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The basic concept of fractals and multifractals are introduced for pedagogical purposes, and the 
present status is reviewed. The emphasis is put on illustrative examples with simple mathematical 
structures rather than on numerical methods or experimental techniques. As a general characteriza­
tion of fractals and multifractals a thermodynamical formalism is introduced, establishing a connec­
tion between fractal properties and the statistical mechanics of spin chains.

I. Fractals

1. Introduction

The surface-to-volume ratio for usual macroscopic 
bodies (sphere, cube, etc.) is small since this ratio is 
inversely proportional to the linear size of the system, 
and the latter is characterized by a large number in 
appropriate (atomic) units. There exist, however, 
porous or hairly objects with a large surface-to- 
volume ratio. They may play a fundamental role in 
natural phenomena. Efficient catalysis, e.g., requires 
materials with large surface area. The need of a rapid 
gas exchange explains the existence of the large 
surface-to-volume ratio observed in the lung. The area 
of the human lungs respiratory surface (measured with 
the resolution of 100 pm) is as large as that of a tennis- 
court (of order 102 m2) while the volume enclosed by 
it is of a few litres [1 ] (of order 10 ~3 m ~3). The general 
importance of such systems was recognized by B. Man­
delbrot. He also coined the name fractal and worked 
out a new type of geometry for their mathematical 
description [2]. (For further references on fractals, see 
[3-9]).

The following observation leads to a broad defini­
tion of fractals: Experience shows that in such systems 
the surface area depends on the resolution used in the 
measurement. Typically, this area diverges as the reso­
lution is increased. The area of usual objects also 
depends on the resolution but it converges very fast to
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a finite limiting value. In the case of fractals the resolu­
tion dependence can, however, be followed over 
several orders of magnitude. Since not only surfaces or 
curves can be fractals but also dust-like objects, it is 
useful to extend the definition by introducing the con­
cept of the observed volume. Let d = 1, 2, 3 denote the 
Euclidean dimension of the geometric entity the set of 
interest is embedded in. (More precisely, d should be 
the smallest possible such dimension.) For a fixed grid 
of ^/-dimensional cubes of size / the observed volume 
V(l) is the total volume of the boxes needed to cover 
the object, i.e. of boxes containing part of the set 
(Fig. 1). An object will be called fractal if its observed 
volume depends on the resolution (grid size) over several 
orders of magnitude and follows a power law behaviour 
with a nontrivial exponent. This dependence can be 
observed over an infinite range of the resolution in the 
case of fractals generated by mathematical construc­
tions. Such fractals have no smallest or no largest 
scale.

a) i

______ L
Fig. 1. a) A set (dots) and a grid of size /. L denotes the 
diameter of the set. b) Boxes (black) needed to cover the set.
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It is intuitively appealing to think of a hairly surface 
as an object of dimension larger than 2. More ramified 
surfaces should have larger dimensions. This idea is 
formulated in a quantitative manner by the concept 
of the fractal dimension [2].

Let L be the diameter (more generally, a character­
istic linear size) of the set to be investigated. Using the 
aforementioned grid of box-size /, the number of cubes 
needed to cover the set is denoted by N(l, L) (Figure 1). 
This number can depend only on a dimensionless 
quantity which must be

e = l/L , (1)

i.e. the box-size expressed in units of L. Therefore, we 
have N(l, L) = N(e). The number of nonempty cubes 
increases with a decresing box-size.

It is easy to find the precize form of N(e) for usual 
geometric objects. As a simple example, we consider 
first a straight line segment of length L. Let us use a 
grid obtained by dividing the segment into equal 
pieces of length /. Their number is obviously L/l. Thus, 
N(e)=e~1 for a straight line segment. In the more 
general case of compact d-dimensional objects (like a 
sphere) N(e)~e~d is obtained, provided the box size I 
is sufficiently small, since the volume of such bodies 
goes with the d-th power of their linear size L. The 
symbol ~ means here and in the following that the 
proportionality constant, not written out explicitly, is 
independent of the resolution.

Next, we show that the rule found for compact 
object must be modified for noncompact ones. Let us 
consider the so-called triadic Cantor set [10, 2] which 
is constructed as follows. One begins with the unit 
interval. The middle third of the interval is removed, 
leaving two intervals of length 1/3. Next one removes 
the middle third of each of these two intervals, leaving 
four intervals of length 1/9, and this is then repeated 
with the remaining pieces again and again (Figure 2). 
The Cantor set is then the set of the points not 
removed by this procedure. Let us use a grid obtained 
by dividing the unit interval into 3m equal intervals (m 
is a fixed integer). As follows from the construction, 
the number of such pieces (of size 3 ~ m) needed to cover 
the Cantor set is 2m. Since L = 1 we have e = / = 3"m. 
Consequently, N(e) = 2m = e"ln 2/ln 3 = e"0631.

The example illustrates the general finding that 
N(s) exhibits a power-law behaviour also for noncom­
pact objects. The exponent is, however, not an integer

2. Fractal Dimension

1/3 1/3

n _ 2 1^2 V I  1/9 1/9

Fig. 2. The first steps in constructing the triadic Cantor set. 
For the resulting fractal D0 = 0.631.

and is smaller than the Euclidean dimension of the 
space the object is embedded in.

Thus, the following definition seems to be quite 
plausible. Let us consider the £-dependence of N(s) for 
an arbitrary object at sufficiently fine resolution. The 
relation

N(e) ~ £~Do , (2)

with 1, defines a positive quantity D0, the so-called 
fractal dimension. (It is worth noting that there exist 
also other variants in the definition of fractal dimen­
sion [2, 3, 5].)

Remarks:

1. Fractals obtained from mathematical construc­
tions can be divided into two main classes according 
to their rule of construction. To the first class belong 
fractals generated by defining structures on finer and 
finer scales (see the triadic Cantor set and Examples I, 
III below). Consequently, such fractals have no 
smallest scale. In this case L = const, and (1) and (2) 
imply

N{1, L ) ~ r Da. (2a)

In order to model aggregation-like phenomena, fractals 
constructed by growth processes (Examples II, IV) are 
used. Then the grid size / can be kept constant, and D0 
is to be deduced from the relation*

N (l,L )^L Do. (2 b)

* If / is proportional to the particle size, N(l, L) becomes 
proportional to the mass M(L) of the cluster with diameter 
L. Thus M(L) ~ LDo follows, which is a widely used relation 
for growth processes.
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Fig. 3. A typical In N(e) vs. In (1/e) plot.

The resulting fractals have no largest scale. By an ap­
propriate rescaling of the linear size, however, this 
second class can be made equivalent to the first one. 
This is exactly the physical meaning of the fact that 
the number of nonempty cubes depends only on the 
ratio £.

2. Since N(e) cannot be larger than the number 
of cubes needed to fill the space, D0^ d  is obtained. 
For compact geometrical objects, (2) holds with the 
Euclidean dimension, D0 = d.

3. It has been mentioned that e must be much 
smaller than unity in (2). In physical examples, there 
exists also a lower cut-off for e since the fractal struc­
ture is replaced by some other patterns when ap­
proaching the microscopic scales. Therefore, a straight 
line in the In N(e) vs. In (lje) diagram can be observed 
in a range of e only (Figure 3). This range must extend 
over several decades in order to imply the existence of 
a fractal structure.

4. Fractals are selfsiniilar objects, i.e. they look the 
same on many different scales in the range where (2) 
holds. This is consistent with the fact that a scaling 
form

N(Äe) = /.~Do N(£), (3)

where /  is an arbitrary positive number, follows from 
(2). Among usual geometrical objects there are also 
selfsimilar ones (e.g. line, plane) but they are simple. 
Fractals are, thus, nontrivial selfsimilar objects.

