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This paper considers the Lie series representation of the canonical transformations in a complex 

phase space. A condition is given which selects the canonical mappings from the Lie transformations 
associated with a complex-valued generating function. Some special types of mappings and some 
simple algebraic tools are discussed.

1. Introduction

Recent advances in the theory of nonlinear dynami­
cal systems have stimulated an intensive research 
around the problem of the existence of a quantum 
mechanical counterpart to the classical chaotic behav­
iour (see e.g. [1-3]). In this connection the transition 
from quantum mechanics to classical mechanics be­
comes very important since the chaotic behaviour is 
defined in a strict sense only for a classical system (e.g. 
by a positive Lyapunov exponent). A deeper principle 
for this transition would be desirable which is based 
on algebraic structures. It is well known [4-5] but not 
often used that classical and quantum mechanics may 
be embedded in the same mathematical formulation. 
The difference between the two theories does not lie in 
their mathematical structures but rather in their dif­
ferent physical interpretations. In a recent paper [6] we 
have found a connection between the entropy of an 
ideal Fermi or Bose system and two special classes of 
canonical transformations in a complex phase space. 
From the physical point of view such a connection is 
a very obscure matter and will bring additional confu­
sion into the relation between classical and quantum 
mechanics. However, the entropy is a very important 
quantity which played a great role in the development 
of quantum theory [7] and may help to find an answer 
to some open physical questions. For instance, we 
hope that the transition from quantum mechanics to 
statistics by means of the substitution i/t -> \jkBT 
can be better substantiated.

The aim of this paper is to demonstrate that the two 
classes of transformations in question arise in a natu-
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ral way by using the Lie series representation of the 
canonical transformations. Lie algebraic methods and 
Lie series in a real phase space have found widespread 
application e.g. to expansions of solutions of Hamil­
ton's equations or to reductions of Hamiltonians to 
normal form [8-9]. An extensive survey can be found 
in the references of Steinberg [10]. On the other hand, 
for the complex phase space Strocchi [4] has given the 
differential characterization of the canonical transfor­
mation only, and this contribution gives additional 
advice on Lie series characterization.

From this point of view our paper has a more tech­
nical content.

2. Lie Transformations and their Canonical Part

In [6] we have considered the coordinate transfor­
mations in a linear complex vector space:

with wk = wk (.z,, z f)
and = w*(zj,z*), k J  = 1 , . . . , / ,

where zk and wk are complex-valued functions. The 
dependence upon an additional parameter is possible 
but is not considered here. Such a transformation is a 
canonical one if the new coordinates fulfill the condi­
tions:

{wj,wk} = 0, {wj,wj?} = <5jk- (2.1)

where the Poisson bracket of two complex-valued 
functions A = A(zk,z%) and B = B(zk,zk) is defined 
by

f ( dA dB dA dB\
{A, B} = Z  U - ä ^ - ä ^ ä -  ' (Z2)fc=1\azk dz* dz* d z j
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We restrict our considerations to such functions A, B 
which are analytic in the 2 /  variables zk, z* [11-12] 
because only in this case they are also analytic in the 
2 /  real variables Re(zk) and Im(zk). Re(.) and Im(.) 
indicate the real and imaginary part of a complex 
quantity. The term analytic is used in the usual sense 
that a convergent power series expansion exists. The 
complex Poisson bracket has the same properties as 
its real counterpart.

Let A be a specified function depending on zk and 
z*. Then with A is associated a linear differential oper­
ator (the Lie operator [8], the Lie derivative [10]):

f fdA e
X * = X --------

"4 k= i \dzk 0z*
dA d 
02? 02, (2.3)

It is straightforward to calculate the commutator of 
two such operators

lXA,XB] = XfA.m, (2.4)

i.e. the mapping A XA is a Lie algebra homomor- 
phism from the Poisson bracket algebra of the under­
lying functions to the Lie operator algebra. The prop­
erties of the Poisson bracket imply the following set of 
properties for the Lie operator (a, b are complex num­
bers):

(XA)* = - X A., Xa B = - X bA, 
Xc(a ■ A + b-B) = a-X c A + b-X c B, 
XC(A ■ B) = (Xc A)B + (Xc B) A,
XC {A,B) = {Xc A, Bj + {A,XCB}. (2.5)

