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If all the forces o f nature can be reduced to those which follow from a linear combination o f  a scalar 
and vector potential, as in electrodynamics, Lorentz invariance can be derived as a dynamic symmetry. 
All that has to be done is to assume that there is an all pervading substratum or ether, transmitting those 
forces through space, and that all physical bodies actually observed are held together by those forces. 
Under this assumption bodies in absolute m otion through the substratum suffer a true contraction equal 
to the Lorentz contraction, and as a result o f  this contraction clocks in absolute motion go slower by the 
same amount. The velocity o f  light appears then to be equal in all inertial reference systems, if  Einstein’s 
clock synchronization convention by reflected light signals is used and which presupposes this result. The 
Lorentz contraction and time dilation measured on an object at rest relative to an observer who gained 
a velocity by an accelerated motion is there explained as an illusion caused by a true Lorentz contraction  
and time dilation o f  the observer.

Both the special relativistic kinematic interpretation and this alternative dynamic interpretation give 
identical results only in the adiabatic limit where the accelerations are small, because if the Lorentz con­
traction is a real physical effect, it must take a finite time. However, to break the peculiar interaction sym­
metry with the ether, and which in the dynamic interpretation is the cause for the Lorentz invariance, the 
accelerated m otions must involve rotation. Only then can non-adiabatic relativity-violating effects be ob­
served and which would establish a preferred reference system at rest with the ether. Under most cir­
cumstances relativity-violating effects resulting from such a dynamic interpretation o f special relativity 
would be very small and difficult to observe, a likely reason why they have evaded their detection in the 
past. For the rotating earth a residual sideral tide has been observed with a superconducting gravimeter, 
and which could be explained by an “ether wind” o f about 300 km/sec at rest with the cosmic microwave 
background radiation. However, because o f  the observational uncertainties in measuring the terrestrial 
tides no definite conclusion can be drawn. A number o f new experiments are therefore needed to decide 
the question regarding a possible weak violation o f special relativity.

1. Introduction

Quantum theory, one of the most fundamental 
theories, is believed to be a theory for all possible 
objects, not just those actually realized. One there­
fore may ask the question if the theory of relativity 
cannot somehow be derived from quantum me­
chanics. According to Einstein, the Lorentz trans­
formations express a symmetry of space and time. 
If this is true the theory of relativity cannot be a 
theory of objects and must remain unexplained by 
quantum mechanics. There is however, an alterna­
tive interpretation of  the Lorentz transformations, 
by Lorentz and Poincare, quite different from Ein­
stein’s interpretation, but which nevertheless ex­
plains all the same experimental material as well. It 
predates Einstein’s theory and goes back to Fitz­
gerald. In this alternative older interpretation, the 
Lorentz transformations derive from real physical
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deformations of bodies in absolute motion 
through a substratum or ether. Abolished as being 
an unnecessary hypothesis by Einstein, the ether 
reentered into physics through quantum  mechan­
ics, assigning the vacuum a zero point energy. 
About the reality of this vacuum energy can be no 
doubt. Most convincingly it proves its existence 
through the phenomenon of spontaneous emis­
sion. The undisputable reality o f  the quantum 
ether therefore raises the question if the older 
interpretation, which says that the Lorentz trans­
formations are caused by true physical deform a­
tions of bodies in absolute motion through a sub­
stratum, is perhaps closer to the truth. As an ex­
pression of an intrinsic space-time symmetry, 
special relatively is purely kinematic, in contrast to 
the Lorentz-Poincare interpretation, explaining 
this symmetry as an illusion caused by true 
physical deformations, and which therefore is 
dynamic.

Against the special theory of relativity a similar 
case can be made as it has been made against Non-
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Euclidean geometries in physical space. As Poin­
care has shown, one equally well could argue that a 
space believed to be Non-Euclidean is in reality 
flat, and that all bodies in space suffer an equal 
position-dependent deformation, giving an ob­
server the illusion of a curved space. This dif­
ferent, albeit mathematically equivalent descrip­
tion however, rests on the assumption that the 
bodies occupying this hypothetical space adjust 
themselves adiabatically to a new changed state of 
deformation, if moved to a different location. In 
reality though, it would take a finite time for any 
physical body to assume a new equilibrium shape. 
Therefore, if a body in such a hypothetical space 
would be moved sufficiently fast from one place to 
another, in a time shorter than it would take the 
body to assume a new equilibrium, the question 
whether the space is truly Non-Euclidean or not, 
could then be decided by non-adiabatic experi­
ments.

A very similar situation exists with regard to the 
special theory of  relativity if one compares it with 
the alternative dynamic theory by Lorentz and 
Poincare, because the dynamic theory makes the 
assumption that a body changing its absolute 
velocity against a substratum changes its shape 
adiabatically. But there too, a real physical body 
needs a finite time to assume a new shape, and if 
the change in absolute velocity occurs with such a 
high rate of acceleration, that the body cannot 
change its shape fast enough, Lorentz invariance 
would be violated. The significance of  discovering 
such non-adiabatic relativity-violating effects 
would be of course very profound. If the dynamic 
interpretation is true, then Lorentz invariance 
could be derived from quantum mechanics 
through the physical deformations. Special rela­
tivity would thereby emerge as an approximate 
theory, valid only in the adiabatic limit of slow 
changes in the absolute velocity.

It is most interesting that the only kind of inter­
actions leading to the deformations needed must 
have the same form as the electromagnetic forces, 
leaving open the strength of  these interactions. The 
underlying more fundamental symmetry would 
there be the Galilei group. This would fit neatly 
into a theorem discovered by Jauch fl], according 
to which the fundamental kinematic symmetry 
group of quantum  mechanics is the Galilei group,

with a linear combination of  a scalar and vector 
potential as the only allowed form the interaction 
can have. Moreover, the restriction to this narrow 
choice of the permitted interactions makes gauge 
invariance a property derived from Galilei in­
variance, in contrast to modern elementary particle 
theories where the gauge principle must be 
introduced as an additional hypothesis which can­
not be derived from Lorentz invariance. In the 
contexct of Jauch’s theorem one may therefore ask 
if the truly fundamental interactions have all the 
form of electromagnetism expressed in a preferred 
system at rest with a substratum, and from which 
both special relativity and the gauge principle can 
then be derived. If this should be true, interactions 
with different properties would have to be 
explained as composed forces, in particular the 
weak and strong force. For the compositeness of 
the weak force speaks its short range, a property it 
shares with the Van der Waals and nuclear force, 
known to be composed.

In the Weinberg-Salam model, the unification of 
the electromagnetic and the weak force was only 
possible through the introduction of the symmetry 
breaking massive Higgs particle, but the Higgs 
mechanism by itself speaks for the existence o f  a 
substratum, because it has an almost identical 
counterpart in the Landau-Ginzburg theory of 
superconductivity, which by its very nature is a 
substratum theory. The occurrence of a symmetry 
breaking mechanism may perhaps always be a sign 
of composed forces, which should even be true for 
gravity because it violates Lorentz invariance.