The fractal dimension turned out to be a very good 
characteristic of different structures in nature [2], 
Moreover, in certain cases D0 proved to be universal, 
i.e. the same for a class of systems. In many cases 
(coast line: D0 = 1.25, landscape: D0 = 2.2) the origin 
of this universality is not yet known, in other cases, 
however, (polymer coil: D0 = 1.66, the region of active, 
nonlaminar flow in fully developed turbulence: D0 = 
2.8-3.0) the physical reasons of the universality seem 
to be understood [2].

The aim of this report is to give a tutorial introduc­
tion to help new-comers from different fields of science 
to learn recent notions and concepts related to fractals. 
For this reason, mainly mathematical examples with 
simple recurrent structures will be used which are best 
suited for clarifying concepts like multifractality or 
thermodynamical formalism. Nevertheless, the general 
results and relations we obtain hold for all fractal 
objects. The article is not intended to be a historical 
survey or a complete review of the field, as reflected 
also in the choice of references which are concentrated 
only on a few phenomena mentioned in the paper. 
Even these selections are necessarily incomplete, but 
the author hopes they are sufficient to help the reader 
in further orientation.

3. Thin Fractals -  Fat Fractals

If the fractal dimension D0 of a set is smaller than 
the Euclidean dimension d, the observed volume

V(l) = N(e) ld ~ LD° ld~D° (4)

depends, actually, on the grid size / in the range where 
(2) holds. Such system are, therefore, fractals. We call 
them thin fractals since V(l) would vanish in the limit 
/ —► 0. Such fractals are, in a mathematical sense, ob­
jects of measure zero in the d-dimensional space.

It is worth mentioning that D0 = d does not neces­
sarily imply that the object is a usual body. In several 
cases a power law behaviour

V (l)-V (0)^L d' yly (5)

has been found [2, 11, 12], where y>0 is a new expo­
nent (not a dimension!) and F(0) is the finite limiting 
value of the observed volume obtained for /-»0. Such 
objects are also fractals. These fractals are called fat 
[11] since their ^-dimensional volume is nonzero.

A simple analytically tractable example is obtained 
by modifying the construction of the triadic Cantor 
set in such a way [11] that, at the n-th stage, the 
fraction of each interval removed is (1/3)", rather than 
1/3 (e.g. at the second stage the middle ninth of each 
interval is removed).

Fat fractals are also common in nature. Examples 
include [2] the vascular system, the branching struc­
ture of bronchia in the lung, river networks, and the 
top of certain trees which are with a very good accu­
racy space filling objects.

In what follows we shall mainly deal with thin 
fractals.



Report 1157

l0 ^o r x l0 r2
1 n u2

Fig. 4. Schematic construction of a one-scale fractal.

b)

Fig. 5. The first steps in constructing a Koch curve (r = 0.3). 
The fractal dimension of the resulting fractal is D0 = 
In 4/ln(l/0.3) = 1.151.

4. Deterministic Fractals

We study a few classes of fractals which are con­
structed by deterministic rules. First, exactly selfsimi- 
lar objects possessing a recursive structure will be con­
sidered.

One-Scale Fractals

The rule of construction for such fractals can be 
schematically represented as on Figure 4. One starts 
with a single object of linear size /0. In the next step 
this object is divided into N identical pieces each of 
which is a reduced version of the original object by the 
same factor r < 1 (hence the name one-scale fractal). 
The procedure is then repeated in the next step so that 
N of the newly created pieces of size l0 r2 are arranged 
inside a piece of size l0 r exactly in the same way as 
these parts are arranged inside the original object 
(Fig. 4). The fractal is then obtained by applying this 
rule subsequently ad infinitum.

Consequently, the fractal can be divided into N 
identical parts, each being rescaled versions, by a fac­
tor r, of the complete set. Let (e) denote the number 
of boxes on a grid of size / L (L is the diameter of the 
fractal) needed to cover one such part. Then the num­
ber of boxes needed to cover the complete fractal is

N(e) = NNl (e). (6)

Due to the similarity, N1 (e) is the same as the number 
of boxes needed to cover the complete set with boxes 
of size l/r:

N1(e)^N(e/r). 

By putting (6), (7), and (2) together, 

In N
D n - In (l/r)

(7)

(8)

is obtained, which is an exact result for one-scale 
fractals [2].

Exam ple I: K och 's C urve

The construction of a Koch curve [13, 2] proceeds 
as follows. Let us cut out from the unit interval the 
interval (r, 1 — r), where 1/4 ̂  r ̂  1/2 is a parameter. 
To the two newly created endpoints a V-shaped curve 
is added, both sides of which are straight and of 
length r, as shown on Fig. 5 a. The same process is 
repeated with all sides of length r, and then again and 
again (Fig. 5 b, c) ad infinitum.

By comparing this rule with the general scheme we 
find N — 4. The fractal dimension of a Koch curve is 
therefore D0 = In 4/ln (l/r). It is worth noting that the 
length of this curve (the analogue of the surface area) 
diverges with the resolution: the length measured by 
bars of length rm, m > 1 fixed, is 4m, as follows from the 
construction.

Exam ple II: Snow flake F ra c ta l

The construction rule [14] shown in Fig. 6 can be 
considered as a model for aggregation processes. The 
"seed" configuration (n = 0) is a symmetric cross built 
by five particles. The configuration at the n-th stage is 
obtained by adding to the four corners of the (n — 1 )-th 
stage configuration the cluster corresponding to the 
(n — l)-th stage of the growth. By reducing the «-th 
stage configuration by a factor 3" one finds a series of 
objects of the same linear size [14]. The rule of con-
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n = 0 n=1 n = 2
Fig. 6. The first steps in constructing a snowflake fractal with 
a growth process.

j = 1 , 2 ,..., N
Fig. 7. Schematic construction of a multi-scale fractal.

procedure is then repeated in a similar way ad infini­
tum (Figure 7). Consequently, the resulting fractal can 
be divided into N parts, each being rescaled versions 
of the complete fractal. Let N, (e) denote the number of 
boxes on a grid (size / L) needed to cover the y'-th 
such part. The number of boxes needed to cover the 
complete fractal is

N(e)= X Nj(e).
7=1

(9)

From the similarity property,

Nj(s) = N(e/rj) (10)

follows. These relations and (2) then yield [2, 3]

£  rf° = 1 (11)
7=1

which is an exact (implicit) equation for the dimension 
of multi-scale fractals. For rx = ... = rN= r result (8) 
is, of course, recovered.

n =0

n = 1 {0}

2 1
{00}n r 2 A rlr2 

JöT

{1}

/ir2 
{10 {11}

Fig. 8. The first steps in constructing a two-scale Cantor set 
(r 1 = 0.25, r2 = 0.4). For the resulting fractal D0 = 0.611. The 
codes associated with the intervals will be explained in 
Section 14.

Exam ple III: Tw o-Scale C an to r Set

This fractal is obtained by dividing the interval 
[0, 1] as shown in Fig. 8 [16]. We initially replace the 
unit interval with two intervals of length and r2 
(r1+ r2<l). At the next stage of the construction the 
same process is applied to each of these two intervals. 
The procedure is then repeated again and again. The 
general formula (11) yields for the dimension

rD0 + rD0= I (12)

(The one-scale Cantor set is obtained as the limiting 
case = r2 = r. Then D0 = In 2/ln(1 /r). For the triadic 
Cantor set r = 1/3 and D0 = 0.631.)

struction corresponds then to that represented in 
Fig. 4 with parameters N = 5, r=  1/3. Consequently, 
the dimension of the fractal is D0 = In 5/ln 3 = 1.465.