Lie series are defined by infinite operator power series, 
where the exponential series

X
exp(XA) = Z  (l/k!)-(XA)k, (XA)° = 1 (2.6) 

fc= i

are of particular interest. We shall call exp(A\4) a Lie 
transformation associated with the complex-valued 
generating function A(zk,zk). There are some basic 
properties of the Lie transformations which are im­
portant for their applications [10]:

exp(Xc)(a-A + b ■ B) = a ■ exp(Xc) A (2.7)
+ b-exp(Xc)B, 

exp(Xc)(A ■ B) = (Qxp(Xc)A)-(exp(Xc)B), 
exp(Xc){A,B) = {exp(Xc)/l, exp(XC)B}, 
exp (XC)F (zk, z*) = F (exp (Xc) zk, exp (Xc) z*).

The proofs of these properties are based upon the 
power series definition and can be adopted from

Steinberg [10]. Lie transformations are very helpful 
tools for studying the canonical transformations (see 
Theorem 1 in [8] for the real case) in the phase space. 
However, there are differences because the generating 
function in our case may be a complex-valued func­
tion. To demonstrate these differences, we consider an 
infinitesimal Lie transformation of the complex coor­
dinates zk. By setting A = — e • <f> (zk, ) for the gener­
ating function and neglecting higher order terms in 
the small parameter e one obtains

wk = exp(X_^)2k 
- exp(— e • XA zk- e - X (j)zk + 0(e2).

Moreover, with <j> = S{zk,z%) + i -Q(zk,z$), where S 
and Q are real functions, we obtain

Wi. = Zk — £ Xc i £ Xn 2t

0S 0ß
= ZL + £------1- i £--- .k S,* A-*ozk o±k

A comparison with the general form of an infinitesi­
mal canonical transformation given in [6] shows that 
this infinitesimal Lie transformation is not a canonical 
one. Therefore we must restrict the generating func­
tion <j>, especially the real part S, by some additional 
conditions. These additional conditions are given by 
the following theorem:

Theorem 1: The Lie transformations

(i) wk = exp (-X 4>)zk,
(ii) wt = exp (2.8)

providing they converge, are canonical mappings if 
and only if the generating functions fulfill the condi­
tions
(i) ökj -  — exp(X^) Xz* exp (— X^) ■ exp (— X^) • zk,

(ii) <5k,. = - e x p ( - X r )X exp{Xr )-exp(X,j,)-zZ.
(2.9)

Comment: The negative sign in (2.8 (i)) may be 
dropped, but we use it to find a more direct connec­
tion to the formulas in [6]. The conditons (2.9) can be 
represented in a more compact form by using the 
adjoint operators [8].

Proof: We simply use (2.1) and the Poisson bracket 
preservation property in (2.7) to find for the case (i):

{wj,wk} = {exp { -X ^z j,
exp( — X<fr)~k I exp(-X <i>){zj ,zk} = 0.
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This follows from the Poisson bracket {zj,zk}=  0. 

{wj,w*} = {exp{-X^Zj, exp (Xr )z*}
= exp(Xr ) {exp(-X p)exp( - X0)Zj, z*} 
= -  exp (Xr  ) {z*, exp (-X ^.) exp ( - X J z j )
= -  exp (Xr ) Xzt • exp ( -  Xr ) exp ( -  X z }
i
= Skj-

The last equality proves condition (i). Moreover, for 
the case (ii):

{\Vj,wk} = {exp{XJzj, exp(X^z*}
= ex p (^ ) {z*,z*} = -  ex p (^ ) {zp zk}* = 0

and

{w.,w*} = {exp(A^,)z*, exp(— X^*)zk}
= exp ( -  Xr ) {exp (Xr ) exp (X )̂ z f , zk} 
= -  exp( -  Xr ) {zk, exp (Xr ) exp (X+) z f} 
= -  exp ( -  Xr ) X2k exp {Xr )exp (X+) zj

= V

This completes the proof.
Basically, the relations (2.9) are differential condi­

tions which restrict the form of the generating func­
tions <f>, ip. At first we study the infinitesimal transfor­
mations belonging to case (i). With <f> -*■ e • $ the 
condition (2.9 (i)) yields, up to the first order in g:

ökj = skj + 2 e
82 Re {(f>) 
dzjdz*

+ 0(£2).

