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The Nielsen Hamiltonian of the general polyatomic molecule including anharmonicity and its 
resonances, Coriolis-coupling and its resonances, and rotation-vibration interaction are treated by 
statistical perturbat ion theory in its operator form. By generating function methods and operator 
theorems, which are treated in an appendix, cumbersome calculations with non-commuting 
operators are avoided. The results for H 2 0 and S 0 2 agree very well with accurate numerical 
calculations f rom the literature. Qualitative conclusions on the convergence of the per turbat ion 
series are drawn f rom the numerical calculations for model systems. 

1. Introduction 

The calculation of thermodynamic properties of 
ideal gases by statistical methods was reviewed 
some time ago by Frankiss and Green [1], They 
concluded that the methods have been developed 
between 1935 and 1950. Unfortunately, they over-
looked important theoretical work summarized by 
Godnev [2], Rowlinson [3] and Gurvich [4] and also 
extended numerical work. The article concentrated 
on the solution of the Schrödinger equation by 
perturbation methods, introduction of molecular 
constants from high resolution spectroscopy and 
numerical summation of the appropria te Boltzmann 
factors. An example for these types of calculations 
are the precise thermodynamic functions of N H 3 , 
calculated by Haar [5]. Extended systematic work 
can be found in the JANAF-tables [6], together with 
a critical discussion of the methods used [7]. 

If one considers the polyatomic molecule in the 
Nielsen-Watson approximation as system of cou-
pled anharmonic oscillators with polynomial or 
exponential interactions, the problem of eigenvalues 
and level densities is unsolved. This model system is 
investigated intensively in mathematical physics, as 
it is a prototype in quantum field and elementary 
particle theory, in statistical mechanics and ergo-
dicity, in energy transfer, in phase transitions and 
laser isotope separation. A lot of different powerful 
techniques were developed in these fields, but 
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unfortunately they are often unknown to workers in 
neighbouring areas. We shall take the opportunity 
to refer to some of these techniques. 

Beginning in 1968 we investigated the possibili-
ties of Schwinger-perturbation theory (SPT) for the 
calculation of thermodynamic data and level densi-
ties for molecules. As SPT deals with noncommut-
ing operators, we tried to eliminate the difficulties 
and present the results in terms of ordinary c-num-
ber functions. Though we calculated the partition 
function (PF) a long t ime ago [9], [10] we did 
publish it only in part because of the difficulties of 
the calculus of noncommuting operators. Mean-
while, we were interested again because of simplifi-
cations, of the introduction of variation-perturba-
tion theory, and because of the possibility to check 
our results against high quality calculations by 
Isaacson, Truhlar and Overend [11]. 

The aim of the present article is, therefore, 
twofold: First, we wish to show that SPT can be 
evaluated exactly to arbitrary order, including all 
resonances and couplings; second, by comparing our 
results to different techniques, we want to show that 
SPT and its improvements lead to compact, analyt-
ical expressions which, by simple differentiation, 
can be easily converted to the thermodynamic func-
tions H, Cp, Cv, S and level densities. 

The article is organized as follows: in Sect. 2 we 
discuss the Nielsen-Watson Hamiltonian and tech-
niques for calculating eigenvalues of coupled anhar-
monic oscillators. Section 3 sketches various tech-
niques for the calculation of the PF; SPT is applied 
to the vibrational part in Section 4 and to the 
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rotation-vibration part in Section 5. Numerical re-
sults are discussed in Section 6. In some appendices 
we try to discuss qualitatively the convergence of 
SPT for a perturbed harmonic oscillator and for 
diatomic molecules in fourth and third order SPT, 
respectively. 

The article is long because of the complexity of 
the polyatomic molecular Hamiltonian, but we 
think it necessary to present the fairly long expres-
sions for further applications. 

2. The molecular Hamiltonian and its eigenvalues 

2.1. The Darling-Dennison-Nielsen-Hamiltonian 

In high resolution spectroscopy one uses a 
Hamiltonian worked out and used extensively by 
Nielsen [12]. The basic v/ork is associated with 
Wilson and Howard, and with Darling and Den-
nison. We shall use a slightly truncated form of this 
"Nielsen-Hamiltonian" where too small effects are 
neglected. Our notation differs from Nielsen's inso-
far as we use the angular frequency co (unit: sec - 1) 
instead of the wavenumber co (unit: cm - 1) . Ac-
cordingly. the definition of the constants a\"'\ G\99'\ 
( f j etc. is altered [15]. 

H = hm + AH^ + A2HW, (1) 

(2) 
j ^ 9 l99 

ijk 9 \ l99 
p p , n(?9r) 

_ y y rg r9 ui * 
• /e< < (co-)1/2 

99 i 199 l9 9 
1 P a{"'] 

+ y Z Z 77-77- 777TT72 (/V + (3) z 99' 1 *gg 1g'9' 

1 P2 

H(1) = Z kljk, q, qj qkq,+ — Z f f 
ijk l g *gg 

- ^ r Z Z 
PgPg' iL 

2 rt 7 J99 Ig'9' ( « / « / ) 1 / 2 

Ii qj (4) 

where denotes the harmonic oscillator Hamil-
tonian corresponding to they'-th normal coordinate: 

^ = \hcOj{p] + q]). (5) 

This Hamiltonian contains anharmonicity, Coriolis-
coupling and rotation-vibration-coupling. For de-

tails see the authoratative handbook article and the 
excellent reviews by Mills [13], [14]. A is an ordering 
parameter also indicating the order of magnitude of 
the effects. 

A slightly different form was given by Watson 
(see Mills) [13] with a consistent order of magnitude 
classification and an additional mass-dependent term 
U, which is usually neglected both in spectroscopic 
and thermodynamic calculations. Using Mills' no-
tation with a meaning of the several symbols dif-
ferent from the one used in this article it reads 

H/h c = \Y.ür(Pr+q1) + Fanh (qr)/h c 
r 

+ X (fi2/2 h c) £irxß(Ja - / « ) (Jß 4 jß) + U/h c; 
^ (6) 

Fanh//* c = (1/6) <prsl qrqsqt + /24) (prs,u qr qs q, qu 

J \ = rotation angular momentum, 

j* = vibration angular momentum, 

= + (7) 
r 

= 6%p; = - (a^/y\/2IJß); 

yr = (:2nccor/h); C^qrPs(cos/cor)w2- {!') 
r, s 

= Coriolis-Coupling constant. 

As the handbook article is easily available, we still 
prefer the Nielsen notation, slightly modified by 
using latin-type indices. For all details and the 
meaning of the constants see Nielsen [12]. 

2.2. The eigenvalue problem of the 
Nielsen-Hamiltonian 

If the eigenvalues of the Nielsen-Hamiltonian 
would have been known, the summation of the ap-
propriate Boltzmann factors would be a program-
ming exercise. Unfortunately the polyatomic Schrö-
dinger equation can only be solved approximately. 

Recently Carney, Sprandel and Kern [15] pub-
lished an extended review on the variational (and 
perturbational) approaches to vibration-rotation 
spectroscopy for polyatomic molecules where they 
critically summarized present techniques used in 
high resolution spectroscopy. The most comprehen-
sive publication of conventional perturbation theory 
is by Amat, Nielsen and Tarrago [16], so that it is 
only necessary to discuss developments in different 
fields. 
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Only in few cases is it possible to prove conver-
gence of perturbation series. For one-dimensional 
anharmonic oscillators of the types 

H = ^ + l q l k and 

H = & 0 + X q * k + l ( 8 ) 

it was proved that the Rayleigh-Schrödinger per-
turbation theory is divergent for arbitrary small A 
[17, 18]. It is possible, however, to sum the divergent 
series to infinite order by Pade-approximants, con-
tinued fraction and Stieltjes-summation [19]. For 
coupled anharmonic oscillators the calculations 
become even more complicated, but Banks, Bender 
and Wu [20] proved, that Rayleigh-Schrödinger-
perturbation theory is divergent for coupled quart ic 
anharmonic oscillators. Non-perturbational tech-
niques are, therefore, investigated by Montroll [21] 
and co-workers who, by a combination of analytical 
and numerical techniques calculated eigenvalues for 
coupled and spherical anharmonic oscillators with 
quartic anharmonicity. Unfortunately, oscillators 
with mixed cubic and quartic anharmonicity are not 
treated. Even more interesting is their WKB-type 
technique for calculating level densities, so that one 
can compare high temperature PF with bounds 
from different techniques. 

It should also be mentioned that direct varia-
tional techniques become more and more impor-
tant. Marcus and Noid [22] calculated precise eigen-
values of the Henon-Heiles Hamiltonian, a standard 
model of celestial mechanics, ergodicity, and energy 
migration in molecules. 

H = ^ + ^ + X { q { q 2
2 - \ q l ) . (9) 

They diagonalized a 1200x1200 matrix. Another 
interesting approach was the application of the 
algebraic computer language MACSYMA to high 
order perturbation theory [23], which will facilitate 
cumbersome and error-proned analytical calculations 
by hand. Another interesting approach is by Bow-
man [24] who calculated energy levels by SCF-
techniques. All these techniques may also lead to 
precise eigenvalues of the Nielsen-Hamiltonian, 
especially at higher excitation energies. 