Multi-Scale Fractals

The essential difference between the construction of 
multi-scale and one-scale fractals is the fact that the 
starting object is now divided into N parts which are 
riot all identical. However, all of these are reduced 
versions of the original object by certain factors r, <1, 
7 = 1 N (all ^ cannot be identical) [2, 15]. The

Exam ple IV: Tw o-Scale Snow flake F ra c ta l

This is a generalization [17] of Example II. The 
"seed" configuration is now a single particle. The con­
figuration at the n-th stage is obtained by adding the 
twice enlarged version of the cluster corresponding to 
the (n -  l)-th stage of the growth to the four corners of 
the (n — l)-th stage configuration (Figure 9). Reducing 
the object obtained after n steps by a factor 5" the 
general scheme (Fig. 7) can be applied. Since rx = 1/5, 
r2 = ... = r5 = 2/5 we find

5~D° + 4 (5/2) ~Do = 1 (13)

as an equation for D0. Its solution is D0 = 1.601.
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A

n=0 n=1 n=2
Fig. 9. The first steps in constructing a two-scale snowflake 
fractal by means of a growth process.

5. Fractal functions*

There exist continuous functions given by simple 
formulae, which are nowhere differentiable. The graph 
of such a function turns out to be a fractal curve. 
These fractals are also deterministic ones. 

We consider, first, the Fourier series

c  (0 = X
1 — cos (y" t)

{2 — D)n (14)

the so-called Weierstrass-Mandelbrot function [2, 18]. 
In the range of parameters

1 < D < 2 , y>  1, (15)

C(t) is continuous but the series defining dC{t)/dt di­
verges everywhere.

By a formal replacement n -*■ n +1 the scaling rela­
tion

C(y t) = y2~D C(t) (16)

follows from (14) with y > 0. Consequently, the graph 
of C(t) on the interval t0^ t ^ y t 0, t0 arbitrary, can 
be obtained by magnifying the graph in the range 
t0/ y ^ t ^ t 0 with factors y and y2~D in horizontal and 
vertical directions, respectively. This nontrivial sym­
metry, the so-called self-affinity [2, 19], can clearly be 
observed in Figure 10. The fractal dimension** of the

* Sections 5, 6 provide an outlook on certain important 
fields of fractals but can be omitted when reading the paper 
as an introduction to the subject of multifractals.

** For self-affine sets a nontrivial fractal dimension, called 
the local dimension, can be obtained only by using a very fine 
grid. On long scales, (2) yields a trivial integer value (in our 
case unity) for D0 [19, 9],

graph of C(r) has been shown [18] to be 

Dn = D (17)

in the parameter range (15). As a further consequence 
of (16) the curve C(t) possesses no scale at all, which is 
also demonstrated on Figure 10.

The first example, of great historical importance, for 
a continuous but nowhere differentiable function was 
given by Weierstrass [20]. It is defined as

W(t) = X
cos(y"t)

n = 0 y(2 ~D)n (18)

This function is more complicated than C(f) since a 
scaling relation holds now only up to an additive 
smooth function. For n^O in (18),

W(y t) = y2~D W(t) + cos(r). (19)

Consequently, the graph of W(t) does have a largest 
scale, W(t) has a maximum (Figure 11).

For the local fractal dimension of the graph, (17) 
has been shown to hold [21] in the parameter range 
given by (15).

6. Random Fractals

Fractals which are generated by nondeterministic 
rules are called random. In order to illustrate the dif­
ference between the construction of deterministic and 
random fractals, let us consider the following example. 
In the first step of the deterministic construction the 
upper right quarter of a square is cut out. Then the 
same procedure is repeated in all remaining squares 
(Figure 12 a). Modifying this rule by choosing sto­
chastically which of the four quarters of the square in 
question is deleted, a random fractal is obtained 
(Figure 12 b). Although the geometrical appearance of 
these two sets is quite different, their fractal dimen­
sions coincide since the number of boxes needed to 
cover them is the same.

There exist also random fractal functions. The most 
extensively studied phenomenon connected with them 
is diffusion or Brownian motion. The displacement x(t) 
of a Brownian particle moving along a line is a sto­
chastic variable with zero average and with variance

0 2(0> ~ t , (20)

where the bracket denotes averaging over several 
realizations. Relation (20), implies usual diffusion. The
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Cd)

Fig. 10. The, Weierstrass-Mandelbrot function for 
D - 1.5, y = 2. The plot was obtained by keeping 

1 Fourier components with | n 10 in (14).

W(t)

Fig. 11. The Weierstrass function for D = 1.5, y = 2 
when it is 27r-periodic. The plot was obtained by 
keeping Fourier components with n^ 10 in (18). 
Note that the fractal dimensions of the curves 

2 If shown on Figs. 10 and 11 are the same.

Fig. 12. Deterministic fractal (a) and a random version (b) 
of it. The objects are exhibited here as obtained after five 
steps of construction. The fractal dimension is for both cases 
D0 = In 3/ln 2 = 1.585.

graph of x(t) was proved [2, 22] to be a fractal curve 
with local fractal dimension D0 = 1.5 (Figure 13 b).

The fractional Brownian motion [2, 22] is an exten­
sion of the concept of the usual Brownian motion. The 
displacement x{t) of a particle following such a mo­
tion in one dimension is -  by definition -  a stochastic 
variable with zero average and with variance

correlations extend to arbitrarily long time scales and 
have a large effect on the visual appearance of the 
traces (Figure 13). The graphs are self-affme fractal 
curves with a local fractal dimension [2, 22]

Dn = 2 -H . (22)

<x2( t ) ) - t : (21)

Fractional Brownian motion is used when making 
computer simulations of fractals like mountainous 
terrains or clouds [2, 22].

Fractals in nature are typically random ones. The 
field of applications in physics is also extremely broad 
and ranges from percolation [23] and pattern formation 
through growth processes [4, 5, 24, 25] to chaos [26] 
and turbulence [2, 27, 28].

Despite this great practical relevance we shall, in 
what follows, mainly be interested in deterministic 
fractals which are best suited for an elementary intro­
duction of further new concepts.

7. Fractal Dimension for Composite Fractals

where 0 < H < \. For H +1/2 this corresponds to an 
anomalous diffusion with correlated increments. Such

Several fractals proved to be composite, i.e. to be 
unions of fractal subsets. Let us assume that a com-
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x(t:

(a) H=0.2
D= 1.8 o

(b) H=0.5
D=1.5 o

(c) H=0.8 
D0=1.2

Fig. 13. Traces of fractional Brownian motion 
at three different values of the parameter H 
(after [22]).

plete set of linear size L consists of m fractal subsets, 
and let Nk(s), s = l/L, denote the number of boxes of 
size I needed to cover the /c-th subset on a grid. For 
small box size yVfc(e)~ £ -D̂ , where £><*> is the fractal 
dimension of the subset. Since the overlap among dif­
ferent covers vanishes with decreasing box size, the 
number of boxes needed to cover the complete set is

N(e)= X Nk(e) (23)

On the right hand side the contribution with the 
largest D(0fc) dominates for e -> 0, thus, from (2)

D0 = max D(0k). (24)

The fractal dimension of the complete set is the same 
as the largest dimension of the subsets.

This relation tells us that simple and complete 
fractals cannot be distinguished by measuring the 
fractal dimension alone. Consequently, a more detailled 
description of fractals requires the introduction of fur­
ther parameters characterizing different subfractals. 
How this can be done will be discussed in the next 
sections.

on the physical system in question. Here we mention 
only a few examples. On random resistor networks 
[29] the voltage or current distribution can be mea­
sured. For aggregation processes the probability that 
a given site is the next to grow, the so-called growth 
probability, gives a distribution [30, 31]. In the case of 
fully developed turbulence the velocity difference in­
side eddies is a quantity defining a measure [27, 28]. It 
is to be noted that different distributions may exist on 
a fractal leading to the existence of different fractal 
measures on the same support.