An attempt to derive all fundamental forces of 
nature from electromagnetism, is in a sense a 
reversal of Einstein’s program to explain all forces, 
but in particular electromagnetism, as generaliza­
tions of gravity with a curved space-time model. 
The hypothesis that all fundamental interactions 
are electromagnetic in nature is also supported by 
the energy mass relationship E  = m e 2. As Hasen- 
öhrl [2] had shown a long time ago, this formula 
can simply be derived from Maxwell’s equations, 
considering electromagnetic radiation entrapped 
inside a box.

To explain the theory of relativity along the lines 
of thought originally developed by Lorentz and 
Poincare, has been revived more recently by 
Janossy [3], Builder [4] and Prokhovnik [5].
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2. The Fitzgerald-Lorentz Contraction  
as a Dynam ic Effect

Under the hypothesis that all fundamental inter­
actions have the same form as electromagnetism, 
the deformation of a body, if set into absolute 
motion through a substratum, can simply be 
derived using Maxwell’s equations. This assump­
tion is certainly correct if one wants to compute the 
deformation of a macroscopic body which is held 
together by electromagnetic forces.

The equations of  electrodynamics for the scalar 
and vector potentials [6] (in electrostatic cgs units) 
are

1 0 Z0

a r
9 2A

+ \ ' - (p  = - 4 n g ( r ,  t ) ,

(2.1)
+ V A  =  - ( 4  n / c ) j ( r , t ) ,

to be supplemented by the invariance under gauge 
transformations

,  _  1 0/1 (p-y 0  -------------
c dt 

A -* A  +  \  A  ,
(2 .2)

where for Lorentz gauge, the function A satisfies 
the wave equation

- 4 ^  + v ^ o .
c 2 dt

(2.3)

After 0  and A  have been computed from these sets 
o f  equations, the electric and magnetic fields are 
given by

1 dA
E =  -  V 0 -

H  =  \  x  A .

c dt
(2.4)

For a body which is in a state of static equilibrium, 
the electric charge and current distributions inside 
the body are related to 0  and A by

,2V 0  = - 4  n g ( r ) ,

\  2A  = - ( 4  n / c ) j ( r )  , 

\ 2 A  = 0 .

(2.5)

For a given charge and current distribution, the 
potentials 0  and A  can then be computed by an 
integration over the solid body with the result

0  = ^ / L d r > ,  A  =  L \ * / L ä r * .  (2.6)
r - r \r — r

In keeping with the hypothesis of a substratum 
or ether, (2.1) —(2.6) are assumed to be true only 
for a system at rest with the ether. To see what will 
happen to the body if set into motion against the 
substratum we make the Galilei-transformation

x ' = x - v t ,  y ' = y ,  z'  = z , t ' =  t , (2.7)

where x', y', z', and t' are measured in a frame 
moving with the body, and where v is an absolute 
velocity against the substratum.

In carrying out these transformations with 
regard to (2.1) and (2.3), the scalar and vector 
potentials change from 0  to 0 ' ,  A  to A ', and A to 
A'.  The result is

1 ^ 0
dt'2 +

- 4  n g ( r \ t ' ) ,

a20' a20' a20'
dxu

+-
a y 2 d z u

1 a2A' ( _ v2 \ d2A' a2A' d2A' 

c2 dt'2 +  \  c 2 /  a x '2 +  dy'2 +  dz'2

= - ( 4  n / c ) j ( r ' , t ' ) ,

1 a2A' /  v 2 \  d1 A' d2A' d2A' „ 
— —  + I 1 -  —  — ^  + ^  + ------=- = 0.

c 2 Q t >2 ■ \ ‘ „ 2  I  1 a „ , 2  ’ Q _ , 2c /  dx ay'z dzu
(2 .8)

We now specialize (2.8) to the limiting situation, 
where a new equilibrium state has been established 
within the solid body, after it has been accelerated 
to the absolute velocity v. In a new state of equilib­
rium one has to put 8 /3 / '  = 0. According to (2.7) 
one can put everywhere y' = y and z' — z. The 
result on (2.8) is

. v 2 \ d 2 0 '  

T 2 /  9 x '2
a2 0' 
9j 2

= — 4 7tg(x', y, z) ,

1 - X
a2 a 1 a - a 1

+  ------- r- +

a2 0 '

a z 2

a2 A'

a.v,z a y* dz/

= - ( 4  n/c)j(x',y, z) ,

(2.9)
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i - 4 V \c J dx'

d 2a ' d 2a ' d 2a '
+■

dy‘
= o

Comparing (2.5) with (2.9), the l.h.s. of (2.9) takes 
the same form as the l.h.s. o f  (2.5) if one puts

0 '  =  <p, A ' = A ,  A'  = A
and

dx ' = dx | / l  -  v 2/ c ‘

(2 .10)

(2 .11)

That the r.h.s. o f  (2.9) then also assumes the same 
form as the r.h.s. o f  (2.5) can be seen as follows: 
Consider a rod of  length / with the rod axis direct­
ed along the x-coordinate, and with one end of the 
rod having the coordinate x  = 0. Before set into 
motion the integrals (2.6) over the rod extend from 
jc = 0 to x  = /. Under the transformation (2.11) the 
rod changes its length to / ] /1  — v 2/ c 2. The 
integrals however, remain invariant under this 
change of  length because the contraction increases 
the charge a nd current density by the factor 
\ / y \ - v 2/ c 2. This means that after set into 
absolute motion through the substratum and after 
having assumed a new equilibrium, the rod has 
contracted by the factor ]/ 1 -  v 2/ c 2. This contrac­
tion, though, is unobservable for a comoving 
observer who uses measuring rods held together by 
the same kind of forces and which therefore suffer 
the same kind of  contraction.

As can be seen from this derivation, the contrac­
tion is not instantaneous and must take a finite 
time. Increasing the velocity of  a body moving 
against the substratum results in a contraction, but 
decreasing this velocity would result in an expan­
sion. Furthermore, a true change in the state of the 
body is only possible if its velocity is changed by 
going through an acceleration. A kinematic change 
in the velocity of  a body, which takes place if an 
unaccelerated body is observed from an acceler­
ated frame of reference, does not lead to a true 
contraction or expansion of this body. This state­
ment seems to contradict the results of the special 
theory of relativity, predicting an observed con­
traction even for a kinematic change in the velo­
city. The paradox is resolved if one takes into ac­
count the true physical deformation suffered by 
the observer who has changed his state of absolute 
motion. The observed contraction of the unaccel­
erated body is thereby interpreted as an illusion 
caused by the deformation of the measuring

devices used by the observer. It does not occur in 
the unaccelerated body undergoing a relative 
change of velocity, but only in the observer. The 
occurrence of an absolute contraction or expan­
sion not only is sufficient to derive the Lorentz 
transformations as a dynamic effect, but it also 
removes the ambiguity one encounters in the 
theory of relativity regarding the reality of the con­
traction effect.

