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The Nielsen Hamiltonian of the general polyatomic molecule including anharmonicity and its
resonances, Coriolis-coupling and its resonances, and rotation-vibration interaction are treated by
statistical perturbation theory in its operator form. By generating function methods and operator
theorems, which are treated in an appendix, cumbersome calculations with non-commuting
operators are avoided. The results for H;O and SO, agree very well with accurate numerical
calculations from the literature. Qualitative conclusions on the convergence of the perturbation
series are drawn from the numerical calculations for model systems.

1. Introduction

The calculation of thermodynamic properties of
ideal gases by statistical methods was reviewed
some time ago by Frankiss and Green [1]. They
concluded that the methods have been developed
between 1935 and 1950. Unfortunately, they over-
looked important theoretical work summarized by
Godnev [2], Rowlinson [3] and Gurvich [4] and also
extended numerical work. The article concentrated
on the solution of the Schrodinger equation by
perturbation methods, introduction of molecular
constants from high resolution spectroscopy and
numerical summation of the appropriate Boltzmann
factors. An example for these types of calculations
are the precise thermodynamic functions of NHj,
calculated by Haar [5]. Extended systematic work
can be found in the JANAF-tables [6], together with
a critical discussion of the methods used [7].

If one considers the polyatomic molecule in the
Nielsen-Watson approximation as system of cou-
pled anharmonic oscillators with polynomial or
exponential interactions, the problem of eigenvalues
and level densities is unsolved. This model system is
investigated intensively in mathematical physics, as
it is a prototype in quantum field and elementary
particle theory, in statistical mechanics and ergo-
dicity, in energy transfer, in phase transitions and
laser isotope separation. A lot of different powerful
techniques were developed in these fields, but
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unfortunately they are often unknown to workers in
neighbouring areas. We shall take the opportunity
to refer to some of these techniques.

Beginning in 1968 we investigated the possibili-
ties of Schwinger-perturbation theory (SPT) for the
calculation of thermodynamic data and level densi-
ties for molecules. As SPT deals with noncommut-
ing operators, we tried to eliminate the difficulties
and present the results in terms of ordinary c-num-
ber functions. Though we calculated the partition
function (PF) a long time ago [9], [10] we did
publish it only in part because of the difficulties of
the calculus of noncommuting operators. Mean-
while, we were interested again because of simplifi-
cations, of the introduction of variation-perturba-
tion theory, and because of the possibility to check
our results against high quality calculations by
Isaacson, Truhlar and Overend [11].

The aim of the present article is, therefore,
twofold: First, we wish to show that SPT can be
evaluated exactly to arbitrary order, including all
resonances and couplings; second, by comparing our
results to different techniques, we want to show that
SPT and its improvements lead to compact, analyt-
ical expressions which, by simple differentiation,
can be easily converted to the thermodynamic func-
tions H, C,, Cy, S and level densities.

The article is organized as follows: in Sect. 2 we
discuss the Nielsen-Watson Hamiltonian and tech-
niques for calculating eigenvalues of coupled anhar-
monic oscillators. Section 3 sketches various tech-
niques for the calculation of the PF; SPT is applied
to the vibrational part in Section 4 and to the
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rotation-vibration part in Section 5. Numerical re-
sults are discussed in Section 6. In some appendices
we try to discuss qualitatively the convergence of
SPT for a perturbed harmonic oscillator and for
diatomic molecules in fourth and third order SPT,
respectively.

The article is long because of the complexity of
the polyatomic molecular Hamiltonian, but we
think it necessary to present the fairly long expres-
sions for further applications.

2. The molecular Hamiltonian and its eigenvalues
2.1. The Darling-Dennison-Nielsen-Hamiltonian

In high resolution spectroscopy one uses a
Hamiltonian worked out and used extensively by
Nielsen [12]. The basic work is associated with
Wilson and Howard, and with Darling and Den-
nison. We shall use a slightly truncated form of this
“Nielsen-Hamiltonian” where too small effects are
neglected. Our notation differs from Nielsen’s inso-
far as we use the angular frequency  (unit: sec™)
instead of the wavenumber & (unit: cm™). Ac-
cordingly the definition of the constants a(¥9’, G%9),
{Metc. is altered [15]. '
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where #Y denotes the harmonic oscillator Hamil-
tonian corresponding to the j-th normal coordinate:

AP =3hw,@E+4). (5)

This Hamiltonian contains anharmonicity, Coriolis-
coupling and rotation-vibration-coupling. For de-

- The Polyatomic Molecule Partition Function

tails see the authoratative handbook article and the
excellent reviews by Mills [13], [14]. 4 is an ordering
parameter also indicating the order of magnitude of
the effects.