It is a recent observation [27, 32, 30, 16] that non- 
trivial distributions can be considered as analysers of 
strange sets. They open up different fractal subsets by 
e.g. selecting subsets giving the dominating contribu­
tions to different moments of the distributions. If this 
is the case, the system will be called multifractal [32, 30, 
16, 33]. Different distributions may lead to different 
multifractal properties. It may happen that a fractal 
with a given measure is a multifractal but with anoth­
er one it is not.

The following simple example illustrates how a 
nontrivial distribution selects different fractal subsets 
of its support.

II. Multifractals 

8. Fractal Measures

In several phenomena fractals appear not only as 
strange geometrical objects but provide stages on 
which "something is going on". Physical processes on 
fractals may generate stationary distributions (mea­
sures). Fractals with time independent distribution on 
them are called fractal measures (for a quantitative 
definition see the end of Section 11). The quantity 
which may be distributed on a given fractal depends

9. An Example for Multifractals

We consider here a probability distribution on the 
unit interval constructed by a simple rule [34], In the 
first step the middle third of the interval is made more 
(or less) probable than the outer thirds. Let the proba­
bility of each of these pieces be , and the probability 
of the middle third be p2 = \ —l p l (Figure 14a). In 
the next step each piece is divided again into thirds, 
and the probability is redistributed whithin each of
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these nine pieces so that the ratios within each third 
are the same as those of the first stage distribution 
(Figure 14b). The procedure is repeated again and 
again (Figure 14 c, d). The distribution becomes so in- 
homogeneous that its internal regular structure can be 
seen only on a logarithmic scale (Figure 14e). The 
density of the asymptotic distribution obtained after

Fig. 14. The first steps in constructing the distribution described 
in the text (px =0.114). a) n= 1, b) n = 2, c) « = 3, d) n = 6, 
e) the logarithm of the distribution obtained after 6 steps (after 
[34]).

I an infinite number of steps is then discontinuous 
i everywhere.
I When studying the properties of this distribution 

one has to use a grid of finite size. Now not only the 
: number of boxes is important but also the measures 
: inside boxes, the so-called box probabilities. Let us 

take a grid obtained by subdividing the unit intervals
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into intervals (boxes) of size / = e = (1/3)" with n 1. It 
follows from the construction described above that 
the box probabilities can take on one of the values

Pm= PmiPni (25)

where m is an integer between 0 and n. Since the 
number of boxes 3" n, there must be a degeneracy in 
the distribution:

AL = I 12"jn,
(26)

is the number of boxes with the same measure Pm. For 
the sake of definitness we assume P2>P\-

First, we ask which boxes give the main contribu­
tion to the total probability when refining the grid. 
Although the most probable box is that in the middle, 
with content P0—p2, it is alone. Its contribution is 
negligible for n-*co since p2< \. The most rarified 
boxes (Pn = p\) are numerous, nevertheless the proba­
bility in such boxes is also negligible since (2p1)n -> 0. 
It is, therefore, plausible that, for large n, columns very 
close to some medium hight give the main contribu­
tion. More precisely, for n-+ oo there exists a single 
index m = ml (n) between 0 and n, so that only boxes 
with Pmi contribute to the total probability: N P ->1. 
Consequently, none of the other boxes are important 
from the point of view of the total measure. An easy 
calculation (see Appendix) yields

m jn = 2 p x (27)

/i  =
2P l \nP l + P2 In p2 

In 1/3
(29)

is obtained.
Next, we investigate the q-th power of the box prob­

abilities, where — cc<q<cc is a parameter. The total 
amount of these quantities is X Nm Pm" = (2p\ -I- p\)n.

m
Similarly to the previous case, columns of a certain 
height contribute only to this sum. At a fixed q, boxes

with Pm are found to dominate, where 

2p\
n 2 p\ + p \

(30)

Their number increases again exponentially with n. 
We can, therefore, write

AL =e (31)

This means that a subset of fractal dimension fq gives 
the dominant contribution to the sum of the q-th 
power of the box probablities. Note that for q =1= 1 this 
subset is different from that contributing to the total 
measure. In our example

(note that m/n is a quasi continuous quantity for 
n>  1).

The number Nmi of the relevant boxes increases, of 
course, exponentially with n. Since the resolution is 
e = (1/3)", Nmi can be written as

Nmi= e ' f l , (28)
i.e. these boxes cover a fractal subset of the unit inter­
val, and f x is the dimension of this subset. From 
(26)-(28)

2 p\ In p\ + p\ In p\ -
---------------------------In (2 p\ +p*2)

2 P \+ P \

(32)

1
ln(l/3)

is obtained as can be checked easily.
By increasing (decreasing) the exponent q, boxes 

with higher (lower) probabilities, i.e. fractal regions 
with denser (more rarified) occupation are selected. In 
fact, the limit q-> oo picks up the most probable box 
which is alone. Consequently, f x = 0. The opposite 
limit selects the least probable boxes. Their number is 
2", therefore = In 2/ln 3. These limiting results 
can be obtained also from (32).

We have, thus, demonstrated that the contribution 
of the sum of different powers of the box probabilities 
is dominated by different fractal subsets. The spectrum 
fq of their fractal dimension provides a characteristic 
of this multifractal. The example also illustrates that 
an inhomogeneous distribution on a non-fractal sup­
port (here the unit interval) can be multifractal.

In addition to the fractal dimension also the content 
of those boxes which contribute, i.e. the probability 
Pm belonging to each of them, is an important quanti­
ty. Since, however, Pm depends on n (or e), it is better 
to introduce an £-independent parameter, the crowd­
ing index otq, by writing

Pmq =
From (25) and (30)

2 p \\n p l + p q2 \np2 1
2 p \+ p \ In (1/3)

(33)

(34)

is found. The values of <xq lie in the range between 
= In/?2/ln(1/3) and a_Q0 = I n I n (1 /3). (For the 

particular choice of/?! used in constructing Figs. 14-17 
(Pi =0.114) we obtain a^ = 0.234 and a ^  = 1.981.)
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Fig. 15. The q-dependence of the fractal dimension f  , (32), 
and of the crowding index a , (34), for the multifractal con­
structed in the previous Figure.

0 1 *
Fig. 16. The /(a) spectrum for the multifractal of Sect. 9 as 
obtained from (32) and (34) by eliminating q. The straight line 
is the diagonal /  = a.

The spectra fq and ocq are exhibited in Fig. 15 for a 
caseP2>Pi- Note that the multifractal properties are 
lost for the parameter values p1= p2 = \ ß  when 
fq = ocq = 1, since the density is then constant over the 
whole interval. A similar case is obtained for p2 = 0, 
p y = 1/2 when fq = ccq = In 2/ln 3. This corresponds to 
the familiar triadic Cantor set with a uniform distribu­
tion on it.

10. Characterization of General Multifractals

In order to describe multifractal properties a uni­
form grid of size /, as introduced in Section 1, is used 
again. Let P{ denote the measure or probability inside 
the i-th box: for empty boxes P{ vanishes. A central 
quantity [35, 15, 36] is

(35)

the sum over all boxes of the g-th power of the box 
probabilities, — oc<q<cc. yq depends only on the 
dimensionless number e = //L, where L is the linear 
size of the support: yq(l, L) = xq(e). For q = 0, (35) 
yields the number of boxes needed to cover the sup­
port. Since the distribution should be normalized, 
Xyie) = 1 holds.

The properties of the previous example turn out to 
be typical for multifractals. For e->0 the contribution 
to xq(£) with a given q comes from a subset of all 
possible boxes. These boxes cover a fractal, i.e. their 
number NAe) depends on s as

Nq(e) (36)

where fq is the fractal dimension of the subset. Fur­
thermore, the content of each contributing box is ap­

proximately a constant, Pq. The crowding index ccq for 
these boxes is defined by the asymptotic relation

Pq -  ■ (37)

A multifractal is then characterized by the spectra /  
and ccq.