The solution can be found without any difficulty and
one obtains the separable functions Re(^) =XSfc(zfc,z;f)

k
discussed in [6], i.e. the Sk are harmonic functions. On 
the other hand the transformation (2.8 (ii)) does not 
contain an infinitesimal borderline case, i.e. this class of 
mappings is not connected with the identity. Also for 
the differential characterization given in [4] one obtains 
these two types, i.e. transformations which are con­
nected with the identity and those which are not. As a 
matter of principle, the generating function is always 
determined by (2.9), however, up to an arbitrary com­
plex constant only.

3. Special Types of Canonical Transformations

In this section we consider some special types of
mappings which fulfill the conditions of theorem 1. Our

first example is given by the two families of transforma­
tions discussed in [6].

Let <j) = <j> (Ik), Ik = z* zk be the generating function of 
case (i). Then the corresponding Lie operator has the 
form

'0<A /  . 6 6
zk = 1 Ö /J V 0Z,

This operator acts on the phase angles of the complex 
coordinates zk only. The calculation of condition 
(2.9 (i)) is easy to perform and yields

skj = h i + 2 Zk Z* ■
02 Re(^)
dljdlk

•exp
d</>* 
0T;

d(/>* 
~dTL

•exp ^2
0 Re(^) 

0/t
The analysis of these conditions leads to the function 

</>(Ik) = \-S B(Ik) + iQ(Ik), SB, Q real, (3.1) 
where Q (lk) is an arbitrary function and SB is given by

= T  ak 
k= 1 1 + * In 1 + —

In I ~ (3.2)
'k/ \ akj

The ak are parameters. An analogous calculation is 
possible also for the transformation of case (ii) in theo­
rem 1 and yields

<P(Ik) = \-S F(Ik) + iQ(Ik), 

where SF is defined by

(3.3)

= ~  X ak k= 1
1 -  -M In 1

+
a j  ln Uk

(3.4)

Equations (3.1) and (3.3) are the generating func­
tions for the Bose/Fermi type transformations dis­
cussed in [6], Classical mechanics (in the usual sense) 
is connected with equations of motion which can be 
expressed for a Hamiltonian system in form of an 
infinitesimal canonical transformation and with the 
solutions of these equations of motion. The infinitesi­
mal limit is not realizeable for the Fermi type transfor­
mations, i.e. we can not use a dynamical analogy, e.g. 
in terms of an equation of motion, to interpret these 
mappings. This suggests that the transformation ap­
paratus of classical mechanics contains more basic 
physical information than is generally supposed.
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Some other types of canonical transformations can 
be found directly from condition (2.9):

Remark 1: Each function <f)(zk,zk) which fulfills the 
operator identity

exp (— Xp) exp (— X^) — 1 (3.5)

generates a canonical mapping of the type (2.8 (i)).

Remark 2: Each function ij/(zk,z*) which fulfills the 
identity

exp(Xr )e x p (4 )  = - l  (3.6)

generates a canonical mapping of the type (2.8 (ii)).
The proof is apparent by using X,* ■ zk = — Sjk. 

However, (3.5/6) are special cases only. This can be 
demonstrated by considering the transformation 
properties of the absolute squares of the coordinates

wk w* = (ex p (-J^ ) zk) (exp (Xr ) z*).

Moreover, with the product preservation property of
(2.7),

wk w* = ex p (-X (t>) (zk exp(X+) exp(Xr ) zfc*).

Using the conjugate equation to (3.5), one obtains

wkw* = exp(-A ^)(zkz*) (3.7)

and analogously for (3.6)

wfcwfc* = - e x  p(X+)(zkzt). (3.8)

Instead of (3.5/6) we can use (3.7/8) to characterize this 
type of transformations. The Bose/Fermi type trans­
formations (3.1/3) with SB/F + 0 are not members of 
this class. A simple example of (3.5) is given by any 
pure imaginary function (/>*= — (j). From these special 
functions one can construct e.g. the unitary transfor­
mations. The generating function is