A slightly different form was given by Watson
(see Mills) [13] with a consistent order of magnitude
classification and an additional mass-dependent term
U, which is usually neglected both in spectroscopic
and thermodynamic calculations. Using Mills’ no-
tation with a meaning of the several symbols dif-
ferent from the one used in this article it reads

]‘?/IIC= _; z Q.)r(pr+ qr) + Vanh(q )/hC

—fa) (jﬂ+fﬂ) +Ulhc;

+2 (W2h¢) fiap(Ty
A (6)

P

Van/he = (1/6) ¢ 4,4 4.+ (1/24) "™ 4,45 G: 4

= rotation angular momentum,

)
Il

Jx = vibration angular momentum,
flap=ph+ 2 pShdr (7)
g = 13" 0p uy = — @0 /3 LI

=Qncw,/h); 1=2, (064, ps(ws/ ) (T)

) = Coriolis-Coupling constant.

As the handbook article is easily available, we still
prefer the Nielsen notation, slightly modified by
using latin-type indices. For all details and the
meaning of the constants see Nielsen [12].

2.2. The eigenvalue problem of the
Nielsen-Hamiltonian

If the eigenvalues of the Nielsen-Hamiltonian
would have been known, the summation of the ap-
propriate Boltzmann factors would be a program-
ming exercise. Unfortunately the polyatomic Schro-
dinger equation can only be solved approximately.

Recently Carney, Sprandel and Kern [15] pub-
lished an extended review on the variational (and
perturbational) approaches to vibration-rotation
spectroscopy for polyatomic molecules where they
critically summarized present techniques used in
high resolution spectroscopy. The most comprehen-
sive publication of conventional perturbation theory
is by Amat, Nielsen and Tarrago [16], so that it is
only necessary to discuss developments in different
fields.
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Only in few cases is it possible to prove conver-
gence of perturbation series. For one-dimensional
anharmonic oscillators of the types

ﬁ=%0+/~.é2k and

H =3+ L §* ®)

it was proved that the Rayleigh-Schrédinger per-
turbation theory is divergent for arbitrary small A
[17, 18]. It is possible, however, to sum the divergent
series to infinite order by Padé-approximants, con-
tinued fraction and Stieltjes-summation [19]. For
coupled anharmonic oscillators the calculations
become even more complicated, but Banks, Bender
and Wu [20] proved, that Rayleigh-Schrodinger-
perturbation theory is divergent for coupled quartic
anharmonic oscillators. Non-perturbational tech-
niques are, therefore, investigated by Montroll [21]
and co-workers who, by a combination of analytical
and numerical techniques calculated eigenvalues for
coupled and spherical anharmonic oscillators with
quartic anharmonicity. Unfortunately, oscillators
with mixed cubic and quartic anharmonicity are not
treated. Even more interesting is their WKB-type
technique for calculating level densities, so that one
can compare high temperature PF with bounds
from different techniques.

It should also be mentioned that direct varia-
tional techniques become more and more impor-
tant. Marcus and Noid [22] calculated precise eigen-
values of the Henon-Heiles Hamiltonian, a standard
model of celestial mechanics, ergodicity, and energy
migration in molecules.

H=d+70+ i@ 3~ 14) - ©)
They diagonalized a 1200x1200 matrix. Another
interesting approach was the application of the
algebraic computer language MACSYMA to high
order perturbation theory [23], which will facilitate
cumbersome and error-proned analytical calculations
by hand. Another interesting approach is by Bow-
man [24] who calculated energy levels by SCF-
techniques. All these techniques may also lead to
precise eigenvalues of the Nielsen-Hamiltonian,
especially at higher excitation energies.

3. Methods for calculating partition functions

As the article mentioned in the introduction
does not present modern techniques for calculating

partition functions, we take the opportunity to
sketch various methods and refer to scattered
results. We assume that in general the vibration
rotation Hamiltonian H can be split up in some way
into two parts

H=Hy+ H, (10)
where H, corresponds to an exactly solvable prob-
lem.

3.1. Customary techniques for the PF of polyatomic
molecules

Customarily the partition function Z is defined as
a sum over the Boltzmann factors formed with the
eigenvalues E,, of the discrete spectrum of H.

Z=3 gnexp(—BEn); an
m
where g,, is the degeneracy.