Since / 0 (e) = ./V (e), the quantity f 0 is the fractal 
dimension D0 of the support. It follows from the prop­
erty of composite fractals (Section 7) that f 0>fq for 

0 since the multifractal is the union of all sub- 
fractals with dimension /  The function /  vs. q in­
creases until it reaches its maximum D0 and then de­
creases. As higher powers select denser regions, i q is 
monotonously decreasing (see Figure 15).

A simple fractal corresponds in this picture to the 
special case fq = xq = D0.

The elimination of the variable q between fq and y.q 
leads to a new characteristic, to the so-called /(a) 
spectrum [16]. Direct definitions of a and /(a) can be 
given as follows. For e->0 around each point of the 
fractal one finds

P i^E \ (38)

where a is position dependent. Relation (38) defines 
the set of crowding indices [16] (or Holder exponents 
[2]) a. At any fixed s there exist, however, several 
boxes with a given crowding index, say, a. Their num­
ber Nx(e) increases with e like

/Va(£) ~ £ - /W, (39)

i.e. these boxes cover a subset of fractal dimension 
/(a). The variable a may take on values from a range 

and /(a) turns out to be, in general, a 
single humped function with D0 as its maximum [16] 
(Figure 16). The /(a) spectrum of a simple fractal con­
sists of a single point.
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Before turning to the question how y.q and fq can be 
obtained from / (a) it is worth introducing the concept 
of generalized dimensions.

11. Generalized Dimensions

The quantity yq(e) is found to follow a power law 
behaviour as s -*■ 0:

xM - 1 ) Dq (40)

where Dq is the so-called order q generalized dimension 
[35, 27, 15, 36]. The factor (q — 1) has been pulled out 
in the exponent to ensure automatically the relation 
/ 1 (e) = 1. Consequently, the Dq s are positive numbers. 
Their values monotonously decrease with q [15] 
(Figure 17). For simple fractals all the Dq s coincide.

It is easy now to connect the generalized dimen­
sions and the spectra /  , a . Since the contribution 
to xq(s) is given by boxes with content Pq we have 
Xq(e) = Nq(e) Pqq. This implies via (36), (37) and (40)

(q - \)D q = q a - / . (41)

For q = 0 the relation D0 = / 0 is recovered. Further­
more, as fq is finite, D±00 = a ±Q0 follows.

In order to find the relation to the / (a) spectrum let 
us notice that xq(e) can be written (see (35), (38), (39)) 
for £ -> 0 as

f da, (42)

when a is a quasi continuous variable. Since e is very 
small, the integral will be dominated by the value of a 
which makes the exponent minimal. This immediately 
leads to (41) with the conditions

d/(«)
da = <?; / a= /(a J (43)

£>i = a t = f  . (44)

This relation together with (43) explains why the fq 
and otq curves touch each other at q = 1 (Fig. 15) and

-10 0 q 10
Fig. 17. The Dq spectrum for the multifractal of Section 9.

why /(a) is tangent to the diagonal exactly at a point 
where /(a) = a = Dy (Figure 16). Furthermore, by per­
forming the limit q ->1 in (35) and (40) one obtains

(45)

<xq is, therefore, that particular value of the crowding 
index for which the derivative of /(a) is exactly q. 
As a consequence, also the spectra /(a) and (1 — q) Dq 
are connected: they are Legendre transforms of each 
other (see (41)).

The case of the order 1 generalized dimension is of 
special importance. From (41) and its derivative taken 
at q = 1 we find

The quantity Dx thus measures how the information 
(left hand side) scales with In (1/e). Therefore Dy has 
been called the information dimension [37, 34], More­
over, this concept has been used to give a precise 
definition of fractal measures [34]: a distribution is 
said to be a fractal measure if its fractal dimension 
exceeds its information dimension. In this sense the 
example of Sect. 9 is a fractal measure and, moreover, 
all fractal measures are multifractals. (The value of 
used in Fig. 14 was chosen in such a way that 
Dy = In 2/ln 3, i.e. the same as the fractal dimension of 
the triadic Cantor set. The fractal dimension of the 
support is, of course, unity in this example.)

It is worth noting that despite their name, the gener­
alized dimensions Dq{q=(=0,1) are not dimensions, as 
expressed by (41). This can also be seen from the fact 
that all Dq with a negative q are in the example of 
Sect. 9 larger than 1 (Fig. 17). Nevertheless, the spectra 
Dq and / (a) (or fq and otq) provide equivalent charac­
terizations of multifractals. (For another interpretation 
of Dq see [27].)

Finally, we mention that distributions on fat frac­
tals can also be multifractals characterized not only by 
Dq but by another set of exponents yq obtained by 
generalizing (5) [38],

12. Fractals Measures with an Exact Recursive 
Structure

The class of fractal measures possessing an exact 
recursive structure provides analytically tractable
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cases. We consider measures for which the rule of 
construction is based on that of multi-scale fractals 
(Section 4, Fig. 7). Now the redistribution of the mea­
sure is also to be defined. Let pi be the probability 
associated with the j-th piece which is the reduced

n
version of the original one by a factor rjt X Pj — 1- At

j= i
the next stage of construction each piece is further 
divided into N pieces, each with a probability reduced 
by a factor pj and size by a factor rj, etc. The support 
of the resulting measure can, therefore, be divided into 
N parts, each being a rescaled version of the complete 
support, by a factor rj. Each such part carries an 
amount pj of the total measure. From this similarity 
property

Xq,jiß) = p qjXq(s/rj) (46)

follows, where xqj(e) stands for the quantity defined 
by (35), evaluated for the j-th piece by using a grid of 
size / (e = //L, L is the linear size of the support). For 
the complete system

*,(«) = L Xq,j(£) ■ 
j= i

From these relations and from (40) 

= 1N Pi
I  7^  r(q — 1) Dq J= 1 rj

(47)

(48)

is obtained, which is an exact equation for the general­
ized dimension Dq [15]. For q = 0, of course, (11) is 
recovered.

If the support is a one-scale object, i.e. if r) = r for all 
j, the implicite equation (48) can be solved, yielding

D =
q — 1 In r

(49)

This result applies also to the example of Sect. 9, 
where N = 3, r = 1/3 and = p 3.

Note that in cases when the probability is dis­
tributed uniformly on a one-scale support {pj = l/N), 
multifractal properties are lost since Dq-y .q= fq 
= In N/ln(l/r) for all q. For measures on multi-scale 
fractal supports, the property of multifractality is 
more persistent. Even a uniform distribution of the

probability, i.e. the choice pj — rA I X rj I > leads to a
j= i

Fractals on which a measure is distributed with a 
constant density form an interesting class, since in 
such cases multifractality, if present, manifests purely 
geometrical properties. The multifractal spectra can 
then be considered to characterize the fractal support 
itself. An example is provided by the two-scale Cantor 
set of Sect. 4 if the measure associated with an interval 
appearing in the construction (Fig. 8) is chosen to be 
proportional to the length of the interval (to the 
Lebesgue measure). Multifractal properties then re­
flect the heterogeneity in the size-distribution of these 
intervals.

Such geometrical multifractality [17] is of special 
importance for growing structures, where a distribu­
tion of constant density always exists and is of phys­
ical relevance. This is due to the fact that such systems 
are built up by identical particles and, therefore, the 
mass distribution on the growing structure is uniform. 
The multifractal properties with respect to this mea­
sure can be analysed along the lines described in 
Sect. 10 by chosing the box probability Pt to be pro­
portional to the mass, or the number of particles, 
inside box /'.