3. Methods for calculating partition functions 

As the article mentioned in the introduction 
does not present modern techniques for calculating 

partition functions, we take the opportunity to 
sketch various methods and refer to scattered 
results. We assume that in general the vibration 
rotation Hamiltonian H can be split up in some way 
into two parts 

H = H0+Hl (10) 

where H 0 corresponds to an exactly solvable prob-
lem. 

3.1. Customary techniques for the PF of polyatomic 
molecules 

Customarily the partition function Z is defined as 
a sum over the Boltzmann factors formed with the 
eigenvalues Em of the discrete spectrum of H. 

Z = X < 7 „ , exp ( - / ? £ „ ) ; ( H ) 
m 

where gm is the degeneracy. 
Besides the difficulties with the eigenvalue prob-

lem mentioned above, this summation requires ap-
proximations. Pennington and Kobe, and Wooley 
developed expansion techniques for the various 
sums over rotation and vibration quantum numbers 
[25]. Durand and Brandmaier [25] evaluated the 
various higher order corrections to the PF numeri-
cally. It was pointed out by Evans [26] that these un-
restricted summations of questionable energy levels 
at higher energies will lead to wrong results. For 
diatomic molecules one introduces cutoffs for both 
rotational and vibrational quantum numbers, which 
was not done as yet for polyatomic molecules. 

3.2. Variational techniques 

Non-perturbat ive treatments based on the trace 
formulation of the PF are exact upper and lower 
bounds given by the Gibbs-Bogoliubov and the 
Golden-Thompson inequalities. As there exist ex-
cellent reviews by Girardeau and Mazo [27], Huber 
[28], and Falk [29] for the lower bound, we only give 
the essential formulas: . 

Z = Tr{exp (—/?//)} = Tr { e x p [ - / ? ( / / 0 + / / i ) ] } , 

Z L B = T r { e x p ( - A / / 0 ) e x p ( - ^ < / / 1 > 0 ) } , 

<// , )o = Tr {exp ( - ß H 0 ) Hx}/Tr {exp ( - / ? / / 0 ) } , ( 1 3 ) 

Z U B = Tr {exp ( ~ £ / / 0 ) exp ( - / ? / / , ) } , (14) 

Z L B (Gibbs-Bogoliubov) ^ Z ^ ZÜB (Golden-
Thompson). 
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They are valid under fairly general conditions for 
Ho and H\, especially H\ needs not to be small in 
the sense of perturbation theory. The lower bound 
with and without variational parameters can be 
evaluated easily for the linear harmonic oscillator 
with exponential, Gauß- type or arbitrary poly-
nomial interactions, and for the polyatomic mole-
cule with arbitrary polynomial interactions. The 
upper bound, as yet, is only solved for special cases 
of anharmonic oscillator systems. 

3.3. Semiclassical techniques 

Semiclassical techniques are well known since the 
classical work by Kirkwood and Wigner and its im-
provements [30]. They can be applied easily to 
linear anharmonic systems, but lead for coupled 
systems to difficulties. Only for the spherical Ein-
stein model closed analytical results could be given 
[31]. Recent advances by modified Feynman path 
integrals have been achieved by W. Miller [32] and 
co-workers, and by Jorish and Zitserman [33] for 
linear anharmonic oscillators, corresponding to 
diatomic molecules. The latter authors applied the 
local approximation to two-dimensional systems 
and calculated the PF of the planar quart ic oscilla-
tor. A somewhat related path integral technique was 
suggested by Papadopoulos [34] for the polyatomic 
molecule, but the path integrals have to be per-
formed numerically. A Monte-Carlo-type semiclas-
sical calculation was performed recently [35] to 
show the validity of an old approximation by Pitzer 
and Gwinn [36]. They suggested 

Z(T) ~ ZC(T) [ZK{T)/Z*(T)\, (15) 

where the exact quantum statistical PF of an anhar-
monic oscillator Z(T) was assumed to be propor-
tional to the corresponding classical PF ZC(T) mul-
tiplied with the quotient of the quantum (Z K (T) ) 
and the classical (Z*(F) ) PF of a reference oscilla-
tor. Isaacson and Truhlar [37] investigated this ap-
proximation systematically for some one-dimen-
sional model potentials, and Isaacson, Truhlar, 
Scanlon and Overend [11] calculated the PF of tri-
atomics in various force field approximations in the 
Pitzer-Gwinn technique. Comparison with their 
results will be given below. 

3.4. Thermodynamic perturbation theory 

Thermodynamic perturbation theory in connec-
tion with molecular problems is not new. Already in 

1933 Serber [38] introduced a perturbation treat-
ment of the canonical density matrix for the Kerr-
effect. His technique is similar to the perturbation 
method of Peierls [39] developed in connection with 
the diamagnetism of conduction electrons. Naka-
j ima [40] reviewed perturbation theory in statistical 
mechanics in 1955. In the same year Saenz and 
O'Rourke [41] gave an application of Schwinger-
operator perturbation theory, and also a WKB-type 
perturbation expansion, which contains SPT. 
Further applications to solid state physics can be 
found in Choquard ' s [42] book on phonon anhar-
monicity. Resonances in polyatomic molecules have 
been treated by SPT [43], as well as the diatomic 
and the polyatomic molecule. Because of the cal-
culus of noncommuting operators, the results are 
fairly complicated. Independently Naya [44], and 
Naya and Siegel [45] treated the linear anharmonic 
oscillator PF. Calculation of operator traces in the 
perturbation series were greatly simplified by a 
generating function method which was used for 
level densities of polyatomics [45 a] and for the 
isotopic dependence of the diatomic dissociation 
equilibrium [46], 

Wolfsberg and co-workers [47] applied SPT suc-
cessfully to the isotopic equilibria of polyatomic 
molecules, and Lew and Ishida [48] also investigated 
isotope effects by SPT. The well-known SPT is to 
second order 

Tr {exp [—/?(//o+//1)]} = Tr{exp(—/?//0)} 
-ßTr{H i exp ( - / ? / / 0 )} 

l 
+ (£2 /2) j d s 1 T r { / / 1 e x p [ - £ / / 0 ( l - s . ) ] 

o 
• H | e x p f - ^ Z / o ^ ] } + • • • . (16) 

H\ must be small in the sense of perturbation 
theory. It will be shown in the appendices, that this 
condition is not sufficient. We, therefore, tried to 
improve the range of validity by considering a com-
bination of variational techniques with SPT. 

3.5. Variation-perturbation theory 

It was mentioned in 3.2 that the Gibbs-Bogoliu-
bov inequality can be evaluated including varia-
tional parameters. A variation of the equilibrium 
positions and the frequencies of the harmonic refer-
ence oscillators is appropriate in the case of poly-
atomic molecules with polynomial interaction. Cal-
culations for one-dimensional oscillators show a 



171 J. Bohmann and W. Witschel • The Polyatomic Molecule Par t i t ion Funct ion 

strong improvement of the lower bound. As the 
choice of H0 in SPT is fairly arbitrary, we cal-
culated an optimized H 0 from the variational lower 
bound and took it as zero order Hamiltonian in the 
subsequent SPT. As an example, where precise 
eigenvalues were known, we took the quartic anhar-
monic oscillator 

H q = ^ y ( p 2 + q2) + l h c o q 4 (17) 

and introduced 

( ß ) = ^ ( p * 2 + < ? * 2 ) , ( i s ) 

ti co I co2—Q2 \ . , I co \ 2 . 

where Q (or k = co/Q) is the variation parameter. 
For details and the fairly long formulas we refer to 
[49], but we wish to show the improvement of the 
results in Table 1. 

For the constants chosen in this example the 
numerical PF from the Hioe-Montroll eigenvalues is 
Z$ M = 2.2153. For completeness we also give the 
exact Golden-Thompson bound including the varia-
tion of Q: Z^B= 2.2225. One sees that SPT (k = 1) 
is wrong to the extent of several orders of magni-
tude. With decreasing values of k, the result is im-
proved till very good agreement with is reach-
ed. The case corresponding to the optimal value of 
the lower bound is in bold type. 

It will be interesting to see whether variation-
perturbation techniques work as well for coupled 

Table 1. Variation-perturbation theory for the quartic an-
harmonic oscillator. Improvement of SPT with variation of 
k = (co/Q). 2$]PT = Variation perturbation theory based 
on second order SPT, Z^ (Q) = Lower bound including the 
variational parameter Q. ßfi co = 0.2, X = 1. 

k 7 V 
-^SPT z l B ( ß ) 

1 6518.72 1.3815 ( - 6 ) 
0.9 2494.48 2.4234 ( - 4 ) 
0.8 844.30 9.6242 ( - 3 ) 
0.7 242.83 0.1171 
0.6 55.97 0.5694 
0.5 10.14 1.3868 
0.4 2.688 2.0368 
0.3456 2.2381 2.1373 
0.3 2.1640 2.0712 
0.2 1.7234 1.5682 
0.1 0.8945 0.8128 

oscillator systems. Unfortunately, only few exact or 
high precision numerical results are known for these 
systems. 