Besides the difficulties with the eigenvalue prob-
lem mentioned above, this summation requires ap-
proximations. Pennington and Kobe, and Wooley
developed expansion techniques for the various
sums over rotation and vibration quantum numbers
[25]. Durand and Brandmaier [25] evaluated the
various higher order corrections to the PF numeri-
cally. It was pointed out by Evans [26] that these un-
restricted summations of questionable energy levels
at higher energies will lead to wrong results. For
diatomic molecules one introduces cutoffs for both
rotational and vibrational quantum numbers, which
was not done as yet for polyatomic molecules.

3.2. Variational techniques

Non-perturbative treatments based on the trace
formulation of the PF are exact upper and lower
bounds given by the Gibbs-Bogoliubov and the
Golden-Thompson inequalities. As there exist ex-
cellent reviews by Girardeau and Mazo [27], Huber
[28], and Falk [29] for the lower bound, we only give
the essential formulas:

(12)
Z  =Tr{exp(—pH)} = Tr{exp[-B(Ho+ H)}},
Zwg =Tr{exp(—BHo) exp(—B{H o)},
(Hiyo=Trlexp (— BHo) H\)/Tr fexp (- Y, )
Zuys =Triexp(—BHo) exp(-fH)}, (14)

Z1g (Gibbs-Bogoliubov) = Z = Zyp (Golden-

Thompson).
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They are valid under fairly general conditions for
H, and 19'1, especially 1-?, needs not to be small in
the sense of perturbation theory. The lower bound
with and without variational parameters can be
evaluated easily for the linear harmonic oscillator
with exponential, GauB-type or arbitrary poly-
nomial interactions, and for the polyatomic mole-
cule with arbitrary polynomial interactions. The
upper bound, as yet, is only solved for special cases
of anharmonic oscillator systems.

3.3. Semiclassical techniques

Semiclassical techniques are well known since the
classical work by Kirkwood and Wigner and its im-
provements [30]. They can be applied easily to
linear anharmonic systems, but lead for coupled
systems to difficulties. Only for the spherical Ein-
stein model closed analytical results could be given
[31]. Recent advances by modified Feynman path
integrals have been achieved by W. Miller [32] and
co-workers, and by Jorish and Zitserman [33] for
linear anharmonic oscillators, corresponding to
diatomic molecules. The latter authors applied the
local approximation to two-dimensional systems
and calculated the PF of the planar quartic oscilla-
tor. A somewhat related path integral technique was
suggested by Papadopoulos [34] for the polyatomic
molecule, but the path integrals have to be per-
formed numerically. A Monte-Carlo-type semiclas-
sical calculation was performed recently [35] to
show the validity of an old approximation by Pitzer
and Gwinn [36]. They suggested

Z(T) ~ Z(T) [ZX(T)/Z(T)], 15)

where the exact quantum statistical PF of an anhar-
monic oscillator Z(7) was assumed to be propor-
tional to the corresponding classical PF Z.(T) mul-
tiplied with the quotient of the quantum (ZR(T))
and the classical (ZR(T)) PF of a reference oscilla-
tor. Isaacson and Truhlar [37] investigated this ap-
proximation systematically for some one-dimen-
sional model potentials, and Isaacson, Truhlar,
Scanlon and Overend [11] calculated the PF of tri-
atomics in various force field approximations in the
Pitzer-Gwinn technique. Comparison with their
results will be given below.

3.4. Thermodynamic perturbation theory

Thermodynamic perturbation theory in connec-
tion with molecular problems is not new. Already in

1933 Serber [38] introduced a perturbation treat-
ment of the canonical density matrix for the Kerr-
effect. His technique is similar to the perturbation
method of Peierls [39] developed in connection with
the diamagnetism of conduction electrons. Naka-
jima [40] reviewed perturbation theory in statistical
mechanics in 1955. In the same year Saenz and
O’Rourke [41] gave an application of Schwinger-
operator perturbation theory, and also a WKB-type
perturbation expansion, which contains SPT.
Further applications to solid state physics can be
found in Choquard’s [42] book on phonon anhar-
monicity. Resonances in polyatomic molecules have
been treated by SPT [43], as well as the diatomic
and the polyatomic molecule. Because of the cal-
culus of noncommuting operators, the results are
fairly complicated. Independently Naya [44], and
Naya and Siegel [45] treated the linear anharmonic
oscillator PF. Calculation of operator traces in the
perturbation series were greatly simplified by a
generating function method which was used for
level densities of polyatomics [45a] and for the
isotopic dependence of the diatomic dissociation
equilibrium [46].