4 >  **) = i Z Z  Ajk zf zk — i z+ A z , (3.9)
j k

where Ä = A+ is a hermitian matrix. Then (2.8(i)) be­
comes

/  0 V
= Z (1/n!)(iZZAjtZt —  ) ■z1

n = 0 V J k dZjJ

= Z  (Slkzk + iAlkzk + (i2/2)XAljAjkzk + ...) 
k j

= Z (exp(M)u zfc, 
k
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or in a compact form

W = exp (iÄ)z = Ü z. (3.10)

This is the usual representation of the unitary trans­
formation, i.e. by means of hermitian generators as 
practised in quantum mechanics. Up to the factor i the 
generating function has the structure of an expecta­
tion value in quantum mechanics. The double aspect 
of the phase space functions is well known (see e.g. 
[13]).

On the one hand they represent dynamical vari­
ables (measurable quantities), and on the other hand 
they generate the canonical mappings. Since quantum 
mechanics selects the unitary transformations, the 
corresponding observables have the same structure as 
(3.9). But then the main problem is the physical sub­
stantiation for the use of the unitary transformation. 
For instance one can use the invariance of the normal­
ization condition; however, we think that this is a 
technical argument only. A general complex-valued 
function with Re {(/>) 4= 0 and Im {(/>) 4= 0 corresponds to 
a non-unitary transformation and therefore to a non- 
hermitian observable. This yields some problems with 
the standard interpretation of quantum mechanics; 
however, the conception of extended variables [14] is 
possible.

A partial combination of the unitary transforma­
tions with (3.1/3) is possible. Let A be a linear combi­
nation of some other operators Äß:

n
A = Z aßÄß,

H=l

where aß are parameters. Then the commuting opera­
tors [Äx,Äp] = 0 within this generator set can be diag­
onalized simultaneously. With their help one can form 
a function (3.9) which depends on the absolute squares 
zj* zk only, and this function can be used for Q{Ik) in 
(3.1/2).

In [6] we have noted that a Bose-like mapping can 
be represented by two Fermi-like mappings. This pos­
sibility can be studied directly from (2.8). One finds

exp ( -  X^) z = exp (X^2) exp (-X ^ )  z , 

or the operator identity

ex p (-X 0) -  exp(X^2)exp(— X^,). (3.11)

Let us consider the case that the Fermi-like mappings 
are generated by the same function ij/1 = \J/2 = ip. 
Then

exp ( -  X+) = exp (X+) exp ( -  Xr ) .



Moreover, with the Baker-Campbell-Hausdorff for­
mula:

e x p (-J^ )  = exp(*, -  Xr  -  [X*,Xr ]/2 
-[X + ,[X ^X r ]]/12 
- [ X r ,[X^,Xr ]]/12 + ...).

Using (2.4) one obtains:

Re(^) = {«A,(A*}/2 + (3.12)
Im(^) -  - 2  Im OA) +{Re(iA), {tA,<A*}}/6 i + ...,
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son bracket involves multiplication and differentia­
tions, we have for any two polynomials pike0>ik, 
n G^- •rjm j.m"

{Pik > Pjm) e ̂ i+j- 1 .k + m - 1 
or more generally

i .it» ĵ.m } — + j - 1 .k + m - 1 '

i.e. commuting or canonical functions ip generate 
a Bose-type transformation with a pure imaginary 
generating function only (</> is determined up to a con­
stant only !). A nontrivial real part of (j) arises from 
such functions iA, "A* which form an algebraic struc­
ture with a basic relation of the type: {ip,ip*} 
= / ( z fc,z*)-

In this connection the study of those functions 
ip,ip* which generate (3.1/2) may be an interesting 
problem.

4. Some Simple Algebraic Properties

Let us consider some algebraic aspects. The Poisson 
bracket plays an important role in the computations 
of the Lie transformations. Therefore we study their 
action on special functions.

Let F(zk, z*) be a homogeneous function depending 
on the 2f variables zk,z%:

F(azk,a*z*) = ama*"-F(zk,z*). (4.1)

We shall call this function homogenous of the degree 
(ra, n). Then Euler's theorem gives

SF dF
Z z  * — = n F , £  zk— = m F , 
k ozj k czk

or by subtraction

? ( Z* ö |~ dz.
F = {n — m)F.