4. Vibrational PF of anharmonic oscillators, 
application of second quantization 
and operator techniques 

We shall evaluate the PF in the trace formulation. 
As the potential energy ends with an even power, 
the harmonic oscillator basis can be extended to 
infinity and no cutoff-problems because of dissocia-
tion arise. Evidently, this is an unphysical approxi-
mation. For linear anharmonic systems of the 
r-(2 m+2) — r~2 m . type theorems exist giving the exact 
number of bound states, a given potential can sup-
port [50]. For polyatomic systems such theorems 
seem not to exist. The problem of cutoff, treated ex-
tensively for atoms [51] and diatomics [52], was 
solved recently by inclusion of the continuum. 
Whereas the results for atoms seem to be satisfying, 
the treatment of the Morse-oscillator merits further 
consideration. For intermediate temperatures, 
considered here for polyatomic molecules, we tried 
to control the influence of limited numbers of 
quanta in the trace calculations. The results are 
fairly insensible for both rotational and vibrational 
cutoffs. 

4.1. Direct evaluation 
Following the technique given by Messiah [53], 

one sees that 
qj=(äJ+äj)/f2 , (20) 

p]=i(äj-äj)/][2 (21) 

with [äj, <a£]_= öjk- For simplicity, we count de-
generacy separately to avoid the double index. 

The technique, following [9, 10], will be explained 
for the term proportional to kjkk appearing in 
second order SPT where also the effect of Fermi-
resonance can be seen. The notation Zj^"1 which is 
used subsequently indicates an arbitrary numeration 
m of /-th order potential terms contributing to 
second order SPT. 

l 
Zi>35] = ^ /?2kjkk j Tr {exp [ - ß 4 ^ f > ) ] 

o 
• [ät e x p ( ß ti cokS\) + ak e x p ( - ßti w^i)]2 

• [äj exp (ß h a)jS\) 4 äj exp ( - ß ti coyS])] 
•(ät + äk)2(äl + äj)}dsl. (22) 
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Using the formulas of Appendix C and the com-
mutation properties of the trace, we get in terms of 
the diagonal number operators 

i 
Z?5] = ±ß2 kjkk \ Tr {exp [ - ß + * # > ) ] 

o 
• [(nl-nk)(nj exp{(2ek + ej)si} 
+ («,• + l )exp{(2c j t -e y ) jj}) 
+ (2hk+\)2(njexp{ejsl} + (hj+ 1) exp{-e /-51}) 
+ (n2k + 3nk + 2) ( « y e x p { - (2 £k-£j)si} 
+ («,-+ 1) e x p { - ( 2 e * + ey) j,})]} d s , , (23) 

where the abbreviation e, = ßti co, was introduced. 
The traces are known to be of the geometric series 

form X exp (-£,•«), which can be written down 
n 

after differentiation of the ordinary geometric 
series: 

X exp ( - Ein) = exp (e,)/(exp (£,) - 1). (24) 
n 

The ordering integrals are 
i 

Y(=) = j exp (r5|) d^i = [exp (r) - l ] / r , (25) 
o 

so that the final result reads with the abbreviation 
oc 

Zkj = exp ( - Ej/2) X ni exp ( - £jnj) (26) 
n,=0 

z[35] = i\ß2kjkk{(Z2k-Z]k)[Zu Y(2sk + Ej) 
+ (Ziy + Zoy) Y(2ek-ej)] 
+ (4Z2k + 4Zxk + Z0k) 
• [Z1; Y(sj) + (Z\j + ZQj) Y(-Ej)] 

+ (Z2k + 3Zlk + 2Zok) [ZJJ Y(Ej-2Ek) 

+ (Zyi+Zoj) Y(-2ek-£j)]} . (27) 

It was already shown [43] that in contrast to ordi-
nary perturbation theory, resonances of all types are 
included consistently. For 2 c o j we get Fermi-
resonance which is solved by L'Hospital 's rule. 
Anharmonic resonances change the simple molecu-
lar level pattern and lead to irregularities which are 
closely related to the irregular trajectories found in 
numerical investigations of the classical and quan-
tum dynamics of anharmonic oscillator systems. 
With increasing number of vibrational modes, the 
possibility of accidental resonances increases, so 
that SPT is a valuable means to incorporate these 
irregularities. With increasing powers in the poten-
tial and in higher orders, the direct methods be-

come very complicated. We, therefore, tried to 
avoid the difficulties of the operator calculus by a 
generating function method. 

4.2. Generating function method 

For simplicity we explain the method for the one-
dimensional case, details will be found elsewhere 
[10]. 

In SPT of arbitrary order expressions of the form 

Tr {exp ( - ß & ü ( ä + a ? + a a,)'k (ä+ a f 2 + ä a,2)> 
(«+a*23 + aal23y (28) 

arise, where a* = exp(ßhcos\), ocj = exp (-ßh cos\) 
etc. Repeated normal-ordering according to Appen-
dix C will be very cumbersome. On the other hand, 
it is easy to define a generating function G F 

G F = Tr {exp ( - ß^0) exp [kx (d+ a t + ä aO] 

• exp[£ 2 (a + a* 2 + aa 1 2 ) ] •••} . (29) 

The exponentials are united by repeated application 
of the BCH-formula leading, to second order, to 

G F = Tr [exp ( - ß e x p [(A:, a t + k2 a f 2 + • • •) a + 

+ (k\ a, + k2<xx2 +•••)£]} 

• e x p { / : 1 ^ 2 ( a i a * 2 - a i a * ) / 2 H — } . (30) 

This is exactly the form of the characteristic func-
tion of the harmonic oscillator probability distribu-
tion, which is 

G F = Z 0 exp | | (k\a* + k2a?2 + • • •) 

• (k\%\ + k2y.\2-\—) 

• exp{A ' 1 Är 2 ( a ] a f 2 - a t a 1 2 ) / 2H—}, (31) 

where Z 0 denotes the harmonic oscillator PF 

Z 0 = [2 sinh (e /2)] - 1 , e = ßhco 

and 

R = coth (E/2) . (32) 

One sees that the non-commuting operators dis-
appear. It remains to find the various traces either 
by series expansion and comparison, or by differen-
tiation according to the order parameters kh The 
latter technique was used in an application of the 
algebraic programming language REDUCE II to 
higher order perturbation theory, but because of 
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computer diff icul t ies we did not succeed. An ap-
plication of M A C S Y M A which also can integrate 
the ordering integrals would, hopeful ly , be more 
successful. As detai led formulas for the various an-
harmonic terms are not publ ished as yet, we give 
the fairly lengthy formulas for four th order poten-
tial and second order SPT. Higher o rder corrections 
are treated by Bohmann (a l imited n u m b e r of this 
thesis can be requested). 

4.3. Formulas for anharmonic oscillators 

In the present section we give several terms con-
tr ibuting to the vibrat ional P F of po lya tomic mole-
cules in first and second order SPT. Thi rd and 
four th order potential te rms are considered. The 
vibrational sum which can thus be calculated must 
be mult ipl ied by the appropr ia t e rotat ional sum, a 
discussion of which is given in C h a p t e r 5. We use 
the notat ion 

coj = angular frequency of the normal mode j, 

(33) 
Ej = ß h COj , 

R j = coth (Ej/2), 

Z ^ = [2sinh ( E j /2 ) ] " 1 . 

4.3.1. F i r s t o r d e r S P T 

Generally, terms of the fo rm 

Z\n) = ~ßTr{kijkmqtqjqkqm exp ( - ß H ' 0 ) } (34) 

arise, where the superscript n in brackets indicates 
an arbitrary numera t ion . Subsequent ly we assume 
that H'o consists only of the ha rmon ic oscillator 
Hamil tonians which correspond to the indices of the 
anharmonici ty constant kjklm\ Z'0 is the P F cor-
responding to H'o, for example Z'0 = • Z^k) for a 
term proport ional to kjjkk. 

From the structure of the G F (Eq. (31)) it is clear 
that terms containing odd powers of the normal co-
ordinates do not contr ibute to the PF. Addit ionally, 
it should be ment ioned at this point that the Gibbs-
Bogoliubov lower bound is closely related to first 
order SPT, as can be seen by compar i son of Eqs. 
(16) and (13). Therefore , the fol lowing equat ions 
can also be used for the calculat ion of Z L B : 

Z | ! ) = —/?Zo(3/4) k j j j jR] , 

Z\» = -ßZ'o(\/4)kjjkkRjRk. 

(35) 

(36) 

4.3.2. S e c o n d o r d e r S P T 

In second order we get expressions of the forms 

Z^=(ß2/2) | kjjkkrs,Tr j I 

• exp ( - ß H ' 0 ( \ - S i ) ) q i q j q k 

• z \ V ( - ß H Q s { ) q r q s q ) ^ , (37) 

Z ^ = ( ß 2 / 2 ) | kijkmkrstw1r j J 

• e x p ( - ß H ' q ( \ - s { ) q i q j q k q m 

• e x v ( - ß H ' o S \ ) q r q s q , q ) ^ , (38) 

where the superscripts [3«] and [4 n] correspond to 
the arbitrary number ing of third and four th order 
terms. 