As an example, let us consider the two-scale snow- 
flake fractal of Section 4. By reducing the object ob­
tained after n steps of construction by a factor 5" the 
general scheme worked out in the previous Section 
can be applied. The cluster consists of a smaller cen­
tral and four larger pieces each having the overall 
shape of a square (Figure 9). Since the masses of these 
different sqaures are 1/17 and 4/17 parts of the total 
mass, one obtains [17] from (48)

13. Geometrical Multifractality

• j_)<? 5 (, - 1) D, + 4 ( (!)<« = (50)

nontrivial D spectrum, as can be seen from (48).

The Dq values lie in the range between Dx — In(17/4)/ 
In(5/2)= 1.579 and = In 17/ln 5 = 1.760. The 
numbers appearing in (50) are linear size and area 
ratios of the five main squares, with respect to the data 
of the whole cluster, which reflects the fact that the 
multifractality is in this case of geometrical origin.

It is worth mentioning that a growing structure 
may be a multifractal, say, with respect to the growth 
probability and, simultaneously, a geometrical multi- 
fractal, i.e. a multifractal, with respect to the homoge­
neous mass distribution on the structure. The spectra 
for these two multifractals are then, of course, differ­
ent.
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In the next sections we introduce the so-called ther­
modynamical formalism, the importance of which in 
natural sciences has been realised only very recently. 
Besides providing a broad theoretical framework, us­
ing the language of classical statistical mechanics, 
this method possesses also practical relevance since it 
yields more accurate results than a direct application 
of the definitions of Chapts. I and II. The formalism is 
expected to become a widely used characterization of 
fractals and multifractals in the near future.

III. The Thermodynamical Formalism for Fractals 
and Multifractals

The thermodynamical formalism has been worked 
out in mathematics for describing fractal properties of 
chaotic dynamical systems [39]. It has recently been 
developed into a powerful technique [40-46], acces­
sible also to experimentalists, providing more accu­
rate results for the multifractal properties than box 
counting methods described in the previous sections. 
The concept of thermodynamical potentials has al­
ready been extended [47] for fractals which appear 
beyond the scope of dynamical systems. Based on 
these developments, we go here one step further and 
show how the thermodynamical formalism, built on 
an underlying spin system, can be worked out for such 
fractals. We shall see that the thermodynamical poten­
tials arising in the formalism give the most general 
characterization of fractal and multifractal objects.

14. Encoding

Fractals are, in general, organized in a hierarchical 
way which is often reflected in their rules of construc­
tion. The fact that this hierarchy can be encoded is the 
basis for the thermodynamical formalism. To illus­
trate the concept of encoding, let us take again a sim­
ple example: the two-scale Cantor set of Sect.4 (see 
Figure 8). The number of intervals used to approach 
the fractal doubles in each step, thus, at the n-th stage 
of construction there are 2" intervals. Each of them 
can, therefore, be denoted by a binary number of 
length n. Let us apply the following rule: At the first 
stage the intervals of length rx and r2 are associated 
with the symbols 0 and 1, respectively. In general, the 
last digit of the code for "daughter" intervals is 0 or 1 
depending on whether their length were obtained by

multiplying the length of their "mother" interval by r{ 
or r2 (Figure 8). Note that each code specifies an inter­
val uniquely, but there is a degeneracy in the length of 
the intervals.

Several fractals can be encoded in a similar way. 
The encoding consists of two important items: i) the 
"ABC": the number k of independent symbols needed, 
and ii) the "grammar": the rules telling us which sym­
bol sequences are allowed. In the previous example 
the grammar was trivial, all binary sequences occurred. 
In general, however, this is not the case and certain 
sequences are to be excluded. Such hierarchies can 
then be represented by a k-nary (binary, ternary,...) 
tree which in the case of nontrivial grammars is not 
complete. Nevertheless, the number W(n) of elements 
at the n-th level of the tree grows rapidly. For large n

W(n)~exp(K0n), (51)

where K0 is an important characteristic, the topolo­
gical entropy [26] of the hierarchy. On a k-nary tree 
K o ^  In k, where the equality holds for a trivial gram­
mar when the number of allowed sequences is just k".

Unfortunately, there is no general recipe for encod­
ing a hierarchy. Only intuition and a detailed knowl­
edge of the particular physical process might help to 
find the encoding of the fractal generated.

15. Statistical Analogy -  Thermodynamical Potentials

In what follows we assume that the encoding has 
been found. Let s2 ... sn = {s,} = Sj denote a code 
occurring at the n-th stage of the hierarchy, where the 
elements st can take on values 0 ,1 ,..., k — 1, and 
J =  1 ,..., W(n) is a subscript specifying the code. To 
each code there is a box covering the part of the fractal 
which is associated with that particular code. In con­
trast to boxes of a uniform grid, these boxes fit to the 
fractal structure in a natural way providing an "opti­
mal" coverage. For the sake of simplicity we assume 
that the boxes are ^-dimensional cubes where d is the 
dimension of the space the fractal is embedded in. (An 
extension for more general cases can also be worked 
out.) The size of the cube associated with a code Sj is 
denoted by /j = /({s,}). Let Ej = e({sj) = lj/L repre­
sent the length scales measured in units of the diame­
ter L of the fractal. It is worth introducing [41, 47] for 
a given code of length n the quantity

1167

EJ = E({si} ) = - - \ n s J . (52)
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In the limit n x> the value of E is positive and lies 
generally in an interval (£_,£+) [41, 47], In other 
words, the characteristic exponents E tell us how 
rapidly the length scales decrease with increasing n. As 
n grows, there are, in the coverage, more and more 
boxes of the same size belonging to a given value of E. 
Their number W(n, E) increases exponentially [41,47], 
i.e. for large n we can write

W(n, E )~ e SiE)n. (53)

The spectrum S(E) characterizes the length scale dis­
tribution of the fractal. The maximal value of S is, of 
course, the topological entropy K0 (Fig. 18 a). Illustra­
tive examples will be given below.

Another characteristic can be obtained by consider­
ing the sum of the length scales raised to a power ß. 
This sum changes with n also in an exponential fash­
ion [41, 47], i.e. we have*

= I  «'({*,})
j {Sf}

,-ßF{ß)n (54)

where — oo</?<oo, and the sum is taken over all 
allowed sequences of length n (n P 1). We note by pass­
ing that exp { — ß F(ß)} appears also as an eigenvalue 
of an operator which can explicitly be constructed for 
fractals organized on a k-nary tree [46].

Two special values of ßF(ß) follow immediately 
from (54). For ß = 0 the sum is just the number of 
allowed sequences, thus

ßF(ß)\ß = 0 = - K 0 . (55)

Fractals are asymptotically selfsimilar: the coverage 
obtained at the n-th level is similar to that obtained at 
the 2 n-th level, for 1. The role of the similarity 
ratios defined in Sect. 4 (see Fig. 7) is then played just 
be the e/s. A comparison of (11) with rj = Ej , 
N = W(n), and (54) shows that

ßF(ß) | -D0= 0. (56)

* The quantity ( — ßF(ß)) is often called the pressure func­
tion [39], We prefer to call F(ß) the free energy as follows 
from the statistical analogy (cf. table in the next column).

It is worth noting the parallelism between the pres­
ent formalism and that of statistical mechanics. The 
key observation is that any allowed sequence {s, } can 
be associated with a microstate of a chain of n, in 
general interactive, spins (for k = 2 Ising model, other­
wise /c-state Potts model). Thus, the analogy can be 
summarized as follows:

Fractal characteristics
code {s,} 
n

ß
eßj = e \p (-ß  Ejn)
j
E
W
S
F

Meaning in statistical mechanics
microstate 
number of spins 
thermodynamic limit 
inverse temperature 
Boltzmann factor 
partition sum
energy per spin (in a macrostate) 
number of microstates 
entropy per spin 
free energy per spin

Relations (53) and (54) correspond to a microcanon- 
ical and canonical description, respectively. In the 
thermodynamical limit these ensembles are equiva­
lent, consequently, ßF(ß) and (-5(F)) are Legendre 
transforms of each other, i.e.