The left hand side is the Lie operator associated with 
the unitary invariant

J  = i.e. X jF = (n -m )F .
k

(4.2)

This is an eigenvalue type equation, where the eigen­
values are given by the degree difference (n — ra).

Now let n be the space of all polynomials which 
are homogeneous of the degree (m,n). Since the Pois-

If the polynomial pike ^ ik, then the complex con­
jugate polynomial p*kE^k i.

The space , has a special significance because of

(4.4)

Moreover, if is any real polynomial, then
from the Lie series follows

exp (iXPll)&u j.m'
i.e. the canonical transformation generated by the 
quadratic functions (3.9) maps into This 
property is important for the construction of invariant 
functions with F(wfc,wjf) = F(zk,zk). A trivial exam­
ple is given by the generating function

(j) = 2n i • X zkz* = 2 n i-J , 
k

which generates a phase shift of 2n. Using (4.2), one 
obtains

exp { -X <p)F{zk,z*) = exp (2 ni{m — n)) 
■F(zk,z*),

i.e. the homogeneous functions (4.1) are invariant 
functions if the degree difference can be represented by 
an integer:

ra — n = k e Z .

The relation (4.4) may be formally completed by

(4-5)

(4-6)

With the help of (4.4-6) one can construct some repre­
sentations of Lie algebras. Typical examples are the 
commutation relations of the SU(2) generators. (4.4) 
contains as a special case:

{^1.1,^1.1} S ^ i . i -

We consider two real elements A,BeZ?1a with 
A = z+ A z, B = z+ Bz, where zeCf . Then one ob­
tains

{A,B} = z + [A, B] z, (4.7)
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i.e. the direct connection between the Poisson bracket 
and the matrix commutator (see also [4-5]). For 
zeC 2 and A,B^> , d2, <r3), where ak are the hermi­
tian Pauli spin matrices, the usual su(2) algebra can be 
found. In its raising and lowering operator form one 
obtains, using

l 3 = (zt zi - z $ z 2)/2 ,L + = z* z2, L_ = z l z%,

the commutation relations

{L3,L + } = L  + ; {L3,L_} = - L _ ;
{L + ,L_} = 2L3. (4.8)

Using the homomorphism A -*■ XA of (2.4), one finds 
the corresponding Lie operator algebra. Increasing 
the dimension of the phase space Cf, one can con­
struct the various higher dimensional representations. 
This is a particularity because the complex phase 
space and the representation space become identical. 
On the other hand, from (4.5-6) follows

{??x A , 2} <= .^ 2 , {<̂ 2.0' <̂ 0.21 — ' 1̂.1 > 

and with zeC 1 one finds for example (z*z = / J

{I,z2} = — 2z2; {I,z*2} = 2z*2;
{z*2,z2} = - 4 1 .

After the transformation I -> 2K3, z*2 2K + , 
z2 2K_ one obtains the su(l,l) (=sp(2,R) 
= so (2,1)) algebra in its raising and lowering operator 
form (see e.g. [15])

{K3,K + } = K  + ; {K3,K_} — 
{K + ,K_} = — 2K3,

K
(4.9)

This is a realization in a 1-dimensional phase space, 
and it must be underlined that the su(l,l) in this form 
can be obtained starting from any canonical quantity 
w with {w, vv*} = 1. The raising and lowering operator 
form arises from the complex Poisson bracket in a 
natural way. To show this, let H(zk,z*) be a real func­
tion and

(4.10)

the eigenvalue problem of the associated Lie operator 
with a real eigenvalue ji. Using (2.5), one finds the 
complex conjugate equation

(4.11)

i.e. the complex conjugate function <j)* corresponds to 
the negative eigenvalue — j.i: (</>ß)* = (f>_ß.