Low order indices contr ibut ions are easily cal-
culated by the direct method , whereas higher 
powers are calculated more economically by the 
GF-method . As the results are very long, we only 
give the third order terms completely and the four th 
order terms which are necessary for bent t r ia tomic 
molecules of the type XYX. The complete list can 
be requested or easily calculated. 

Z ^ = ^-ß2kjkm{ZljZikZ]mY(Ej+Ek+Em) 
1 o 

+ Z 1 / Z u - ( Z | m 4 Z 0 m ) Y(£j+£k-Em) 

+ Z\jZ\m(Z\k+ Zok) Y(£j-£k+£m) 

4 Z\kZ\m(Z\j+ ZQ,) Y(£* + £„,-£,-) 

4 Z\j(Z\k + ZQk)(Z\m + Z 0 m ) Y(Ej-Ek-Em) 

4 Z\k(Z\j+ Z oy) (Z1 ,„ + Z0m) Y(£k- Ej - Em) 

+ Z|m (Zyj+Z0j) (Zjk + Z0k) Y(£m-£j- £k) 

4 (Z\ j + Z0/) (Z1 A- 4 Zo*) ( z I m 4 Z0m) 

• Y(-£j-£k-£m). (39) 

This expression is calculated by the direct me th -
od. One observes a Fermi- type resonance for 
ej j ~ cok + com which is t reated consistently by L 'Hos-
pital 's rule. For the expressions calculated by the 
GF-me thod we introduce 

Y+ (z) = 2 [cosh (z) — 1 ]/z , (40) 

F_(z) = 2 sinh (z) /z (41) 
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for which the limits for 
nances) also exist. 

3 

0 (anharmonic reso-

Z F - — ß2 Z'o kjjj {R] [9 (Ej) + (3 £j)] 

-3Rj[3Y+(£j)+Y+(3Ej)] 
+ 3Rj[Y-(3ej)-Y-iej)] 

-[Y+(3ej)-3Y+{ej)]}t 

Z^ = ^-ß2Z'Qkjkkkj i Rk Rr 

(42) 

(43) • { R j Y ^ - Y ^ S j ) } , 

Z ^ = - ^ ß 2 Z ' 0 k j j j k j k k R j R k 

' {Rj Y-(EJ) — Y+(Sj)} , (44) 

z f ] = ß2 Z'o k)kk {RjRl [4 y_ (Ej) 

+ Y-(Ej+2ek)+Y-(Ej-2Ek)] 

-R2
k[4Y+(Ej)+Y+(Ej+2Ek) 

+ Y+(ej-2ek)] 

-2RjRk[Y+(Ej+2sk)-Y+(Ej-2Ek)] 

+ 2Rk[Y-(£j+2Ek) - (ej-2£*)] 

+ Rj[Y-(ej+2ek)+Y-{ej-2ek) 

-2Y-(ej))-[Y+(ej + 2ek) 

+ Y+(£j-2Ek)-2Y+(Ej)]}. (45) 

Zj,35] is identical to (27), though, because of the dif-
ferent methods it looks quite different. 

The contributions due to fourth order potential 
constants are: 

Z^ = — ß2Z'0k 2 
j j j j 

• {RAj [ (4 Ej) + 16 y_ (2 Ej) + 36] 
-4R3j[Y+(4Ej) + SY+(2Ej)] 

+ 6 Rj [ (4 Ej) + r_ (2 Ej) - 6] 
- 4Rj[Y+(4Ej)-2Y+(2Ej)] 

+ [Y-(4EJ)-4Y-(2EJ) + 6]} , (46) 

Z142] = 
1 

128 
ß2Z'0k2

jkk{R2R2
k[4 y_ (2c y ) + 4 Y-(2sk) 

+ Y-(2ej+2ek) + y_(2e , -2£*) + 16] 

+ 4 R j R k [ ( 2 e 7 + 2 - y_(2£, -2£*)] 

+ [Y-(2ej+2ek) + Y-(2ej-2ek) 

-2Y.(2Ej)-2Y-(2Ek) + 4] 

+ I j [ Y- (2 Ej+ 2 Ek) + y_ (2 £ , - 2 Ek) 
0 

jk 

+ 4 (2 Ek) — 2 (2 £y) — 8] 
- 2 / ? ; [ 4 Y+ (2Ej) + Y+(2Ej+2sk) 
+ Y+(2£j-2Ek)]-2Rj[Y+(2ej+2sk) 

+ Y+(2Ej-2Ek)-2Y+(2Ej)])}, (47) 

where the symbol in the sum denotes a permuta-
tion of the indices /, k. 

Z f l = ß~ Z'o kjjjj kjjkk Rj R k [ R2 [ Y.(2ej) + 3] 

-2RiY+(2£j)+Y.(2EJ)-2}, (48) 

Z^ = — ß2Z'okjjjjkkkkkR2R2
k, (49) 

Z^l = — ß2Z'okjjjjkkkmmR2RkRm , (50) 

Z f l = ß2 Z'o kjjkk kkkmm RjRm 

• {R2
k[Y-(2Ek) + 4] 

-2RkY+(2Ek)~ Y-(2ejt) - 2 } . (51) 

5. Rotation-vibration interaction, 
large amplitude motions 

5.1. Rotational PF 

As the PFs of rigid rotation are well known, but 
often overlooked in textbooks and reviews, they are 
sketched briefly. 

5.1.1. S p h e r i c a l t o p 

The eigenvalues 

E. = (ti2/2I)J(J+\) (52) 

are (2 J+ l ) 2 - fo ld degenerate, so that the PF can be 
evaluated by means of ^-transforms. For high tem-
peratures Fox [54] gave a detailed discussion, 
whereas for low temperatures the classical work by 
Maue is still important, where the symmetry of 
nuclear spin and rotation is taken into account [54], 

5.1.2. S y m m e t r i c t o p 

The eigenvalues 

EJK=(h2/2Ixx)J(J+\) 
4- {(h2/2)(\/Izz-\/Ixx) K2} (53) 

are (27+l ) - fo ld degenerate. Depending on the pro-
late or oblate form, the equilibrium moments of 
inertia can be commuted. One can calculate the PF 
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by various methods, the customary one is by Euler-
MacLaurin asymptotic series [55]. 

Following Kassel [56]. the different terms arising 
in the perturbat ion expansion 

00 X 

ZRLT(<2>)= Z Z ( 2 . 7 + 1 ) 0 
J=0 K =J 
• exp { - oxJ (J + 1) -y o x K2} 

o, = ßh2/2I^, y= (Ixx/Izz) - 1 , (54) 
which are characterized by the different values of 
(p. can be calculated by parameter differentiat ion. 
The zero and first order terms are 

Z I L T ( I ) = nw2 ox
3/2 exp (ox/4) (y+ 1) - 1 / 2 

•{\+yox/\2(y+\) + --}, (55) 

Z j & T ( * 2 ) = nW2 ox
5/2 exp (ox/4) (y + 1)~3/2 

•{\ + (y-2)ox/\2(y+\) + ---}, (56) 

Zf&T(J(J+ 1)) = n]/2a-5/2exp(ax/4)(y+ 1 )",/2 

' ! ( 2 y + 3 ) / 2 ( y + l ) - l — } . (57) 

If the exponential factor in Z R O T O ) IS expanded 
too, (55) becomes 

Z l a r ( l ) = (n/oz)U2ox
l{\ + (4ox-o2

x/oz)/\2 (58) 

4 (32 o2 - 24 o3
x/oz + 7 <74/a2)/480 + • • •} 

which will be compared to the PF of the asymmet-
ric top. 

For completeness we also give the matr ix ele-
ments in the symmetric top basis which are neces-
sary for the subsequent applications of SPT to 
Coriolis effects and rotation-vibration interaction. 

<KJ P2\KJ) = (KJ Pj KJ> 

= ti2/2{J(J+\)-K2}, (59) 

(KJ\P2
Z\KJ) = h2K2, 

(KJ | P4 \ KJ> = (KJ | P4 K,J) 

= (ti4/8) {3J2(J + l ) 2 - 2 J ( J + 1) 
-6J(J+\)K2 + 5K2+3K4}, (60) 

(K,J\P4
z\KJ) = ti4K4. (61) 

For some recent developments on the symmetr ic top 
PF we refer to Kayser and Kilpatrick [57], 

5.1.3. A s y m m e t r i c t o p P F 

It is well known that the asymmetric top eigen-
values cannot be given in closed form, but extended 
tables for the numerical calculation are available. 