F = E - ß ~ l S, (57a)
where

dS/dE = ß . (57 b)

This means that the sum of the length scales raised to 
a power ß remains finite in the n-* oo limit if ß is 
chosen to be the fractal dimension. For fractals associ­
ated with dynamical systems relation (56) is the so- 
called Bowen-Ruelle formula obtained in [39]. (Strict­
ly speaking, the particular ß value for which F{ß) 
vanishes was proved to be the so-called Hausdorff 
dimension [2] which, however, coincides with D0 dis­
regarding very exotic examples.)

They both decribe a new spectrum of fractal properties. 
S(E) is typically a single humped function, while ßF(ß) 
is monotonic increasing with a nonpositive second 
derivative (Figure 18).

The quantity ßF(ß) is a linear function for one-scale 
fractals only. Using (51) and (54) ßF(ß) = ßE0- K 0 is 
obtained, where E0 is the energy value characterizing 
all the boxes.

In the example of the two-scale Cantor set, the 
length scales can be expressed as fi({s,}) = r™ r"~m, 
where m is the number of O's occurring in the (binary) 
code {sj. This number uniquely specifies, via (52), an 
exponent E(m/n). Based on the fact that the multiplic­
ity of intervals characterized by a given ratio m/n, or

E(m/n), is just ( " j  = W(n, £), it is easy to check, using

(53) and (54), that

S (E )= -
AE

In
£ - £ _ \  £ + -£

AEAE
In

(58) 
- E s

AE
and

ßF{ß)= - \ n ( e 'ßE- +e~pt + ) (59)
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Fig. 18. Thermodynamical properties for the two-scale snowflake fractal (Fig. 9). -  a) The plot of the entropy function 
S(E)= -[(E-E_)/AE] In [(E-  E_)/AE]-[(E+-  E)/AE] In [(E+ -£)/(4 AE)], where AE = E+ -E_ and E_ =0.916, £+ = 1.609. 
b) The plot of the free energy (heavy line) ß F(ß) = — In (4 (O^ + (0.2r). For comparison also plots of the Gibbs potential (see 
Sect. 16) are shown. The latter is taken with respect to a measure defined with an exact recursive structure, as described in 
Sect. 12, on the two-scale snowflake fractal. Here the particular parameter values p1=0.\2, p2 = .. .=p5 —0.22 are chosen. 
Thus,ßG(ß, p) = -  In (4(0.22)p(0.4f + (0.12)p(0.2)̂ ). Dotted and dash-dotted lines correspond to ßG{ß,p) at fixed "pressure" 
p — 2 and p — — 2, respectively.

Fig. 19. /(a) spectra with respect to distributions (60) for the 
two-scale snowflake fractal. The values o = 0,1, 2 and 3 are 
taken and the spectrum is obtained via (63). The case a = 2 
corresponds to the Dq spectrum defined by (50). Note that for 
a = D0 measure (60) is not a multifractal since there exists 
then a single index a = D0 = 1.601 only (see (56), (61)). For 
cr —> D0 the widths of the spectra tend to zero.

where E_ = ln (l/r2),E+ = InCl/rJ and AE = E+ - £ _ . 
Here we have assumed, without loss of generality, that 
r2> r l . These results show that the thermodynamical 
potentials of the two-scale Cantor set are those of n 
noninteractive two-state systems with energy levels 

E+ (e.g. spins in magnetic field) [48], 
The two-scale snowflake fractal (Fig. 9) might seem 

to be a less trivial example. In this case the "ABC" 
must have 5 elements, but the fractal still shares the 
thermodynamics with n independent spins. They are 
now 5-state spins, the lowest energy level of which is 
4 times degenerated (E_ = In (5/2) = 0.916, E+ = In 5 = 
1.609). It is recommended that the reader derive the

expressions for the potentials given in the caption to 
Figure 18.

In more general cases without exact recursive fea­
ture the associated spin chain is interactive. Infinite 
range interactions might lead to a qualitatively new 
phenomenon, to a phase transition [49] reflected by 
nonanalyticities in the thermodynamical potentials. 
(A simple example is provided by a fractal the cover­
age of which contains a single box with an exponent 
£*, while all other box sizes scale with another value 
£0>£*. This leads to F(ß) = Eif for ß > ß c and 
ßF(ß) = ßE0- K 0, otherwise. At ßc = K0/(E0- E *) a 
first order transition occurs.) A detailed discussion of 
the phenomenon is beyond the scope of this paper. It 
is worth noting, however, that methods worked out to 
handle phase transitions (like transfer matrix, finite 
size scaling) can successfully be used also in the ther­
modynamical description of fractals [49], while the 
eigenvalue formalism mentioned after (54) provides a 
new technique [46, 44].

16. Relation to the Multifractal Spectrum -  
the Gibbs Potential

It is clear from the definition (52)-(54) that both 
S(E) and F(ß) reflect purely geometrical properties of 
the fractal. They have, therefore, a priori nothing to do 
with the multifractal spectrum characterizing also a 
distribution on the fractal. For an important class of 
fractal measures, however, /(a) can be shown to be 
closely related to S(E).
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Let us consider measures * with the following prop­
erty: the probability inside a box is proportional to a 
power er of the box size (— oo<er<oo) for all boxes 
[41, 44, 45]. By taking into account normalization this 
means

s"P = P ({ S}) = - J (60) 

j
a is a parameter of the measure. The crowding index 
(38) for boxes with a certain value of E is thus

a — a — a F(a)/E , (61)

i.e. a unique function of E. The number of boxes 
with a given a (or E) must behave as a power of 
£ = exp ( — En):

gS(E)n ^  ê~Enyf{a)

from which

/(a)
S(E)

oF(a)

(62)

(63)

follows. In such cases, therefore, the entropy function 
uniquely specifies the /(a) spectrum. Geometrical 
multifractality as defined in Sect. 13 corresponds to 
the choice o = d. Figure 19 exhibits the /(a) spectra 
obtained in this way for a few values of a in the case 
of the snowflake fractal shown on Figure 9.

When the probabilty of a box depends on the size 
in a more complicated way than power law, S(E) is no 
longer related to /(a) in any simple manner. It is 
then worth including also powers of the probabilities 
Pj = P({sJ), i.e. the measures of boxes specified by {s,}, 
into a partition sum [16, 36, 43, 47]. Let us consider

Y,PfeS = Z ,Pp({s,})sß({sl})~e ~ ß Gp(ß. p) n (64)
(Sil

where — co <p < go. In the language of statistical 
mechanics this is the analogue of an isoterm-isobar 
ensemble [48]. The parameterp is the "pressure", —In Fj 
plays the role of a fluctuating volume divided by the 
temperature, and GP(ß,p) represents the Gibbs poten­
tial per spin. The subscript P is to remind us that the 
potential now depends on the distribution.

The free energy is recovered from the Gibbs 
potential for p = 0. A completely different charac­
teristic of purely probabilistic nature is the sum £  Pj,

Called Gibbs measures in dynamical systems [39].