From (4.10-11) one obtains

{ H , r j ,} =  0 < = > fieÄ,

and the Jacobi identity associated with H, <f>ß, <f>* 
yields

{h, {</>„</>:}}=o.
This equation can be fulfilled by {(/f̂ , </>*}= f  (H), 
where /  is a real function. For linear functions /  (//), 
H , (j>ß, <f>* form an algebraic structure with respect to 
the Poisson bracket. Using the homomorphism 
A -*■ XA, (j)ß and <f>* become raising and lowering op­
erators. However, one needs a scalar product so that 
XH becomes a hermitian operator with real eigen­
values ju. There is an interesting analogy to the con­
struction of the Bargmann-Hilbert space [16-17], To 
simplify matters, we consider the 1-dimensional case 
only. We look for a scalar product in the form

</, g) = i a ■ j f  * (z, z*) • g (z, z*) dz a dz*, (4.12)

where a is a real parameter. Then the inner product 
has the property </,#>* = (g ,f) , i.e. < / , /  > is real. 
In the Bargmann space of entire analytic functions 
one needs an additional real positive weight function 
q(z,z*), which can be dropped in (4.12) because the 
functions / ,  g depend upon both variables z and z*. In 
terms of coordinates we obtain with the aid of 
dz = dq + / ß ■ dp: dz a dz* = 2 i ß ■ dp dq, and the in­
tegration is performed over the whole phase space, i.e. 
the whole complex plane. Further on, we consider 
functions with a finite norm only: < / , / )  < oo. Using 
this inner product, we can characterize the Lie opera­
tor associated with a complex-valued function 
A (z, z*). With (2.5) one finds

</, XA g> = (X A* f,g> + ia \X A (/*  g) dz a dz*.

The last integral vanishes if {A, f*g} = 0, however, 
we can find also the following form:

j" XA ( f  * g) dz a dz* 

= (öz ' f * 9
e fdA

Moreover, with the Stokes theorem: 

$XA(f*g)dzAdz*

dz*

where SC is the boundary of the complex phase space. 
We assume for the class of functions in question that
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these boundary integrals vanish, i.e.

<f,XAg> = <XA.f,g> , (4.13)

Then the real functions A = A* are connected with a 
hermitian Lie operator. Let us study the 1-dimen­
sional realization of the su (1,1), given by (4.9). XK} is 
a hermitian operator with respect to the scalar prod­
uct (4.12), and from K+ = (K_)* follows that the rais­
ing and lowering operators XK , XK will then be 
adjoint to each other:

<f,XK+g} = (X K_ f,g ).

The spectra of the generators and of elements of the 
enveloping algebra (Casimir operators) can be ob­
tained using the classical approach, which comes from 
the standard treatment of angular momentum.

One can find also a realization of the su(2) in a 
1-dimensional phase space by the functions

L'3 = z* z/2; L'+ = iz*2/2; L'_ = iz2/2,

which fulfill the commutation relations (4.8). But now 
we have (L'+)* = — L'_ , i.e. the corresponding raising 
and lowering operators are not adjoint to each other 
with respect to (4.12). The representation structure has 
radically changed, and the situation is analogous to 
the discussion about non-self-adjoint representations 
in [15]. However, there is a realization of su(2) in 
terms of Lie operators in a 1-dimensional phase space 
with L*+ — (see appendix).

The scalar product defined by (4.12) has the follow­
ing property with respect to the multiplication opera­
tor:

<f,A-g> = <A*-f,g>, (4.14)

where A(z,z*) is an arbitrary complex-valued func­
tion. The combination of (4.13) and (4.14) can be used 
to find e.g. an operator representation of the 
Heisenberg-Weyl algebra

{z,z*} = 1, {z,l} = {z*,l} = 0

The corresponding mapping is given by

z -  > L = Xz + j  ■ z ■ 1; z* -  > R = X2. + \  ■ z* ■ 1,

1 — ) 1, where L — {R)+ and the commutation relation 
[L,R] = 1 can be obtained by a direct calculation. If 
the lowering operator acts on a real ground state func­
tion g0(z*-z), we have L g0 = (6/öz* + \  ■ z) g0 = 0 
< — ) Go ~ exP (— z* z/2\ i- e. g0 is proportional to the 
root of the weight function in the Bargmann space.

5. Concluding Remarks
In this paper, we have investigated the Lie series 

representation of the canonical transformations in a 
complex phase space. Compared to the standard re­
sults in the real phase space there are some differences 
by reason of the complex nature of the generating 
functions. In quantum mechanics the Lie operator 
associated with a complex-valued function corre­
sponds to a non-unitary operator, e.g. to a raising or 
lowering type operator. The special types of mappings 
(3.1-4) show that both the real and imaginary parts of 
the generating functions are physically important. It 
would be interesting to find some other generating 
functions of the Fermi type (2.8 (ii)). On the basis of 
(3.12) we suppose that there is a connection to the 
algebraic properties discussed in Section 4.