The factor (1 - v 2/ c 2) on the l.h.s. of (2.9) can 
be seen as the reason for the contraction effect 
because it can be interpreted as a Doppler effect 
acting on the fields inside a body held together by 
electromagnetic forces. It always occurs under the 
Galilei transformation of a wave equation. From 
this perspective the negative outcome of the 
Michelson-Morley experiment is almost trivial. 
The arms of the interferometer are held together 
by electromagnetic forces and therefore must suf­
fer the same deformations caused by the Doppler 
effect as the light paths, thereby exactly compen­
sating each other.

The derivation of the contraction effect was 
done under the simplified assumption that the 
atoms of the solid body are in a static equilibrium. 
This assumption is justified only in the classical 
limit, for which quantum effects can be neglected. 
In quantum theory the zero point energy fluctua­
tions of  a mechanical system composed of atoms 
lead to a pressure and which can be seen as a result 
of Heisenberg’s uncertainty principle. In the x- 
direction, and along which the motion through the 
substratum shall take place it is

m A v A x  = h . (2 .12)

Under the contraction, A x  changes from A x  to 
A x ] / \  -  v 2/ c 2. If all interactions are electro­
magnetic, the mass must have an electromagnetic 
origin and one can assign to the electromagnetic 
energy E  an electromagnetic mass m  = E / c 2, by the 
kind of reasoning first used by Hasenöhrl [2], 
without any reference to the theory of relativity. 
Then, if a photon of energy E  -  h v  = hc /X ,  with a 
mass m  = h/cX  is entrapped in box as a standing 
electromagnetic wave in the x-direction, its energy, 
and hence its mass, will change if the box is con­
tracted in thex-direction by the factor \ / ] / \ " t > 2/ c 2, 
from h/cX  to ( h / c X ) / \  1 -  v2/ c 2. This means, the 
mass m  in eq. (2.12) will change to m / \  1 -  v2/ c 2, 
making the product m A x  invariant under this
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change. As a result, the contracted solid body will 
experience the same zero point pressure as in a ref­
erence system at rest in the substratum.

3. The Clock Retardation Effect

The absolute contraction effect leads to an 
absolute time dilation effect, as can be seen im­
mediately: Under our assumption that all interac­
tions resemble electromagnetism, propagated with 
the velocity of  light through a substratum, all 
clocks can be viewed as light clocks, consisting of a 
rod with a mirror attached to both of its ends, and 
in between which a light signal is reflected back 
and forth. If the rod is at rest in the substratum, 
and if the length of the rod is /, the time needed for 
a signal to be sent back and forth is

t0 =  2 l / c . (3.1)

If the rod is set into motion with the absolute 
velocity v against the substratum, and with the rod 
axis inclined against the direction of v by the angle 
(p, measured before it was set into motion, then the 
projection / cos (p of the rod in the direction of  mo­
tion will be shortened to / 1 1 - v 2/ c 2 cos<p, with 
the projection / sin (p perpendicular to the direction 
of v remaining unchanged (see Figure 1). As seen 
from a system at rest with the substratum, the 
moving rod will therefore appear to be inclined 
under the angle yj given by

tg i// = y \g(p , y =  t / | / 1 -  r 2/ c 2 . (3.2)

y

Fig. 1. The projections o f a rod o f length / along the .y and .vaxis 
seen by an observer at rest in the substratum: / sin </?, / cos cp for 
a rod at rest and I sin (p, 11 1 -  v 2/ c 2 cos </> for a rod moving with 
an absolute velocity v into the x-direction.

The length of the rod changes from I to /' by

/' = l \  1 ~ ( v 2/ c 2) cos~(p

Y | / l  — (v 2/ c 2) sin2 1fj

In the frame of the moving rod the light velocity is 
anisotropic, and for the to and fro directions is 
given by

c + = ]/ c 2-  i’2 sin2 (//— v cos t//

, r- i----- (3-4>c_ = | / c  —v sin t// + v cos yj .

The time for a to and fro light signal, as measured 
by an observer at rest with the substratum, is now

= l ' / c + +  / ' / c _  =  y t 0 • (3-5)

Therefore, as seen from an observer at rest with 
the substratum, the light clock goes slower by the 
factor | 1 -  v 2/ c 2. The clock retardation effect is 
therefore explained as a direct result o f  the con­
traction effect suffered by bodies in absolute mo­
tion through a substratum. This assignment of the 
clock retardation effect as an absolute effect 
removes all the paradoxes of the time dilation ef­
fect, like the twin paradox.

As it was true for rods with regard to their 
lengths, only clocks which change their state of 
absolute velocity, by going through an accelerated 
motion, change their rate. The observed change in 
the rate of a clock by a purely kinematic change of 
its velocity relative to an observer who changes his 
absolute velocity by going through a state o f  ac­
celerated motion, is, as the contraction of an unac­
celerated rod, seen as an illusion caused by a 
change in the deformed state o f  the observer.

4. The Apparent Constancy o f the Velocity  
o f Light

The principle that the velocity of light is con­
stant and isotropic in all inertial reference systems, 
and which is fundamental for the special theory 
relativity, seems to contradict the anisotropy of the 
light propagation predicted in an absolute theory 
expressed by (3.4). The contradiction is resolved if 
one analyzes the way in which the velocity of  light 
is measured within the framework of special rela­
tivity, because it is easy to show that the outcome
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of a measurement, always resulting in the same 
velocity, is a consequence of Einstein’s clock syn­
chronization convention. According to this con­
vention two clocks A and B are synchronized if

-  y(^A+ t a) > (4.1)

where t A is the time a light signal is emitted from A 
to B, reflected at B back to A arriving at A at the 
time t 2A , and where it is assumed  that the time at 
which the reflection at B takes place is tB. In taking 
for tB the arithmetic average of t A and t \ ,  the as­
sumption that the velocity of light is isotropic and 
constant in all reference systems is already implicit­
ly contained. It is therefore not surprising that the 
measured velocity of light, using Einstein’s clock 
synchronization convention, will always turn out 
to be equal to c in all inertial reference systems. 
Einstein’s constant light velocity postulate and his 
clock synchronization convention are therefore a 
tautology.

From an absolute point of view, the following 
would be true instead: If t R is the true, absolute, 
reflection time of the light signal at clock B, one 
has for the out and return journeys of the light 
signal from A to B and back to A, if measured by 
an observer in an absolute system at rest with the 
substratum:

(4.2)
y ( 'R - 'A )  = d / c + ,

Y ( t 2A- t R) =  d / c _  ,

where d  is the distance between both clocks, and 
where c + and c_ are given by (3.4). Adding the 
equations (4.2) one obtains

c ( r i - = 2 y d  I ' T -  ( r 2/c " )  sin2 w . (4.3)

If an observer at rest with the clock wants to mea­
sure the distance from A to B, he can measure the 
time a light signal takes in going from A to B and 
back to A. If he assumes that the velocity of light is 
constant and isotropic in all inertial reference sys­
tems, including the one he is in and which is mov­
ing together with A and B with the velocity v 
against the substratum, this distance is

d '  = ( c / 2 ) ( l  A - 1  , 

and because o f  (4.3):

d' = y d  J 1 -  ( v2/ c 2) s i n2 1/ / .