Wolfsberg and co-workers [47] applied SPT suc-
cessfully to the isotopic equilibria of polyatomic
molecules, and Lew and Ishida [48] also investigated
1sotope effects by SPT. The well-known SPT is to
second order

Tr{exp[— A (Ho+ H))]} = Tr{exp(— B Ho)}
—ﬂTf'{Hll exp(—fHy)}

+(6%2) [ ds\ Tr{H,exp[~BHo(1~ )]
0
(16)

H, must be small in the sense of perturbation
theory. It will be shown in the appendices, that this
condition is not sufficient. We, therefore, tried to
improve the range of validity by considering a com-
bination of variational techniques with SPT.

- Hyexp[-BHos1]} ¥

3.5. Variation-perturbation theory

It was mentioned in 3.2 that the Gibbs-Bogoliu-
bov inequality can be evaluated including varia-
tional parameters. A variation of the equilibrium
positions and the frequencies of the harmonic refer-
ence oscillators is appropriate in the case of poly-
atomic molecules with polynomial interaction. Cal-
culations for one-dimensional oscillators show a
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strong improvement of the lower bound. As the
choice of Hy in SPT is fairly arbitrary, we cal-
culated an optimized H, from the variational lower
bound and took it as zero order Hamiltonian in the
subsequent SPT. As an example, where precise
eigenvalues were known, we took the quartic anhar-
monic oscillator

b
Hu%(p%qhuhwq‘* 17
and introduced
no
Ho(Q) ='7(,3*2+q*2), (18)

_hw =2\ . (a))z‘*4

H{(Q) ( = )q +hwi o) (19)
where Q (or k= w/Q) is the variation parameter.
For details and the fairly long formulas we refer to
[49], but we wish to show the improvement of the
results in Table 1.

For the constants chosen in this example the
numerical PF from the Hioe-Montroll eigenvalues is
Z{ym=2.2153. For completeness we also give the
exact Golden-Thompson bound including the varia-
tion of Q: ZYs=2.2225. One sees that SPT (k= 1)
is wrong to the extent of several orders of magni-
tude. With decreasing values of k, the result is im-
proved till very good agreement with Z{,, is reach-
ed. The case corresponding to the optimal value of
the lower bound is in bold type.

It will be interesting to see whether variation-
perturbation techniques work as well for coupled

Table 1. Variation-perturbation theory for the quartic an-
harmomc oscﬂlator Improvement of SPT with variation of

=(0/Q). Zpr = Varlatlon perturbation theory based
on second order SPT, Z (2) = Lower bound including the
variational parameter Q. fhw =02, A=1.

k Z$%r Z'5(2)

1 6518.72 1.3815 (—6)
0.9 2494 .48 2.4234 (—4)
08 844,30 9.6242 (~3)
0.7 242.83 0.1171

0.6 55.97 0.5694

0.5 10.14 1.3868

0.4 2.688 2.0368
0.3456 2.2381 2.1373

0.3 2.1640 2.0712

0.2 1.7234 1.5682

0.1 0.8945 0.8128
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oscillator systems. Unfortunately, only few exact or
high precision numerical results are known for these
systems.

4. Vibrational PF of anharmonic oscillators,
application of second quantization
and operator techniques

We shall evaluate the PF in the trace formulation.
As the potential energy ends with an even power,
the harmonic oscillator basis can be extended to
infinity and no cutoff-problems because of dissocia-
tion arise. Evidently, this is an unphysical approxi-
mation. For linear anharmonic systems of the
r~@m+2) _ ;=2m_type theorems exist giving the exact
number of bound states, a given potential can sup-

‘port [50]. For polyatomic systems such theorems

seem not to exist. The problem of cutoff, treated ex-
tensively for atoms [51] and diatomics [52], was
solved recently by inclusion of the continuum.
Whereas the results for atoms seem to be satisfying,
the treatment of the Morse-oscillator merits further
consideration. For intermediate temperatures,
considered here for polyatomic molecules, we tried
to control the influence of limited numbers of
quanta in the trace calculations. The results are
fairly insensible for both rotational and vibrational
cutoffs.

4.1. Direct evaluation

Following the technique given by Messiah [53],
one sees that

§;i= (a7 +a)/y2, (20)
pi=i@—-a)//2 1)

with [d;, dk]-= d;. For simplicity, we count de-
generacy separately to avoid the double index.