For an excellent review on the asymmetric top see 
van Winter [58], An elegant semiclassical Wigner-
Kirkwood expansion leads to simple closed expres-
sions. Stripp and Kirkwood derived [59] 

Z£5 t = (n/ox oy o:)u2 [ 1 + (1 /12) (2 g x + 2 Oy (62) 
+ 2 Oz — Ox Oy/Oz — Oy ojOx — Oz Ox/Oy) H ] 

which in the symmetric top limit agrees with 
Viney's result. Independently Kaplan [60] derived 
the same asymptotic expansion using Feynman's 
ordering technique. We shall use their results in the 
zero order terms. For perturbat ion calculations, 
however, these formulas are not suited. We prefer a 
symmetric top approximation which was similarly 
used by Gordon [61]. One writes 

77 - ( P 2 / 7 , , + Pj/Iyy+ P2/Izz)/2 = 7 / 0 + 7 / ! , (63) 

H,= (P2/IXX+ P2y/(IyyIZZ)U2+ P2/(IyyIZZ)U2)/2, 

77, = (\/Iyy~ \/(IyyIzz)m)P2/2 (64) 
+ (\/Izz-\/(IyyIzz)U2)P2

z/2, 

so that 7/, is small because of the difference of the 
inverse moments of inertia and can be neglected to 
a good approximation. The pseudo symmetric top is 
used in the following calculations with a second ap-
proximation. For the anharmonic oscillators the 
ordering transformation can be performed easily as 
the set {ä,ä+ , 1} is closed under a commuta tor 
operation and [a ,a + ]_= 1 leads to a o n u m b e r which 
commutes with a and a + respectively. Matters are 
more complicated for {Jx,Jy,Jz} = {Px,Py, Pz}. The 
commutator no longer leads to a c-number, but to 
an operator. The Hausdorff-ordering transform 
(Appendix C) can no longer be summed easily. We, 
therefore, neglect the higher terms of the series and 
take only the first (constant) one. 

5.2. Coriolis-coupling 

Coriolis-coupling is usually associated with the 
vibrational angular momentum of degenerate 
modes and is, therefore, treated in connection with 
the spherical and symmetrical top. This Coriolis 
effect is called of first order. The quantum mechan-
ics for the symmetric top is simple, but for the 
spherical top it is a field of active research. In addi-
tion, Jahn (see Nielsen [12]) showed that Coriolis-
coupling of second order arises in asymmetric top 
molecules like formaldehyde and water. Though 
this effect is small, it should be treated for com-
pleteness. 
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5.2.1. S k e t c h o f f i r s t - o r d e r 
C o r i o l i s - c o u p l i n g 

As the influence of Coriolis-coupling was treated 
recently for degenerate modes [62], only the method 
will be outl ined: a f te r translation to occupat ion 
n u m b e r representat ion the vibrational angular 
m o m e n t u m operators read: 

Px = i X 3 ( ^ 2 ^ 3 - 0 ^ 2 ^ 3 ) , 

Py = i X 1 ( ^ 3 ~ &h1)' ( 6 5 ) 
V-

Pz = i X C S U ^ 2 ) • 

It is obvious that the order ing t ransformat ion be-
tween the components of a degenerate m o d e does 
not contribute. 
exp { + ß h o)M (a+j äM\ + ä+ 2 ä ß 2 + ä \ 3 aM3) 5,} ä ß ] ä+2 

• exp {-ßh a>„(öji ^ 1 + 0 ^ 2 + Kl ^3)^1} ( 6 6 ) 

= äM, e x p (-ßhcoMs 1) ä+2exp (ßh(joßS\) = äßX ä+2. 

For brevity, the final formulas will not be written 
down but can be obta ined easily by the operator 
techniques of Appendix C. 

5.2.2. S e c o n d o r d e r C o r i o l i s - c o u p l i n g 

Fol lowing Jahn (see [12]) we take H 2 0 as example 

H = (P2/Ixx) + (Py-p\2-pl3)2/Iyy+ P2/Izz + HVlB , 

P\2= C\2(q\P2-P\q2) = (-i£\2)(äJ\ä2-ä2ä]), (67) 

P? = Ci3(<71 Pi P1 <73) = ( - i C 1 3 ) ( ä t ä 3 - ä t ä i ) . 

H is separated into a zero order term H0 and a per-
turbat ional part H\ containing the Coriolis opera-
tors and anharmonici ty . 

HF = (Pi/1,,) + ( P j / I y y ) + (P]/IZZ) + X , (68) 
j 

H^(2Py/Iyy)-i{Cx2[fl\ä2-äiäx) 

- ( l / / n . ) { C l 2 ( ö | « 2 - « 2 Ö l ) 

+ C , 3 ( « R « 3 - 0 3 Ö L ) } 2 + F A N H ( < 7 ) , ( 6 9 ) 

where Fanh(<7) contains the anharmonic part of the 
potential energy. 

The second term in H\ a lready contr ibutes in first 
order SPT 

Z f c = ( / ? / / , , ) Z & r ( 7 ° ) 

• {Zo( l ,2 ) Ci2[2Zi 1 Z 1 2 + Zi iZo2 + Z0 i Z [ 2 ] 

+ Z 6 ( l , 3 ) C ? 3 [ 2 Z 1 I Z I 3 + Z1 1Zo3 + ZoiZ I 3 ]} . 

ZROT denotes the rotational P F and Z'o(J,k) the 
vibrational P F in the ha rmon ic approx imat ion 
without the P F of the normal modes j and k. 

The first term of H\ only contr ibutes in second 
order SPT: 

Z$c = 2{ß/Iyy)2WK or 

• • ! Z ^ ( l , 2 ) C T 2 [ F ( £ 2 - £ i ) Z n ( Z 1 2 + Z 0 2 ) 

+ Y(£\ — £2)Z\2(Z\\ + Zo\)] 

+ Z'0(\,3)&[Y(e3-£1)Zu(Z]3+Z03) 

+ y ( e 1 - e 3 ) Z 1 3 ( Z 1 1 + Zo,)]}. (71) 

WR O T contains the rotational par t which is approxi-
mated in the averaged symmetr ic top approx ima-
tion. The matrix element is t aken f rom (59). 

^ r o t = / 7 2 Z & T (K 2 ) . (72) 

In contrast to the symmetr ic and spherical top the 
contributions in first and second order SPT do not 
cancel. The reason is that for degenerate modes the 
ordering t ransform vanishes, whereas for d i f ferent 
vibrations it contr ibutes to the PF. 

5.2.3. C o r i o l i s r e s o n a n c e 

Though the effects of Coriol is resonance are even 
smaller than for ord inary Coriolis-coupling, we shall 
discuss it to show the generali ty of the method. 
Following Nielsen [12] we t reat Coriolis resonance 
between the fundamen ta l s co5 and co6 of formal-
dehyde in the symmetric top approximat ion IXX=IVV. 
The part of the Nielsen Hami l ton ian responsible for 
resonance is in the original nota t ion 

f= [VA5) 1/4^5 P6- (A5/A«) 1/4Ps] C$ PJIzz , (73) 

where ).s = (2n(cö s))2 , cös is the normal f requency in 
cm - 1 , not to be confused with coy used in the text. 

One gets with 

t =(cj6/co5y/2-(co5/co6y/2, 

t* = (co6/co5)U2+(co5/co6y/2, (74) 

f = {tä+
5ä+

6-t*ä+
5ä6 + t*ä5ä+

6-tä5a6} (i C$PZ/2IZZ) 

(75) 

so that after a s imple calculat ion with the technique 
discussed for the anha rmonic par t the results is: 

Z? R = (/?C$//.-.-)2 »'ROT • {•t2 Y(-e5-£6)Z\SZ\6 
o 

+ t2Y(£5 + £6)(Zl5+Zo5)(Z]6+Zo6) 
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+ / * 2 r ( £ 5 - £ 6 ) Z 1 6 ( Z 1 5 + Z o 5 ) 

+ / * 2 r ( £ 6 - £ 5 ) Z l 5 ( Z 1 6 + Z o 6 ) j . (76) 

One sees that the resonance is caused by the 
Coriolis-coupling and not by anharmonic-coupl ing 
terms. The q u a n t u m mechanical t rea tment of this 
effect is fairly complicated [12, 14], but the present 
results show that resonance effects and irregularit ies 
can be incorporated into the PF easily. Furthermore, 
it can be seen that the effects are small, so that in 
contrast to some suggestions they need not be taken 
into account in level density calculations, as the 
anharmonic resonances are much more important . 