(4.4)

(4.5)

Comparing this result with (3.3), one sees that he 
would obtain the same distance d ' , if he uses a con­
tracted rod as a measuring stick, or Einstein’s con­
stant light velocity postulate. The velocity of light 
he will measure between A and B by using 
(i) a rod to measure the distance and (ii) the time it 
takes a light signal in going from A to B and back 
to A, of course, will turn out to be equal to c, 
because according to (4.4)

2 d '
=  c (4.6)

Rather than using a reflected  light signal to mea­
sure the distance d ' , and which assumes that c is 
constant and isotropic in both directions, the 
observer at A may try to measure the one-way 
velocity o f  light by first synchronizing the clock B 
with A and then measure the time for a light signal 
to go from A to B. However, since this synchroni­
zation procedure also uses reflected light signals, 
the result is the same. For the velocity he finds

d' d' 2 d '

0 / 2 ) ( / a + ^ a ) ^a _ / a
= c (4.7)

If instead of d'  one would take the absolute 
distance d,  measured by an observer at rest with 
the substratum, and the absolute time 7 ( / a _ ^a)> 
the velocity would turn out to be

c  =
y 2 | 1 — (r 2/ c 2) sin2 t//

One easily verifies that this velocity is given by

(4.8)

1 1
—  + —- 
c + c_

(4.9)

But if one takes the distance d'  and the time 
/B — as it was done to arrive at the result (4.7), 
the average to and fro light velocity is there the 
arithmetic average

c'  = j ( c +  + c _ ) (4.10)

Furthermore, by subtracting the equations (4.2) 
one finds that

r R =  t s  + (y/c~)  v d c o s  t//. (4.11)

This relation shows that from an absolute point of 
view the “ true” reflection time t R at clock B is only 
then equal to t B if v =  0.
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This last relation can be used to show that the 
synchronization of clocks by “ slow transport” will 
lead to the same synchronization-convention by 
reflected light signals, used by Einstein. In the 
synchronization by slow clock transport, two 
clocks, A and B, which are relative at rest and 
having initially the same location, are synchro­
nized at their common location. Thereafter, clock 
B is slowly transported to another location and 
where it is again brought to rest relative to clock A. 
This synchronization procedure can be analyzed in 
the ether rest frame, where both clocks move with 
the absolute velocity v. If in this frame, d  is the 
vector from A to B and if r is the time to transport 
clock B over the distance d,  one has

d  = t  • ö v (4.12)

where ö v  is the additional velocity given clock B to 
move it away from clock A. Slow transport then 
simply means that ö v  < v .  If the frequency stan­
dard in the ether rest frame is v0; the clock A has 
the frequency

vA = v o l / l  ~ v 2/ c 2 . (4.13)

During its slow transport relative to clock A, clock 
B has the frequency

vB = V0| / l  ~ ( v  +  ö v ) 2/ c 2 .

One then finds in first order of ö v / c  

vAv ■ ö v / c 2
Va -  vb - 2 / „ 21 -  i>7c

(4.14)

(4.15)

The frequency shift results in a phase shift AQ  
between both clocks which is

A(p =  ( vA — vB) r  =
vAv • d/c~  

1 -  v 2/ c 2
(4.16)

and the phase shift results in a time shift of the 
clocks. If tA and t B are the respective readings of 
the clocks in their frame of reference, their time 
shift is

y ( 'A - 'B )
vA 1 -  v / c

hence

ta = /B + ( y / c " ) r d  cos i//.

(4.17)

(4.18)

Comparing this result with eq. (4.11) one sees that 
by putting tA =  tR, clocks synchronized by slow

transport give the same reading as clocks synchro­
nized by reflected light signals, with exactly the 
same time shift (y / c 2) v d cos t//. Therefore, making 
a supposedly one-way light velocity experiment 
using clocks synchronized by slow transport can­
not reveal a light velocity anisotropy, if it exists, 
and can only lead to the constant isotropic value c. 
This can also be shown in a more direct way. Let 
d'  be the distance in the reference system of the 
clocks, and which can be measured with a solid 
rod, and let t B be the time reading of clock B, at the 
moment a light signal emitted from clock A arrives 
at clock B. The light velocity measured would then 
be

c' =  d ' / t b (4.19)

whereby d'  can be expressed through the distance d  
measured in the ether rest frame by eq. (4.5), and 
whereby in the ether rest frame d  is given by

d  =  c + y t A . (4.20)

With the expression for c + (eq. (3.4)), d'  (eq.
(4.5)) and tA (eq. (4.18)) one can compute c', with 
the result that

c . (4.21)

The synchronization by slow clock transport is 
therefore equivalent to Einstein’s synchronization 
by reflected light signals.

One may even contemplate a mechanical syn­
chronization of clocks through a rotating shaft, 
but there again, the same time shift would result 
due to a twist, caused by the Lorentz contraction 
acting on the rotating shaft [3]. We therefore see 
that all different synchronization methods appear 
to lead to the same clock synchronization, making 
it impossible to measure the one-way velocity of 
light. This fact underlines the beauty of Einstein’s 
clock synchronization convention by reflected light 
signals, because it permits to eliminate a prefered 
reference system, and with it the complexity of an 
anisotropic light propagation with which an ab­
solute formulation of the theory would have to 
work. But one can not say it is experimentally 
proven that the velocity of light is constant and iso­
tropic in all reference systems, because the out­
come of such an experiment is predetermined by 
the clock synchronization convention, and by 
which a “ one-way” light velocity anisotropy, if it 
should exist, remains hidden. If Einstein’s kine-
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matic interpretation of  the Lorentz transform a­
tions is correct, there will be no absolute reference 
system. One can then simply dispose of  the sub­
stratum as Einstein did, and assume that the veloc­
ity of light is constant and isotropic in all inertial 
reference systems. But if the dynamic interpreta­
tion is true instead, there must be observable non- 
adiabatic, Lorentz-invariance-violating effects, 
establishing an absolute reference system, and with 
it an anisotropic “ one-way” velocity o f  light.

5. The Lorentz-Transform ations

According to Einstein’s first postulate the veloc­
ity of light shall be constant in all inertial reference 
systems. Applied to two inertial reference systems 
/ A(rA, tA) and /b(/*b> ^b) in relative motion to each 
other this condition leads to

r 2A - c 2 t 2A = K ( r l - c 2 t l ) , (5.1)

where A' is a constant. Einstein’s relativity prin­
ciple, according to which there shall be no distinc­
tion between the two systems IA and / B, requests 
with equal justification that also

r l - c 2 t l  =  K ( r 2A - c 2t i ) (5.2)

Equations (5.1) and (5.2) can be simultaneously 
true only if K  = ± 1. The negative sign must be ex­
cluded from the identy when the IA and / B refer­
ence systems are the same. One therefore has

„ 2  2 , 2  _  2 2 , 2  
r  A ~ c  ‘ A ~  r B ~ c  ' B (5.3)

One immediately verifies that (5.3) satisfies the 
Lorentz transformations for a uniform motion 
with the velocity v along the x-axis:

(5.4)