As a matter of fact, both classical and quantum 
mechanics are associated with an algebraic structure 
called a Lie ring. This often yields a close connection 
between classical and quantum mechanics. An exam­
ple is given by the reduction of Hamiltonians to the 
Birkhoff-Gustavson normal form [18]. However, a 
better understanding of the restriction of all possible 
observables / (zk,z*) to the set of the quadratic func­
tions z+ /iz or the selection of the unitary transfor­
mations from the full canonical group is one of the 
basic problems for the transition from classical to 
quantum mechanics (see also [19]).

Intuitively one can understand the restriction of the 
number of independent basic physical observables of 
classical mechanics as a consequence of the Planck 
constant. Moreover, from qualitative discussions con­
cerning the measurement of dependent observables 
Caianiello [20] has derived a line element in a real 
8-dimensional extended phase space which general­
izes the invariant of SO (3,1). Introducing complex 
coordinates, his line element is actually the unitary 
invariant of the U(3,1). Basically, such an invariant 
acts as an auxiliary condition [21] in the classical ex­
tended phase space, and the canonical transformation 
which preserves this condition is the corresponding 
unitary group. Therefore we suppose a connection 
between the process of measurement and the unitary 
transformation.

We can not give here a final answer to the problem 
of the restriction of the number of independent basic 
observables in the transition of classical to quantum 
mechanics. But we hope that the use of the unitary 
transformations can be substantiated by a deeper 
physical principle.
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Appendix: Lie Operator Realization of su (2)

The functions

L + = J ß \ l  = exp(— iO),
L3 = I = z*z,

L- = yjßll — I • z = J ß - I 2 exp(10), (A.l)

where ß is a real positive constant and 9 — arg (z) is the 
phase angle of z, form an su (2) algebra with respect to 
the Poisson bracket in a 1-dimensional complex phase 
space. But the corresponding commutation relations 
(4.8) are valid for ß > I2 only, i.e. for real values of the 
roots in L +l_ . In this case we have L + = (L_)*.

Using the mapping A -*■ XA, one finds with 
(z,z*)->(/,0):

X, id/dO,

X = -e x p (- iO )l  J ß -  I2 — + ,,
L+ F M x ' 6/ J ß ^ T 2 so j

= exp (10)1 v ^ W
i I

6/ J ß - V ™ ■ (A.2)

The integration in the scalar product (4.12) must 
be performed over a circular area with (Re(z))2 
+ (Im(z))2 < J~ß. For I2 = ß the functions L +/_ be­
come zero and we have only one operator XL which

generates the SU (1) subgroup. For larger values of 12 
the roots in L +l_ have a purely imaginary value, i.e.

L + —> K + = i y j l2 — ß exp ( — iO), 
K _= (K  + )*, K3 = L3.

A simple calculation shows that these functions form 
the su(l,l) algebra (4.9). 

From eq. (A.l) follows

L +L_ = ß — I2 ( = } ß = L + L _ + L2, (A.3)

i.e. the parameter ß has the structure of the associated 
hermitian form of SU (2). According to the mapping of 
A XA, ß corresponds to the Casimir operator

C = (XL+-XL_ + X L_-XLJ/2  + (XL f .

The eigenvalue problem

CiA(7,0) = <x (/>(/, 0)

with if/ = 0(1) ■ exp( — im 0) and x = I/^/ß leads to 
the equation

(1 -x
, d2 d m2

— t — 2 x ---- b er--------- r-
d.x dx (1 -x 2)

<2>(x) = 0.

This is the Legendre differential equation, i.e. the ei­
genvalues are o = 1(1 +1), and <P(x) is given by the 
f>,m (x). We note that the algebra (4.8) may be expressed 
by a single complex function, e.g. L +, because 
L_ = (L + )* and L3 = J ß - L + L* , so that the last 
bracket in (4.8) provides the interesting relation

{L + ,L*+} = 2 y jß — L + • L \ . (A.3)
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