5.3 Rotation-vibration-coupling 

For brevity we consider only the most impor tan t 
term, diagonal in the angular m o m e n t u m operators. 
As the constants are not of special interest, we 
abbreviate them all by C'gy so that the rotation-
vibration term reads: 

f R V = - Z Z {Ogg P2
gqj} 

y i 

= - Z Z {2-U2CgyP](ä) + äj)}. (77) y j 

From the generat ing funct ion given in Sect. 4.2 it 
follows immedia te ly that only te rms of H\ contain-
ing odd powers of the qj will cont r ibute to the P F in 
second order SPT, if f R V is taken into account. The 
most impor tan t contr ibut ion results f rom the diag-
onal cubic anharmonic i ty k ^ q ) . Using the methods 
discussed above, the respective te rm reads 

Z 2
R V = - | / ? 2 J d 5 , [ T r { e x p ( - ^ 0

R V ) 
^ o L 

• exp(- /? / /o R V 5,) 

• ( Z kwqfj e x p ( / ? / / 0
R % ) [ Z Z CJ

gg P2
g q,)}} 

j g ./' 

4 Tr {exp( - / ? / / 0
R V ) e x p ( - £ / / o R % ) 

• [ Z Z Oyy P2g <7/1 exp (ßH^S,) £ km qj) } 1 
y i i 

= - Y A2 Z Z Ogykjjj W™(g,j) 
8 y j 

• [Y(£j)+ F ( - £y) ] [2 Z2j +2 Z \j + Z0y], (78) 

where 

W^{gJ) = Tr [P2 e x p [ - / ? / / 0
R V ( / ) ] ; (79) 

/ /R V(y) is the zero order rotat ion Hami l ton ian plus 
the zero order vibrat ion Hami l ton ian but wi thout 
the Hamil tonian of the y'-th normal m o d e 
WKV(g,j) can be evaluated in the same approx ima-
tion as for the Coriolis-couplings. Fur the rmore , 
second order SPT leads for the diagonal par t to 
rotational powers ~ Pg, which are much smaller 
than the anha rmonic rotat ion-vibrat ion interaction. 

5.4. Internal rotation and large amplitude motion 

For completeness we want to refer to molecular 
motions which are not included in the Nielsen-
Hamil tonian and which cannot be treated by per tur-
bation methods. 

5.4.1 I n t e r n a l r o t a t i o n 

The problem of internal rotat ion was t reated f rom 
the practical point of view by Frankiss and G r e e n 
[1], who also gave a large n u m b e r of examples. They 
used numerical summat ion of Boltzmann-factors 
f rom available tabulat ions. Detai ls of the q u a n t u m 
mechanics with extended references are given in 
Chapt. 8 of [63]. These techniques are not well 
suited for the calculation of the PF and level 
densities which are needed in reaction kinetics. 
Vojta [64] showed that Wigner-Kirkwood semiclas-
sical expansion to order tiA gives good analytical 
results for symmetr ic h indered tops in terms of 
modif ied Bessel-functions. It is, therefore , easy to 
incorporate these degrees of f r eedom in the calcula-
tion of level densities. Kaplan [66] used order ing 
techniques to get analytical results for symmetr ic 
hindered tops and Zaitsev [65] appl ied a resolvent-
type technique to the same problem. 

5.4.2. L a r g e a m p l i t u d e m o t i o n s 

A good review on the q u a n t u m mechanics and 
spectroscopy of large ampl i tude motions like torsion 
and ring-puckering is given in Chapt . 7 of [63]. One 
customarily reduces the p rob lem to the Hamil tonian 
of an one-dimensional single or double well oscil-
lator 

H = -jtico(p2+öq2) + k3q3+k4q\ 

k4, k3 ^ 0 , Ö = + 1 single well, 

k4 > 0, ö = - \ double well. (80) 

The Wigner-Kirkwood expansion can be evaluated 
analytically to arbi t rary order in series of exponen-



178 J. Bohmann and W. Witschel • The Polyatomic Molecule Partition Function 

tial functions and parabol ic cylinder functions. In 
addit ion exact upper and lower bounds including 
variation, and the var ia t ion-per turbat ion series can 
be evaluated analytically [67]. 

6. Numerical results and discussion 

6.1. Numerical results 

As rotational effects are small and well under-
stood, we evaluated only the vibrational par t for 
two examples H 2 0 and S 0 2 with the potential 
constants f rom Morino and Kuchitsu [68], for a 
detailed recent discussion of these constants see 
Isaacson et al. [11]. 

Anharmonic force field: 

H\ = q] + kmqi q2
2 + kmqx q] 

+ ^211 qi q2\ + kii2 q\ + ^233 fa q\ 

+ k n i l q\ + k 1122 q] q\ + kU33 q\ q] 

+ k2222 q\ + k2233 q\ q] 4 £ 3 3 3 3 qi • 

Table 3. Contributions of various orders SPT for S 0 2 . 
Z 0 = harmonic PF; Z\4] = first order SPT, fourth order 
potential; Z ^ = second order SPT, third order potential; 
Z[>41 = second order SPT, third and fourth order potential. 

(81) 

The vibrational PF of H 2 0 in different approxima-
tions is given in Table 2 for several temperatures. As 
expected, the PF Z B f rom summed Boltzmann 
factors agrees very well with second order SPT, as 
the eigenvalues are calculated by Van Vleck pertur-
bation theory. G o o d agreement exists also between 
SPT and the accurate results. The results for high 
temperatures are only given to show the behaviour 
of both approximat ions. Unfor tunate ly the agree-
ment is lost below 1000 K, where the approxima-
tion Z B is valid, whereas SPT, as a high tempera-
ture expansion, leads to wrong and at room tempe-
rature to meaningless negative values. As will be 
discussed in the appendix, for molecules with high 
frequency X-H vibrations SPT does not work well at 
low temperatures , but sufficiently well at higher 
temperatures. 

Table 2. The vibrational partit ion function of H 2 0 . -
Comparison of first (Z01) and second (Z02) order SPT with 
the PF from summed Boltzmann factors Z B and accurate 
results from Isaacson et al. [11], Z\. Molecular constants 
from [68]. 

F in K ZB ZQ\ Zq2 
1000 1.43 ( - 3) 1.19 ( - 3) 1.39 ( - 3) 1.41 ( - 3) 
2000 6.08 ( -•2) 5.40 ( - 2) - 6.07 ( - 2) 
3000 3.01 ( - 1) 2.65 ( --1) — 3.02 ( - 1) 
4000 8.36 ( - 1) 7.19 ( --1) 8.06 ( - 1) 8.42 ( - 1) 
5000 1.79 1.50 — 

1) 
1.81 

6000 3.31 2.68 - 3.36 

T i n K Zo z ? 1 z?] 

400 4.77 ( - 3 ) - 3 . 8 7 ( --5) 1.96 ( -•4) 4.10 ( --6) 
1000 2.94 ( - 1 ) 1.71 ( --3) 1.04 ( --2) 6.18 ( --4) 
2000 2.93 4.92 ( --2) 1.67 ( --1) 2.12 ( --2) 
3000 1.03 (+1) 2.72 ( - 1) 8.43 ( - 1) 1.63 ( - 1) 
4000 2.48 (+1) 8.87 ( --1) 2.67 6.91 ( --1) 
5000 4.89 (+1) 2.20 6.51 2.11 

Table 4. The vibrational parti t ion function of S 0 2 . — 
Comparison of different approximations. Z\ = accurate 
results from Isaacson et al. [11]; Z ^ = first order SPT, 
fourth order potential; Z $ = second order SPT, third 
order potential; Z(# = second order SPT, fourth order 
potential. 

T i n K Z, ZW z® 
400 — 4.73 ( - 3 ) 4.93 ( - 3 ) 4.93 ( - 3 ) 

1000 3.06 ( --1) 2.95 ( - 1 ) 3.05 ( - 1 ) 3.06 ( - 1 ) 
2000 3.17 2.98 3.15 3.17 
3000 - 1.06 (+1) 1.14 (+1) 1.16 (+1) 
4000 — 2.57 (+1) 2.84 (+1) 2.91 (+1) 
5000 — 5.10 (+1) 5.76 (+1) 5.97 (+1) 

A comparison of the d i f fe rent contributions to the 
PF in first and second order SPT is given for S 0 2 in 
Table 3. One sees that the contribution of second 
order SPT is smaller than the first order form, only, 
if potential terms up to four th order are considered 
rather than a potential l imited to third order terms, 
and if the temperature is not too high. The observa-
tion that the contributions of different orders n of 
SPT may increase with n was also made for other 
systems [see appendices A and B] and seems to be 
related to the convergence problems of SPT. 

In Table 4 the PF of S 0 2 in the different approxi-
mations is given. The agreement with the accurate 
results by Isaacson et al., which differ also little 
from the per turbat ion results, is quite good. We 
expect, therefore, that second order SPT is a good 
approximation for heavier molecules between room 
temperature and 2000 K. 

6.2. Conclusions 

We conclude f rom the numerical results and their 
good agreement with accurate independent calcula-
tions for selected tr iatomics that SPT to second 
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order is comparable to conventional numerical 
methods for calculating PFs. The advantages are: 

A) once the force field in normal coordinate 
representation is given, SPT to arbitrary order even 
for high powers of the normal coordinates can be 
performed by GF-methods . The calculations are 
simple, but tedious and lead to long expressions. 

B) the results are given in terms of simple 
transcendental functions which can be easily dif-
ferentiated. Thermodynamic functions H, E, S, C 
can be given in analytical form, no numerical 
differentiations are necessary. As the specific heat C 
is closely related to the level density, calculated by 
steepest descent methods, it can be evaluated ana-
lytically in first and second order. We showed in a 
previous paper the good agreement with level 
counting [45 a], 

C) all resonances which make the level pattern 
irregular and become more and more important 
with increasing number of normal vibrations are 
included consistently. 