* a =  y(xB- v t B), 

y \  = yB,

Za =  Zb ,
t \  = y( tB- v x B/ c 2) 

because

r \ ~ c l  f A  =  r ( * B -  v  ^ B ) 2 + > ; B +  Z  B

- c 2 y2(tB- v x B/ c 2)2 = r l - c 2 t l .
(5.5)

In the substratum interpretation of the Lorentz 
transformations by Lorentz and Poincare, the 
same clock synchronization convention by reflect­

ed light signals is used as in Einstein’s theory. This 
again makes the velocity of light equal and 
constant in all inertial reference systems provided 
the measurement is carried out with clocks 
synchronized according to this prescription. There­
fore, with regard to an / s(rs, /s) system at rest with 
the substratum one has

c 2 t \ = K ( r l - c 2 t 2s) . (5.6)

Equation (5.6) then satisfy the transformation 
formulas

X a = V k  y A ( x s- v A t s) , 

vA= |  A'vs ,
ZA = \ /rK Z s ,

U  =  y A ( 's - i ’A*s/ c 2) * 
yA =  i / | / 1  — '’a / ^ 2 ,

(5.7)

where vA is the absolute velocity of the IA system 
against the / s system, assumed to take place in the 
positive x-direction. To determine K,  a different 
absolute reasoning than in Einstein’s theory is here 
used. It considers a rod held together by electro­
magnetic forces, or forces acting like electromag­
netic forces. If moved through the substratum 
along its axis it is contracted by the factor 
I \ - v \ / c 2. For this contraction to follow from 
(5.7) requires to make K  = 1. One therefore can 
write

2 _  2 _  2_ 2,2 
 ̂A C ‘ A  — C * s

but also
„2 2 ,2 2 2 ,2 
r  c  ‘ B — r s c  ' s

and hence
2 2,2 _  2 2,2 

r  A ~  c  I A  -  r  B c  ' B >

(5.8)

(5.9) 

(5.10)

which is the same as (5.3), again leading to the 
Lorentz transformations.

Even though the final result of both theories is 
the same, the physical meaning is very different. In 
Einstein’s theory the contraction and clock 
retardation effect result from the property of a 
space-time with a constant light velocity for all 
inertial reference systems, whereas in the sub­
stratum approach by Lorentz and Poincare it 
results from an assumed single physical effect and 
which is the contraction of a physical body in 
absolute motion against the substratum. Because 
this contraction effect can be derived from the
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property of electromagnetic forces, the substratum 
interpretation of the Lorentz transformations can 
be seen as a derivation of special relativity from an 
underlying deeper reality.

6. Relativity-V iolating Effects

In the dynamic interpretation the Lorentz con­
traction takes a finite time, and it must therefore 
lead to effects violating special relativity. By 
observing these effects, a reference system at rest 
with the substratum can be determined.

A change in the absolute velocity against the 
substratum is accompanied by an acceleration. 
Therefore, let us assume that all the volume 
elements of some body are accelerated along a 
straight line in the same way, such that the body 
would not change its geometric shape. After the 
acceleration is completed and the body released 
from the accelerating forces, it would undergo a 
Lorentz contraction. This contraction would take 
a finite time, but an experiment measuring this 
time would not be capable to establish an absolute 
reference system, and therefore not be a test for or 
against special relativity for the following reason: 
According to the kinematic restrictions of special 
relativity different acceleration programs would 
have to be applied for different volume elements of 
the body, whereby the body would continuously 
change its shape as to satisfy the Lorentz contrac­
tion formula in each moment during its accelerated 
motion. Accelerations along a straight line are 
therefore unsuitable to break the peculiar interac­
tion symmetry with the substratum and which ac­
cording to the dynamic interpretation is the cause 
for the observed Lorentz invariance.

A rather different situation arises if a rotational 
motion is superimposed on a linear motion because 
according to a theorem by Herglotz [6] and 
Noether [7] such a superposition cannot be per­
formed within the kinematic restrictions of special 
relativity. Experiments involving rotational mo­
tion are therefore suitable to break the interaction 
symmetry with the substratum. If a body moves 
with a constant velocity against the substratum, a 
superimposed rotational motion would change its 
orientation relative to the direction of its absolute 
motion, and it would therefore suffer an oszilla- 
tory contraction and expansion. Furthermore, if 
the rotation is sufficiently fast, the contraction and

expansion will not be in phase with the rotational 
motion. Moreover, if the time for the contraction 
to take place is o f  the same order as the time to 
complete a rotation, a resonance would be excited, 
greatly amplifying a presumed relativity-violating 
effect. Apart from macroscopic bodies, such ef­
fects could even occur in atoms, nuclei or sub- 
nuclear particles with a large angular momentum. 
If the presumed substratum is at rest with the 
cosmic microwave background radiation, these 
rotational motions would be superimposed on a 
velocity of about 300 km/sec.

The contraction and expansion of the rotating 
objects can be thought of being communicated by 
compressional and surface waves. The propaga­
tion of these waves is in general very complex. 
However, for two very simple configurations, a 
rod, and a cross composed of two equal rods, both 
of which can serve as models for most moving 
complex bodies of interest, these waves reduce into 
compressional and bending waves with very simple 
properties. The case of a rotating rod was 
previously considered by Atkins [8], and the case 
of a rotating cross by the author [9].

For a better perspective, both cases are put 
together in Figure 2. Introducing a Cartesian co­
ordinate system, the rod and cross lie in the x - y  
plane, with the axis o f  rotation into the z-direction 
through the center o f  the rod and the cross. In a 
reference system at rest with the earth, the rod and 
the cross move along the positive x-direction with 
the same absolute velocity v as the earth. If both 
are at rest in the substratum, the length of the rod

Fig. 2. Rod and cross in the x - y  plane moving with the 
absolute velocity v into the x-direction, as seen from an 
observer at rest in the substratum, with the rod and cross 
arbitrarily inclined against the direction o f v. The dotted lines 
show how the rod and cross would appear to a co-moving 
observer.
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shall be /, and the four arms of the cross made up 
of two rods with the length / shall intersect under a 
right angle. If moving under the angle cp with the 
velocity v against the substratum, and without hav­
ing an intrinsic superimposed rotational motion, 
both the rod and cross are deformed as shown by 
the dotted lines in Fig. 2, if viewed from an ob­
server at rest with the substratum. For a comoving 
observer at rest with the rod and cross, both the 
rod and cross would appear undeformed because 
the observer himself would suffer the same kind of 
deformation.

