the two spectra is similar
(Figure 20c¢). Note that the spectrum for the voltage
distribution does not go down to zero. At the right end
this is the consequence of the numerical procedure:
2_ . could not be reached in the simulation of [55].
The positivity of f at the left end is, however, essential:
the so-called single connected bonds, carrying the to-
tal current, and consequently maximal voltage, form a
set of nonzero fractal dimension [55].

In the case of fully developed turbulent flows of
incompressible fluids the distribution of the energy
dissipation has been pointed out to be a multifractal
[27, 32]. The f(«) spectrum exhibited on Fig. 20d dif-
fers from the previous ones in the property that it was
obtained for a one-dimensional section along the flow
[56] with the assumption that the support of dissipa-
tion was an isotropic fractal.

The complete Fig. 20, thus, illustrates the differ-
ences (and similarities) in the multifractal spectra
characterizing different natural phenomena.

Finally two remarks are in order.

The thermodynamical formalism has not yet been
applied outside the field of dynamical systems. The
accuracy of the results obtained in other cases could
not reach the level which is expected to be provided by
the use of the thermodynamical formalism. Further-
more, the existence of phase transitions can hardly be
pointed out by means of other methods. Therefore, the
following recent finding is of interest: certain fractal
measures on Julia sets arising in dynamical systems
exhibit quantitative similarity to the growth probabil-
ity distribution on DLA clusters [58]. This observa-

Report

tion might help in enlarging the range of natural phe-
nomena where the thermodynamical formalism can
be applied with success.

As illustrated also by Fig. 20, measurements have
concentrated on the f(x) spectrum so far. In cases
where the encoding is known, it would be, however,
desirable to evaluate the complete thermodynamical
potentials F(f) or Gp(f, p) since they contain more
information about the fractal or multifractal than the
dimensions. Their knowledge might also make a
stronger classification of systems possible than that
provided by the multifractal spectrum f(x) alone.

Appendix (to Section 9)

Since m, is expected to be large for n> 1, Stirling’s
formula

Ink!=k(Ink—1),

k>1, can be used when evaluating In N,, P,. One,
thus obtains

InN P

m=-m

=nlnn—mlnm—(n—m)ln(n—m)
+mIin2+mlnp, +(n—m)Inp,.

The maximum of this expression is found to be at m;,
given by (27). The value of In N,, P, is then O with the

accuracy of Stirling’s formula. It is easy to see that
InN,, =-n2p,Inp, +p,Inp,),

from which (28) and (29) follow.
The calculation of f, goes along similar lines.
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