D) it was mentioned that Wolfsberg and co-
workers applied SPT to off-diagonal force fields in 
the harmonic approximation. Their success suggest 
the same technique for anharmonic force fields, too. 
The calculations may, however, be very long. 

We shall also mention the disadvantages and 
open questions. 

E) SPT was shown to be equivalent to degenerate 
Rayleigh-Schrödinger-perturbation theory. For an-
harmonic oscillators it suffers not only from the 
principal convergence problems for perturbation 
theories, but also f rom the special divergence even 
for infinitesimal small anharmonicity. 

F) SPT is a high temperature expansion which is 
wrong at low temperatures and also leads to wrong 
results at very high temperatures. This was shown 
explicitly for the linear quart ic anharmonic oscil-
lator. It happens (see Appendix A and B) often, that 
the third order SPT is worse than the second order. 

6.3. Outlook 
We plan fur ther systematic investigations of the 

convergence behaviour using algebraic computer 
languages and summat ion techniques. We hope to 
get criteria for the range of reliable approximations 
depending on harmonic frequencies, anharmonici-
ties and temperature. A crucial test will be the 
calculation of the isotope equil ibrium constant for 

H 2 0 4 D 2 0 = 2 H D O 

by variation-perturbation methods and the compar-
ison with precise numerical results by Wolfsberg 
with eigenvalues f rom variational calculations. 

Part of this work was performed at U C Irvine. W. 
W. wishes to thank the Department of Chemistry 
for the invitation and Prof. M. Wolfsberg for many 
stimulating discussions. A travel grant by the D F G , 
and support by the Fonds der Chemischen Industrie 
is gratefully acknowledged. 

Appendix A 

Numerical investigation of the convergence be-
haviour for a perturbed harmonic oscillator. 

Harvie, Bopp and Wolfsberg [47] investigated in 
an important paper the convergence behaviour of 
SPT to fourth order for polyatomic molecules in the 
off-diagonal-representation. From the behaviour of 
the different orders they suggested convergence of 
this model system. As the perturbation of the non-
diagonal operators is not very strong, we consider a 
one-dimensional oscillator, where the exact result is 
known and the perturbation can be varied arbi-
trarily: 

H = 3T0+Hr, (hco/2)(p2 +q2) , 
H] = ticok2q2. (Al) 

This corresponds to a harmonic oscillator with a 
new frequency 

co* = w(\+2k2)U2, and Z% = [2sm\\{ßhco*/2)]~\ 

(A 2) 
We investigate the following questions: 

- how does the convergence of SPT depend on the 
temperature and perturbat ion 

- is ! Z „ + j a reasonable criterium for the 
applicability of SPT 

- how do the different orders of SPT behave? 

We calculated SPT to fourth order; the lengthy 
formulas are given in [10]. For small perturbations 
k2 < 0.1, the results practically agree with the exact 
results. The agreement improves with increasing 
order of SPT for the whole temperature range from 
2 0 0 - 10000 K. On the other hand, for the extremely 
strong perturbation k2 = 1.5, SPT gives completely 
wrong, divergent results for all orders and all tempe-
ratures. We, therefore, investigated the behaviour 
for different k2 at 4000 K, where SPT should work, 
and co = 2n- 1013 [sec -1] in Tables 5, 6, and 7. 
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Table 5. The par t i t ion funct ion of a ha rmonic oscillator 
with quadra t ic per turbat ion. Contr ibut ions of d i f ferent 
orders of SPT Z, as a funct ion of the per turbat ion pa ram-
eter k2. co = In • 1013 sec""1, T = 4000 K. 

k2 Z 0 z , z 2 z 3 Z 4 

0.30 8.33 - 2 . 5 0 1.13 - 5 . 6 2 ( - 1 ) 2.95 ( - 1 ) 
0.40 8.33 - 3 . 3 3 2.00 - 1 . 3 3 9.34 ( - 1 ) 
0.50 8.33 - 4 . 1 7 3.13 - 2 . 6 0 2.23 
0.60 8.33 - 5 . 0 0 4.50 - 4 . 5 0 4.73 
0.70 8.33 - 5 . 8 4 6.13 - 7 . 1 5 8.75 
0.80 8.33 - 6 . 6 7 8.00 - 1 . 0 7 (+1) 1.49 (+1) 

Table 6. The par t i t ion funct ion of a ha rmonic oscillator 
with quadra t ic per turba t ion . - Dependence of the SPT in n 
different orders z 0 „ = l z „ on the value of the per-

turbat ion parameter k2. 
i 

co = 2n • 1013 sec - 1 , T = 4000 K. 

k2 
7* Zoi Zq2 Z03 ZQ4 

0.30 6.58 5.82 6.95 6.39 6.68 
0.40 6.20 4.99 6.99 5.66 6.59 
0.50 5.88 4.07 7.32 4.68 6.96 
0.60 5.61 3.32 7.83 3.32 8.05 
0.70 5.37 2.49 8.61 1.47 1.02 (+1) 
0.80 5.16 1.65 9.66 - 1.01 1.39 (+1) 

O n e o b s e r v e s t h a t t h e d i f f e r e n t o r d e r s Z 0 , osc i l -
la te . U p t o k % 0.5, t h e Z „ f o r m a m o n o t o n i c a l l y 
d e c r e a s i n g s e q u e n c e , w h e r e a s f o r k ^ 0 .58 t h e se-
q u e n c e i n c r e a s e s . B e l o w k % 0.5, t h e r e s u l t s i m p r o v e 
w i t h i n c r e a s i n g o r d e r S P T , w h e r e a s a b o v e , t h e 
a c c u r a c y d e c r e a s e s . F o r m o r e d e t a i l e d d i s c u s s i o n 
see [10]. T o s h o w t h i s b e h a v i o u r e x p l i c i t l y , w e g i v e 
t h e p e r c e n t a g e d e v i a t i o n AZ0n = 100 (Z§n—Z%)/Z% 
in T a b l e 7. 

W e c o n c l u d e t h a t f o r t h e h a r m o n i c o s c i l l a t o r w i t h 
q u a d r a t i c p e r t u r b a t i o n t h e r e ex i s t a p e r t u r b a t i o n 
p a r a m e t e r k\, w h e r e t h e S P T g i v e s w r o n g r e s u l t s 
w i t h i n c r e a s i n g o r d e r o f S P T . T h e t e m p e r a t u r e 
b e h a v i o u r is s h o w n in F i g s . 1 a n d 2. In a n y o r d e r o f 

0 . 0 5 

0.0U 

o N < 
0 . 0 3 

0.01 

0.0 1 • 1 » 1 • 1 • 1— 
0 2000 hOOO 6 0 0 0 8 0 0 0 10000 

T i n K • 

Fig. 1. The part i t ion funct ion of a ha rmonic oscillator with 
quadrat ic perturbat ion. - The relative (percentage) devia-
tion AZ01 = 100 (Z0i - Z * ) / Z * (Z 0 , = Z 0 + Z j ) as a func-
tion of the tempera ture T for a small per turbat ion: k2 = 
0.01. 

T i n K • 

Fig. 2. The parti t ion function of a ha rmonic oscillator with 
quadratic perturbation. - The relative (percentage) deviation 
AZ04 = 100 (Z04 - Z*o)/Z*o (Z04 = z 0 + Z , + Z 2 + Z 3 + Z 4 ) a s 
a function of the tempera ture T for a strong per turba-
tion: k2 = 1.5. 

Table 7. The part i t ion funct ion of a ha rmon ic oscillator with quadra t ic per turbat ion. Percentage 
deviat ion AZ0„ for the approximat ions in different orders n of SPT. co = In • 1013 sec - 1 , 
F = 4 0 0 0 K. 

k2 AZ0 AZ0, AZ02 AZ03 AZ04 

0.02 1.98 - 3 . 9 5 ( - 2 ) 1.97 ( - 3 ) - 6 . 9 0 ( - 5 ) 2.48 ( - 6 ) 
0.10 9.56 - 1 . 4 1 2.33 ( - 1 ) - 4 . 0 7 ( - 2 ) 7.30 ( - 3 ) 
0.20 1.83 (+1) - 5 . 3 5 1.76 - 6 . 1 0 (—1) 2.19 ( - 1 ) 
0.40 3.42 (+1) - 1 . 9 5 (+1) 1.27 (+1) - 8 . 7 8 6.27 
0.60 4.84 (+1) - 4 . 0 7 (+1) 3.95 (+1) - 4 . 0 7 (+1) 4.35 (+1) 
0.80 6.14 (+1) - 6 . 7 9 (+1) 8.72 (+1) - 1 . 2 0 (+2) 1.70 (+2) 
1.00 7.34 (+1) - 1 . 0 0 (+2) 1.60 (+2) - 2 . 7 4 (+2) 4.85 (+2) 
1.20 8.47 (+1) - 1 . 3 7 (+2) 2.62 (+2) - 5 . 3 6 (+2) 1.14 (+3) 
1.40 9.53 (+1) - 1 . 7 8 (+2) 3.96 (+2) - 9 . 4 4 (+2) 2.34 (+3) 
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SPT and for arbitrary values of k2 the relative 
deviation from the exact PF approaches an asymp-
totic value for T - * oo. This high temperature be-
haviour is observed even if SPT leads to meaning-
less Figures. The temperature, where the asymptotic 
value is practically reached depends on co and k2. 
From these results we conclude that it is necessary 
to investigate systematically high order perturbation 
theory for different types of perturbation over a 
range of anharmonicity constants and temperature. 