If the rod is inclined under the angle cp before it 
was set into motion, it suffers a contraction which 
reduces its length to

I' =  I \ / \  -  ( v 2/ c 2) cos" (p (6 .1)

Assuming that v — 300 km/sec, which is the veloc­
ity against the microwave background radiation, 
one has v 2/ c 2 — 10-6 . It is therfore possible to 
expand (6.1) to obtain the change in the length of 
the rod with sufficient accuracy:

A I  =  / - / '  =  ( l /2 ) (v2/ c 2) cos2 <p . (6.2)

Under this change in its length, the rod is deformed 
relative to a mean length T= /(I  -  ( l / 4 ) ( r 2/ c 2)) by

x 0 =  ( / / 4 ) ( i > 2/ c 2) (1  -  2 cos2 cp) 

-  - ( l / 4 ) ( v 2/ c 2) cos 2^?. ( 6 . 3 )

With regard to the cross we are interested in the 
change of the angle (p, deformed under the ab­
solute motion against the substratum from cp to i// 
by the angle a 0 = ip — <P- Because tg i// = y tg cp, one 
can put for a Q<  1:

i gy /  =  t g ( p + a 0) - ( a o + t g « 0 ) / ( l  - a 0 t g p )

and hence

a 0
( y - t ) t g f f
\ +  y { g 2 (p

(6.4)

For v L/ c L — 10~6 one can put \ + y { g l (p— \ 
+ tg2 cp = 1 /cos2 (p and y - \ -  ( \ / 2 ) ( v 2/ c 2). One 
therefore has with sufficient accuracy

a 0 — ( 1 / 4 ) ( p 2/ c 2 ) sin 2<p . (6.5)

If the special theory of relativity is correct, the 
deformation functions for x 0 and a 0 remain valid if 
the rod and cross rotate with an angular velocity 
co, putting cp =  cot.  If the Lorentz-Poincare theory

is correct, this will only be true if the angular veloc­
ity is sufficiently low, to give the rod and cross in 
each moment enough time to assume the static 
equilibrium form predicted by the Lorentz con­
traction formula. If the angular velocity is not that 
small the deformation functions x  and a,  replacing 
x0 and a 0, are instead determined by the differen­
tial equations

x  +  2 oj] x +  co2cx

= -  ( / /4 ) ( r2/ c 2) co2 cos (2 cot) ( rod ) ,  (6.6a) 

CK +  2 CO\ (X +  5 CK

=  ( l /4 ) ( t’2/ c 2) cousin (2 cot) (cross), (6.6b)

where

(X)\ =

x T e  E

(6.7a)

(6.7b)

(6.7c)
9  Q C p d ~

The rod and the two bars of which the cross is 
composed, with the length / and thickness d,  have 
the following material constants: E =  Young 
module, q = density, x  = heat conduction coeffi­
cient, T  = absolute temperature, £ = thermal ex­
pansion coefficient, and cp =  specific heat at con­
stant pressure.

Equations (6.6a) and (6.6b) have the solutions

x(/)  = A c cos [2{u>t + ö c)\ , 

a( t )  = A b sin [2(cot  +  <5b)] ,

where

A c
(1/4 ) ( v 2/ c 2) c o 2

V ( c o 2c - 4  c o 2 ) 2 +  1 6  a > \ o j 2

(1/4 ) ( v 2/ c 2) c o 2b

]/ (cob — 4 co2)2+  16 co2 coA 

4  co\ co
tg 2 <5C = —

co

tg 2 ö b =

co  ̂— 4  co' 

4  CO] co

c o l ~ 4 c o ‘

(6.8a)

(6.8b)

(6.9a)

(6.9b)

(6.10a)

(6.10b)

Even though these formulas have been derived 
under the assumption that the rod and cross are
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macroscopic objects, they can be qualitatively also 
applied by adjustments of  the material constants to 
microscopic objects.

For macroscopic objects there exists in addition 
to the material constants listed the tensile strength 
<7 . It sets an upper limit for the rotational velocity. 
One finds for this maximum rotational velocity 
reached at the rim of the object

= \/ö7e. (6.11 )
If this rotational velocity is reached at the distance 
1/2 from the axis of rotation, it implies a maximum 
angular velocity

« m a x =  (2/1)  \ W q  ( 6 . 12 )

and one finds

^max/OJc I G/E

(J/d)  1 g / E
(6.13)

The deformation functions x ( t )  and a ( t )  have 
resonances which for a>\ <  coc, co\ <  cob are located 
at cores — coc/ 2  and a>res — cob/2 .  For solids one 
typically has | g / E  =  0 A .  Therefore, for com­
pression waves one has comax —0.1 coc, far below 
the resonance. For bending waves, however, the 
resonance can be reached by making l / d  >  10.

For compression waves far below the resonance, 
that is if co <  coc, one finds 

.2

X(t)  -
col

4 c ~ ] / (co2 - 4  CO2 ) 2 +  16 co2 co2 

cos(2 co t ) .  (6.14a)

Fig. 3. Distortion and phase-shift o f  cross at resonance for 
bendine waves.

For bending waves far below the resonance one 
likewise finds

. . \ v 
« ( / ) = — —

co b

4 c \ / (cOb-4 cd2^ + \ 6  co2 co2

• sin (2 cot) . (6.14b)

For bending waves one can even reach the reso­
nance, where for aj\ <  cob one has

o?res — (1/8 ) ( v 2/ c 2)(cob/a>\)  sin(2 c o t -  n/2)  . (6.15)

For a comoving observer the deformations x0(t) 
and a 0(t)  are unobservable because they are com­
pensated by his own deformation. He therefore 
can only observe the differences*

(6.16)
Sx  = x - x 0,

S a  = a  -  a 0.

For c o < c o c, well below the resonance and for 
CO] coc one finds for the residual change in the 
rod length with sufficient accuracy

ö x _  =  - / ( v 2/ c 2 ) ( o j 2/ c o 2c ) ( \ - 2  co^/co2)

cos(2 co t) , (6.17a)

and likewise for co <  cob and co\<4cob , for the 
residual change in the angle

<Sa_ — ( v 2/ c 2)(co2/c o l ) ( \  - 2  co2/c o l )  sin(2 cot) .
(6.17b)

Sx_  and ö a _ are here in phase with x 0(t)  and 
a 0(t).

At  resonance one finds for d a

^«res — ( \ / 8 ) ( v 2/ c 2)(cob / co\) sin(2 c o t -  n / 2)(6.18)

with the maximum deformation lagging behind the 
Lorentz contraction by 45° (see Fig. 3).

For c o >  cob, well above the resonance one finds

ö x + =  ( / /4 ) ( r2/ c 2)(l + cu2/ 4 c v 2) cos(2cot) (6.19a)

and

<5a+ — -  ( l / 4 ) ( r 2/ c 2)(l + co 1 / 4  co2) sin(2 c o t ) ,
(6.19b)

* Strictly speaking these differences are valid for the 
reference system at rest with the substratum. If expressed 
in a comoving reference system, there will be corrections 
of the order (r/c)4, but effects of this order have been 
neglected in all our approximations.
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in opposite phase to x 0 (t)  and a 0 (O- From these 
relations we see that above resonance the maxi­
mum deformations saturate to the values 
S x™x = ( l / 4 ) ( v / c ) 2 and = -  (1 /4 ) ( v / c ) 2.

According to Atkins [8] there are two observa­
tions which deserve to be analyzed in this context, 
the deformation of the earth, measured with a 
superconducting gravimeter by W arburton and 
Goodkind [10], and the experiment by Brillet and 
Hall [11]. If the substratum is at rest with the 
microwave background radiation, one would have 
v =  300 km/sec and with v directed under an angle 
of almost 90° against the earth axis.