— oo < q<  oo. Since the distribution Ps is normalized, 
the sum scales with n [50] as

i f ;j
ed-DKqn (65)

which defines a new set of parameters, that of the Kqs. 
Using the terminology of dynamical systems, we call 
Kq the order q generalized entropy [50] with respect to 
the distribution P. (The q = 0 case corresponds to the 
topological entropy.) From (64) and (65)

ßGP(ß,p) i = 0 = (q - \ )K (66)

Thus, the spectra ßF(ß) and (p— 1) Kp are obtained as 
restrictions of ß GP(ß, p) on two orthogonal axes p = 0 
and ß = 0, respectively. To determine the multifractal 
spectrum some intermediate point of the ß —p plane is 
needed: Using again the fact that fractals are asymp­
totically selfsimilar and recalling (48) (with Pj = Pj, 
fj — £j, N = W(n)) we obtain

ßGP(ß,p) » = (1 ~q)o = 0 (67)

as an implicit equation for the spectrum of generalized 
dimensions Dq with respect to the measure P. Equa­
tions (66), (67) are extensions of (55), (56). They mean 
that Dq and Kq can be obtained from the plot 
ßGP(ß, q) vs. ß by cutting it with the horizontal and 
vertical axes, respectively. In view of this, the two 
important spectra Dq and Kq appear only as partial 
characterizations of a fractal measure, a much richer 
description of which is given by the Gibbs potential 
GP(ß,p) itself. Figure 18 b shows also plots of the po­
tential ßGP(ß,p) at fixed values p for a distribution 
having an exact recursive structure, as defined in 
Sect. 12, on the two-scale snowflake fractal.

It is worth noting that for measures of type (60)

ßGP(ß, p) = (ß + ap) F(ß + a p) -  ap F(a), (68)
and

ßP(ß)\ß=n-q)Da+a q =

K =
aq

(F(erq) — F(er)),

(69 a)

(69 b)

i.e. all quantities can be expressed in terms of the free 
energy alone.

Distributions on one-scale fractal supports from 
another interesting special class. Such cases are char­
acterized by a single energy value E0, and consequently

ßGP(ß,p) = ßE0 + ( p - \ )K . (70)
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Fig. 20. Multifractal spectra for differ­
ent systems, a qualitative sketch ob­
tained by using the results of [53-56]. -
a) /(a) with respect to the natural 
measure for the Henon attractor [53]. -
b) / (a) with respect to the growth prob­
ability for DLA measured on a grow­
ing ammonium chlorid crystal [54], -
c) /(a) with respect to the voltage dis­
tribution for a percolating cluster in a 
random resistor network [55], -  d) The 
multifractal spectrum along a straight 
line cutting through the support of 
energy dissipation in fully developed 
turbulence as measured in [56],

i.e. the plot ß GP(ß, p) vs. ß is a staight line for all Fixed 
p. From (67) the explicit relation E0 Dq = Kq follows 
then between dimensions and entropies. The example 
of Sect. 9 belongs to this class with E0 = In 3.

Finally, we mention that there is an essential differ­
ence in calculating the multifractal spectrum via (39), 
(40) and via the thermodynamical formalism. When 
introducing Dq and / (a) we used a uniform grid. The 
organization of the fractal, however, defines a range of 
length scales and a coverage of the set by boxes of 
different size. This is why the equations specifying the 
multifractal spectrum appear now in different forms. 
The knowledge of the encoding helps to find an "op­
timal" coverage which is optimal also in the sense that 
the asymptotic regime in n is reached for this coverage 
much faster than by refining a uniform grid. In other 
words, the application of the thermodynamical for­
malism provides an increased precision in describing 
the scaling properties of multifractals. In particular, 
this is the case at phase transition points, which are 
very difficult to locate by means of other methods.

IV. Closing Remarks

Although it is not been the aim of this report to give 
a complete overview of what has been done on the 
field of fractals and multifractals, it is worth illustrat­
ing the wide range of recent applications in natural 
phenomena by few examples. We do not go into a 
detailed discussion of the results since many of them 
have recently been reviewed [51, 52, 8, 9]. Rather we 
give here a pictorial comparison of /(a) spectra ob­
tained for different systems in numerical or laboratory 
experiments (Fig. 20) [52-56].

In the case of chaotic motion the most important 
distribution on strange attractors is the so-called nat­
ural measure [26], the distribution describing how 
often a given part of the attractor is visited by chaotic 
trajectories, in the long time limit. This defines a 
fractal measure, which under special conditions [40, 
41,44, 45] can be also of type (60). The field of dynam­
ical systems is the one where the thermodynamical 
formalism has successfully been applied. Recent for-
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mulations are based on the set of all unstable periodic 
orbits [57, 53] which can uniquely be encoded. Phase 
transitions have been found to be typical for chaotic 
attractors [49]. Figure 20 a exhibits the /(a) spectrum 
for the Henon attractor, in which a straight line seg­
ment, the sign of a phase transition, can clearly be seen 
[53],

In growth phenomena, like DLA [24, 30, 31] the 
growth probability distribution on the cluster is a 
fractal measure. The broad range of the crowding in­
dex observed (Fig. 20 b) [54] is a consequence of the 
fact that the distribution is concentrated on the tips 
and the bulk is practically screened. The maximal a 
value is, therefore, rather large.

A quite different example is that of the voltage dis­
tribution on the backbone of a percolating cluster in a 
random resistor network [29, 55]. The range of a 
values is narrower than that for the DLA [55], but the 
shape of the middle parts of the two spectra is similar 
(Figure 20c). Note that the spectrum for the voltage 
distribution does not go down to zero. At the right end 
this is the consequence of the numerical procedure: 
a_x could not be reached in the simulation of [55]. 
The positivity of /  at the left end is, however, essential: 
the so-called single connected bonds, carrying the to­
tal current, and consequently maximal voltage, form a 
set of nonzero fractal dimension [55],

In the case of fully developed turbulent flows of 
incompressible fluids the distribution of the energy 
dissipation has been pointed out to be a multifractal 
[27, 32], The /(a) spectrum exhibited on Fig. 20 d dif­
fers from the previous ones in the property that it was 
obtained for a one-dimensional section along the flow 
[56] with the assumption that the support of dissipa­
tion was an isotropic fractal.

The complete Fig. 20, thus, illustrates the differ­
ences (and similarities) in the multifractal spectra 
characterizing different natural phenomena.

Finally two remarks are in order.
The thermodynamical formalism has not yet been 

applied outside the field of dynamical systems. The 
accuracy of the results obtained in other cases could 
not reach the level which is expected to be provided by 
the use of the thermodynamical formalism. Further­
more, the existence of phase transitions can hardly be 
pointed out by means of other methods. Therefore, the 
following recent finding is of interest: certain fractal 
measures on Julia sets arising in dynamical systems 
exhibit quantitative similarity to the growth probabil­
ity distribution on DLA clusters [58]. This observa­

tion might help in enlarging the range of natural phe­
nomena where the thermodynamical formalism can 
be applied with success.

As illustrated also by Fig. 20, measurements have 
concentrated on the /(a) spectrum so far. In cases 
where the encoding is known, it would be, however, 
desirable to evaluate the complete thermodynamical 
potentials F{ß) or GP(ß, p) since they contain more 
information about the fractal or multifractal than the 
dimensions. Their knowledge might also make a 
stronger classification of systems possible than that 
provided by the multifractal spectrum /(a) alone.

Appendix (to Section 9)

Since my is expected to be large for 1, Stirling's 
formula

lnfc! = fc(ln ife-1),

kp 1, can be used when evaluating In NmPm. One, 
thus obtains

In Nm Pm = n In n — m In m — (n — m) In (n — m)

+ m In 2 + m In p x 4- (n — m) In p2.

The maximum of this expression is found to be at 
given by (27). The value of In Nmi Pmi is then 0 with the 
accuracy of Stirling's formula. It is easy to see that

In Nmi = —n(2pl In p 1 + p 2 In p2) ,

from which (28) and (29) follow.
The calculation of fq goes along similar lines.
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