Appendix B 

Third order perturbation results for diatomics to 
fourth order Dunham-expansion. 

Though we dealt in the text with polyatomics, 
some unpublished results for third order SPT of 
diatomics should be given to illustrate the behav-
iour for molecules with cubic and quartic anhar-
monicity; for brevity we discuss H2 with large 
anharmonicity (Tables 8 and 9). HBr, HCl, HF, CO, 
J2 are treated in [10]. 

Generally, it follows from the numerical calcula-
tions that third order SPT does not improve the 
agreement with numerical results, whereas second 
order SPT gives a good approximation and always 
lies slightly above the exact upper bound with 
variation of the internuclear distance and the fre-

Table 8. The vibrational part i t ion function of H 2 . — 
Contributions Z„ arising f rom zero to third order SPT. 
Molecular constants calculated f rom [70], 

T i n K Z0 z , z 2 

1000 4.22 ( -•2) -5.57 (-•3) 7.78 (--3) —4.12 (--3) 
2000 2.14 ( --1) -1.66 (--2) 2.44 (--2) -1.49 (--2) 
4000 5.70 (- 1) -4.30 (--2) 7.64 ( --2) - 7 . 9 4 ( --2) 
6000 9.05 ( - 1) - 8 . 4 5 ( --2) 1.71 ( --1) - 2 . 5 4 ( --1) 
8000 1.23 - 1 . 4 2 ( --1) 3.15 ( --1) -6.06 (--1) 

10000 1.55 —2.16 C--1) 5.18 ( --1) -1.21 
-1) 

quency. The convergence is strongly dependent on 
the harmonic frequency. As a rule, second order 
SPT works well for intermediate values of e = ßhco. 
It follows, that the results are good for fairly low 
temperatures, if co is small, whereas unphysical 
negative figures are obtained for large values of co. 
On the other hand, the results are bad even at inter-
mediate temperatures for small co, whereas the 
results for high temperatures are reasonable. We 
hope to improve the range of validity by variation-
perturbation techniques. 

Appendix C 

Formulas of operator calculus. 
Though the relevant formulas of operator cal-

culus have been given in previous articles, we wish 
to give some improvement which facilitate the cal-
culations. More details will be given in a forth-
coming lecture note [69], 

Hausdorff-formulas: 

exp (a A) B exp ( - ocA) = B + a [A, i?]_ 

+ (<X2/2 ! ) [ I [ I , £ ] _ ] _ + . . . 
00 

= X (a"/«!) {A",B}-=B(a.), 

" = ° ( C I ) 

exp (ccÄ) Bkexp ( - ocÄ) = {B (a)}k, a ^ c - n u m b e r , (C2) 

exp (a A) exp B exp (-ocA) = exp {B (a)}. (C 3) 

Baker-Campbell-Hausdorff-formulas (BCH): 

exp (txA) exp (ßB) = exp ( a i + ß B + (aß/2) [A,£]_} , 

exp (aÄ+ßB) = exp ( a i ) exp (ßB) 

• exp { - (ctß/2) [Ä, £]_} (C4) 

if [ i , [ i , 5 ] _ ] _ = [ 5 , [ i , 5 ] _ ] _ = 0 . 

These formulas can be used as generating functions 
for ordered expressions formed with the Lie-algebras 

Table 9. The vibrational part i t ion function of H 2 . - C o m p a r i s o n of first (Z 0 1) , second (Z0 2) , 
and third (Z0 3) order SPT results with lower (ZLB) and u p p e r (Zy B ) var iat ional bounds and the 
PF from summed Boltzmann factors Z B . Molecular constants calculated f rom [70]. 

T i n K 7 v ^01 ^02 •^03 7 v 

1000 4.41 ( - 2) 3.70 ( - 2) 3.66 ( - 2) 4.43 ( - 2) 4.02 ( - 2) 5.29 ( - 2) 
2000 2.21 ( - 1) 1.98 ( - 1) 1.97 ( - 1) 2.22 ( - 1) 2.07 ( - 1) 2.32 ( - 1) 
4000 5.96 ( - 1) 5.28 ( - 1) 5.27 ( - 1) 6.03 ( - 1) 5.24 ( - 1) 5.96 ( - 1) 
6000 9.67 ( - 1) 8.24 ( - 1) 8.20 ( - 1) 9.91 ( - 1) 7.36 ( - 1) 9.42 ( - 1) 
8000 1.35 

1) 
1.10 

1) 
1.09 

1) 
1.40 7.97 ( - 1) 1.28 

10000 1.76 1.35 1.33 1.85 6.41 ( - 1) 1.61 
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\p,q,cf}; [p. q]~ = cl\ {ä,a+,f}; [ä, = /; [/, <5]_ 
= [/, a+]_ = 0. Differentiation with respect to a char-
acteristic parameter or expansion and comparison 
leads to ordered expressions. 

GF = exp{k(ä++ä)} 

= exp(£<5+)exp(/:a) exp(k2/2) 

= txp(kä)txp{kä+)txp{-k2/2). (C5) 

E x a m p l e : (ä+ -I- a)4 

Expansion of the left and right side leads to 

0ä++ä)*=ä+ + 4ä+3ä + 6ä+2ä2 + 4ä+ä3+ä4 

+ 6 a + 2 4 12a+fl + 6 a 2 + 3 

("normal-ordering") 

= ä4+4ä3ä++6ä2ä+2+Aää+i + ä+4 

-6ä2-\2ää+-6a+2 + 3 
("antinormal-ordering") . (C6) 

This is easier to derive than the related compact 
formula from parameter differentiation. 

[n/2]n-2k ( / 1 ) k , .S'n-2k-s 
( /+<?)"= I I , , • (C7) 

k=o s=o k\s\(n-2k-s)\ 
In method 4.1 for calculating traces it is often neces-
sary to commute high powers of noncommuting 
operators. This can be easily performed by a BCH-
generating function: 

exp [k\ a+) exp (k2ci) = exp [k2a) exp (k t a+) 

• exp(— k\k2), 

exp (k2ci) exp (k | a+) = exp (k i a+) exp (k2a) exp {k\k2). 

(C8) 
E x a m p l e : 

ä+2 ä2=ä2 a+2 — 4 ä a++2 , 

ä2ä+2=ä+2ä2+4ä+ä + 2. (C9) 

This again is to be compared with the correspond-
ing formula from parameter differentiation 

Pmqn= Z -
m\n \ ciqn~jpr' 

y-o Mm-mn-jy. 
(CIO) 

( C U ) 

(C 12) 

(C 13) 

expressions. 

For n = ä + ä we get [a+a,om]_ = - r n a m 

[<7+a,a+m]_ = rna+m 

and by repeated application of this formula: 
m 

amä+m = I I (ä+ä+p) , 
p=i 

m 
ä+mam= N ( f l + a 4 l - / 7 ) . 

It was mentioned in the introduction that trace 
calculations are simplified by the characteristic 
function for the momentum-coordinate probability 
distribution of the harmonic oscillator. Though 
there exist a number of derivations, we give it for 
convenience in Messiah's [53] form: 

Tr [ e x p ( - / ? ^ 0 ) exp {/C(y*ä++yä)}} 

= Z0exp { — (y* y/2) £2R}, (C 14) 

/? = coth (ßh(o/2)\ Zq=[2 sinh (ßh w /2 ) ] - 1 . 

Expansion and comparison leads to traces of opera-
tor functions. 

E x a m p l e : 

Tr [ e x p ( - ^ 0 ) ( a + 4a ) 4 } = 3Z0R2 ( C I 5 ) 

Traces of powers of operators are also important; 
the generating function is: 

G F = Tr (exp ( - ß ^ ) exp (k, a+) exp (k2a)} 

= Tr {exp ( - exp(k{ä++ k2 ä) exp ( - k, k2/2) 

= ZQ exp(/:] k2 W), (C 16) 

W=(R —1)/2 and 

G F = Tr (exp ( - e x p [k2a) exp (k, a+)} 

= Z 0 exp(k] k2 IF'*), W* = (R + \)/2. (C17) 

E x a m p l e : 

Tr {exp ( - ßSTq) ä+m äm) = m! W™ . (C 18) 

To express operator products in terms of the di-
agonal number operator, we need diagonal ordering 

Application of the different ordering techniques 
leads to completely different looking expressions, 
which after tedious manipulations with hyperbolic 
functions can be brought to identical form. 
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