For the deformed earth the excentricity e is 
related to S x  by

S x / l ^ - e 2/  2 ,  (6.20)

where S x / l  = S R / R ,  with R equal the earth radius. 
The change in the gravitational force at the surface 
of an oblate spheroid is [12]

A g / g  -  - ( e 2/30)(l - 3  sin26>) , (6.21)

where 6 is measured from the equator of  the 
spheroid. This expression takes into account the 
lateral expansion of the deformed spheroid with 
the Poisson number set equal to 1/2. If the “ ether 
wind” intersects the earth axis by 90°, the pole of 
the oblate spheroid will move on the earth’s 
equator. The maximum A g / g  will there be experi­
enced by an observer for whom the pole of the 
deformation spheroid has the same geographic 
longitude. The observation in question was carried 
out at a geographical latitude of 34°, which means 
that for the maximum value of A g / g  one has to set
0 = 90° -  34° = 56°. With this value one finds for 
the maximum

A g /g  — e 2/ 3 0  — - ( \ / \ 5 )  S x / l . (6.22)

For S x  one has to choose the maximum value for 
<5x_ . We put coc =  coE — 1.95 x  10 ” 3 sec-1 , taken 
from seismological data valid for the (^ -d e fo rm a ­
tion oszillation [13]. For the earth one also has 
tO] <£ coE. One therefore finds (co =  2 n / T ,  T  = one 
day = 86400 seconds)

A g / g  — ( l /1 5 ) ( r / c ) 2(co/coE)2 — 9 x  10“ 11 . (6.23)

This result compares well with the measured maxi­
mum value A g / g  — 7 x 10” 11 obtained by W arbur­

ton and Goodkind**. The phase in the variation of 
A g  leads to less certain conclusions if it is com­
pared with the direction of the cosmic microwave 
background radiation.

For the Brillett-Hall experiment we have the fol­
lowing parameters [14]: / = 3 0 c m ,  l'£V£> =  6 k m /  
sec, coc =  6 x l 0 4 sec“ 1, oj =  0.2 sec“ 1, aj\ ~  600 
sec “ 1.

One therefore can put oj] =  0 since ül>\/<jl)c <  1. 
From (6.17a) we thus obtain for the maximum 
value of 81/1

S l / l  — ( v / c ) 2(co/coc)2 =  10“ 17. (6.24)

Experimentally a value of S l / l  — (1.5 ± 2.5) x l O “ 15 
was observed, too large to be explained as a rela- 
tivity-violating effect. However, just an about 10 
fold increase in the rotational velocity of  the inter­
ferometer would have reached a comparable value 
(from (6.24)) in 81/1.

Much better appears the prospect with bending 
waves. There very large, even macroscopically 
large effects are possible in principle with bending 
waves at resonance [9]. Experiments involving 
bending waves could therefore become crucial to 
decide in between the kinematic and dynamic inter­
pretation of the Lorentz transformations and they 
could, of course, also establish the absolute 
reference system, needed for a complete dynamic 
formulation of the theory.

Finally we discuss possible relativity-violating 
effects in atomic physics. The most precise mea­
surements have been reached for the hydrogen 
atom. The forces holding the electron in its orbit 
are electrostatic and are propagated with the veloc­
ity of light. We therefore may put coc = n c / r B, 
where r B is the Bohr radius***. The electron 
velocity in the lowest orbit is v0 =  a c ( a =  1/137), 
implying a rotational frequency c o = v 0/ r^  =  
a c / r B. We therefore have co/coc = a / n .  Because 
S x / l  ~  S r ^ / r B ~  \ 8 e/ e \, where S e is the level shift

** We cannot agree with the analysis of the same 
problem by Atkins [8] who claims the value measured by 
Warburton and Goodkind would require that 
v -  30 km/sec instead of the 300 km/sec suggested by 
the microwave background radiation.
*** This is a plausible assumption because it is the elec­
tric potential which is a c number, and it, therefore, 
should give a lower limit for a possible relativity-violat­
ing effect. How good this assumption really is, can only 
be decided by a detailed quantum electrodynamic analy­
sis.
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relative to the state of the circling electron, one 
finds from (6.17a)

|<5e/e| = ( v / c ) 2( a / tt)2 =  5 x 10~12. (6.25)

Since e — 10 eV, one has ^ e  =  5 x  10-11 eV, a value 
at the limit of the experimental art. To observe a 
relativity-violating effect one would have to align 
polarized hydrogen atoms, first parallel and there­
after perpendicular to the “ ether w ind,” with the 
aim to find an energy shift between these two 
alignments. The experiment would have to be car­
ried out involving transitions into l > \  angular 
momentum states, because only those possess a 
rotational motion.

The effect would be of comparable smallness as 
the effects observed in experiments demonstrating 
parity-violation through the electroweak interac­
tion ( ~ 1 eV versus ~ 300 GeV, that is small by the 
order ~ 3 x l 0 -12). Even though the relativity- 
violating effect would not be parity-violating, it 
would act like a force which does not conserve 
angular momentum. This therefore raises the 
question if the discrepancies reported in these ex­
periments could have their cause in a weak viola­
tion of special relativity.

The relativity-violating effect would be substan­
tially larger for hydrogen-like atoms of nuclear 
charge Z >  1, stripped of all its electrons but one. 
There one has coc =  n c Z / r B, and a> = (a c / r B) Z , 
and hence (oj/ ojc)2 = ( a Z / n ) 2. One there would 
have

\öe/ e \ — ( v / c ) 2 ( a / n ) 2 Z 2 — 5 x l 0 _12Z 2 . (6.26)

Furthermore, e scales there as Z 2, and hence S e 
scales as Z 4.

One of the most precise experiments quoted in 
support of special relativity has been done by 
Forston et al. [15]. It involves nuclear magnetic 
resonance and its accuracy implies that a relativity- 
violating effect should be less than <5£ =  2 x l 0 ' 21 
eV. The precession frequency in this experiment 
was of the order a> =  10sec_1. The nuclear fre­
quency is o f  the order a>0 — O A c / R ,  where 
R -  10_12cm is the nuclear radius. With these 
values the nonadiabatic, relativity-violating energy 
shift would be

\ö e / e \ — ( v / c ) 2( c o / t o 0 ) 2

With e =  106eV, which is typical for a nucleus one 
finds S e — 1 0 ' 40eV. The value is very much 
smaller than the lower limit of S e — 2 x  1 0 ' 21 eV in 
the above quoted experiment. In spite of its great 
accuracy, this experiment is therefore unsuitable to 
detect nonadiabatic relativity-violating effects.

7. Can All the Forces o f Nature be Reduced to 
Electromagnetism ?

The derivation of  Lorentz invariance as a 
dynamic symmetry did rest on the assumption that 
the interaction transmitted by the substratum has 
the same form as electromagnetism, therefore rais­
ing the question, if all forces of  nature are in some 
sense electromagnetic. As in modern field theories, 
the interaction constants could still vary by many 
orders of magnitude. The gravitational interaction 
for example, which under normal conditions is 
very feeble, is believed to become strong at the 
Planck scale.

A reduction of all forces to electromagnetism 
would mean that the weak, the strong, and the 
gravitational force have an electromagnetic core. 
The unification o f  the electromagnetic and weak 
interaction in the Weinberg-Salam model cannot 
be considered a reduction to electromagnetism 
along these lines. This model in fact has serious 
blemishes. They show up in the short range of the 
weak force and the need to insert certain param ­
eters “ by h and .”

Leaving aside the question regarding the nature 
of  the weak force as unresolved, we are still left 
with the strong and gravitational forces. One out­
standing property of  electromagnetism is that 
electric charges come with different signs, with the 
sum of the charges adding up to zero. If the strong 
and gravitational forces are peculiar forms of 
electromagnetism, one would expect that this 
property, o f  the charges canceling each other out, 
somehow survives. In the strong interaction a quite 
similar cancellation of  different charges in fact oc­
curs. The charges are there called “ color,” and 
they always “add u p ” to a colorless combination. 
In gravitation, negative masses enter through the 
field, and many cosmologists believe that in our 
universe the positive masses of all matter are com­
pensated by the negative masses of all gravitational 
fields.
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If the strong interaction is a camouflaged elec­
tromagnetic interaction, the color charge would 
have to be a form of electromagnetic charge. A 
hint as to what this charge might be could be the 
empirical fact of electric charge quantization, 
because it strongly speaks for the existence of 
magnetic monopoles. The most simple model to 
assign color to magnetic charge is probably the one 
proposed by Schwinger [16]. In this model the 
quarks are dually charged particles, with electric 
charges equal to ± ( l / 3 ) e  and ± ( 2 / 3 )  e, and 
likewise magnetic charges equal to ± (1 /3 )  g and 
± (2 /3 )  g. According to Dirac one then has the 
quantization rule

eg  =  2 he  

making the magnetic interaction 

g 2/ h e  = 4 x 1 3 7

(7.1)

(7.2)

superstrong. The magnetic monopole hypothesis 
would also make it plausible why quarks cannot be 
observed as free particles. Consider two magnetic 
monopoles of opposite sign separated by the 
distance r, at which their potential energy will be

£po,=  - 9 2/ r .  (7.3)

Their total energy m e 2 can be estimated by the un- 
certainty principle:

m e 2 =^ he / r .  (7.4)

From (7.3) and (7.4) it follows that

E po[/ m c 2 = -  g 2/ h e  >  -  1 . (7.5)

Therefore, if an attempt would be made to 
separate two monopoles from each other, such an 
attempt would be foiled by magnetic vacuum 
breakdown producing a pair of monopoles a ttach­
ing themselves to the two monopoles one tries to 
separate. Qualitatively the same happens in quan­
tum chromodynamics if one wants to isolate a 
colored particle.

One other peculiar property o f  quantum 
chromodynamics are the quadratic terms of two 
vector potentials in the force equation. We can 
easily show that this property can be qualitatively 
understood as an underlying electromagnetic ef­
fect. Two magnetic monopoles separated by a 
small but finite distance can be seen as a thin 
magnetic solenoid with a monopole attached to 
each end of the solenoid [17, 18]. The interaction

of two such solenoids is then a superposition of 
forces acting between the uncompensated parts of 
the magnetic charges and the interaction of the two 
magnetic flux tubes. It is the second contribution 
which shall interest us here. If the first flux tube 
has a magnetic moment w , and the second one m 2, 
and if both are separated by the distance r, the 
vector potential of m x at the position of m 2 is

A ,  =
rti\ x e r

and likewise of m 2 at the position of

(7.6)

(7.7)

where er is a unit vector along r. One then finds 
that the force acting on m 2 by m\  is

F  =  V ( m 2 ■ c u rM ])

= 2 V \(er x A x) • (er x A 2)r ]  

= 6 (er x  A i) ■ (er x  A 2) e r 

and finally

F =  6 A t • A 2er .

(7.8)

(7.9)

An explanation of the strong force along these 
lines is also supported by the occurrence of a 
strong Lorentz-force F L = e ( v / e ) x H  caused by 
the strong magnetic field in the flux tube 
connecting two quarks. Strong spin dependent 
forces have in fact been observed in the collision of 
polarized protons [19]. It was as if the quarks acted 
like vortices. This effect is difficult to explain with 
quantum chromodynamics.

Turning finally to gravity, a hint in the right 
direction may be obtained from M acCullagh’s 
“ ether” formulation of Maxwell’s vacuum field 
equation [20] and which predates Maxwell’s theory 
by many years. MacCullagh’s equations are

dv  k
p -----= -  —  curl m ,

9 1 2

d(p 1 V (7.10)—— = — curl v ,
9 1 2

div v =  div (p = 0 ,

where v is the ether velocity vector. Making the as­
signment
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v = a E  , cp = -  ß H  , (7.11)

where a  and ß  are constants depending on the 
chosen units relating v and cp to E  and H,  (7.10) go 
over into Maxwell’s vacuum equation. In the 
“ether” form (7.10), Maxwell’s equations are non- 
relativistic Newtonian equations for the velocity v. 
From the substratum point of view this property is 
not surprising because if the substratum is the 
cause of the relativistic effects it should itself not 
be subject to these effects.

MacCullagh’s equations show that electro­
magnetic phenomena are connected with oszilla- 
tory motions of  the ether, and which suggests that 
gravitational fields may be connected with convec­
tive modes of the ether. If set into convective 
motion, the ether would then deform bodies, as in 
the Lorentz-Poincare interpretation of special rela­
tivity, and bodies placed in the flowing ether would 
feel a force. At alternative theory of gravity deve­
loped along these lines can predict all observed 
linear and nonlinear effects of general relativity. In 
particular it also gives the same correct 4-fold 
larger emission rate of gravitational waves if com­
pared with a naive electromagnetic analogy [21]. 
The theory reduces to a nonrelativistic Newtonian 
equation of  motion for the ether with a scalar and 
vector potential. Outside an attractive spherical 
mass M ,  for example, the ether would assume the

radial velocity obtained from the nonrelativistic 
Newtonian equation of  motion

v2 = 2 G M / r (7.12)

The flowing ether would lead to a radial deforma­
tion of all bodies by the amount [ 1 -  v2/ c 2, and a 
slowing down of clocks by the same factor. This 
immediately leads to Schwarzschild’s line element:

d r  =
d r

+ r 2(s\n2dd(p2 +  d 6 z)

1 -

2 G M

c 2r

2 /  „ 2 G M  \  2
2 J ’c r )

- c L 1 - (7.13)

which also can be obtained from Einstein’s theory, 
but only after solving the nonlinear gravitational 
field equations.

For r < 2  G M / c 2 one has for the ether velocity 
v >  c. According to (2.9), all matter within this 
region and held together by electromagnetic forces 
(including all elementary particles held together by 
those forces) would therefore become unstable. 
This would prevent the formation of black holes 
and might explain the large energy release of quasi- 
stellar radio sources.
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