The technique, following [9, 10], will be explained
for the term proportional to k%, appearing in
second order SPT where also the effect of Fermi-
resonance can be seen. The notation Z{™ which is
used subsequently indicates an arbitrary numeration
m of [-th order potential terms contributing to
second order SPT

ZP = B ke f Tr {exp[~ (A +#19)]

“[akexp (ﬂh wis)) + arexp (— Bhaygs)
“[af exp (Bhw;s))+a;exp (— Bhw;s))]

. (dz+ﬁk)2([1f+dj)} dS] . (22)
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Using the formulas of Appendix C and the com-
mutation properties of the trace, we get in terms of
the diagonal number operators #;

1
ZE% = B i [ Tr {exp [~ BGPY +740)]

(A= fix) (i exp {Qex + &) 51}

+ (A + 1) exp{(2ex—¢) 51})

+ (2r‘1k+1)2(flj exp {51} + (A, + 1) exp{—e¢;si))
+ (At + 3Ak+ 2) (A exp{— Qex—e¢) 51}

+ (A+ 1) expi{—ex+¢)si1))] dsy . (23)

where the abbreviation ¢; = 1 w; was introduced.
The traces are known to be of the geometric series

form ), n*exp(—e;n), which can be written down
n

after differentiation of the ordinary geometric
series:

2 exp(—en) =exp(e)/(exp(e)—1).  (24)
The ordering integrals are
1
Y(2)= .f exp(zsy))ds;=[exp(z)—1]/z, (25)
0

so that the final result reads with the abbreviation

o2}
Ziy =exp(—¢/2) Y, nfexp(—gn)

(26)
nj=0
ZW = & Bl (Zok— Z 1) [Z1; Y Qewc+e)
+ (Zl/’+20/) Y(ZX/\-—S/')]
+ (@ Zy+4Z 1+ Zok)
[Z) Y (e)+(Z1j+Zoy) Y(—¢g)]
o (sz+3zlk+220k)[zljY(aj—z.gk)
+I(Zy+Zg) Y(=2a—g)l; - 27

It was already shown [43] that in contrast to ordi-
nary perturbation theory, resonances of all types are
included consistently. For 2w, = w; we get Fermi-
resonance which is solved by L’Hospital’s rule.
Anharmonic resonances change the simple molecu-
lar level pattern and lead to irregularities which are
closely related to the irregular trajectories found in
numerical investigations of the classical and quan-
tum dynamics of anharmonic oscillator systems.
With increasing number of vibrational modes, the
possibility of accidental resonances increases, so
that SPT is a valuable means to incorporate these
irregularities. With increasing powers in the poten-
tial and in higher orders, the direct methods be-

come very complicated. We, therefore, tried to
avoid the difficulties of the operator calculus by a
generating function method.

4.2. Generating function method

For simplicity we explain the method for the one-
dimensional case, details will be found elsewhere
[10].

In SPT of arbitrary order expressions of the form

Tr{exp (= fo#0) (@ ot + do)* (6 oty +a gy

(@ otz aos) ™) (28)

arise, where of =exp (Bhws)), a;=-exp(—pfhws))
etc. Repeated normal-ordering according to Appen-
dix C will be very cumbersome. On the other hand,
it is easy to define a generating function GF

GF = Tr{exp (- fo#,) exp[k; (@T ok +day)]

“explky(@ oty +an)] ). (29)

The exponentials are united by repeated application
of the BCH-formula leading, to second order, to
GF = Tr {exp (=) exp[(k 0% + ko oty +++) a*

+ (ky oy +kyo +--0) al}

cexp ik ka(ogofy—oy afh) /24 . (30)

This is exactly the form of the characteristic func-
tion of the harmonic oscillator probability distribu-
tion, which is

R
GF =Zexp { (7) (kyat+kyofy+-)
'(k11|+/\'21|2+"')}

expikiky (o afa—afoy)/2+-+}, (31)
where Z denotes the harmonic oscillator PF

Zy=[2sinh(e/2)]"}, e=phow
and

R = coth (£/2) . (32)

One sees that the non-commuting operators dis-
appear. It remains to find the various traces either
by series expansion and comparison, or by differen-
tiation according to the order parameters k;. The
latter technique was used in an application of the
algebraic programming language REDUCE II to
higher order perturbation theory, but because of



J. Bohmann and W. Witschel - The Polyatomic Molecule Partition Function 173

computer difficulties we did not succeed. An ap-
plication of MACSYMA which also can integrate
the ordering integrals would, hopefully, be more
successful. As detailed formulas for the various an-
harmonic terms are not published as yet, we give
the fairly lengthy formulas for fourth order poten-
tial and second order SPT. Higher order corrections
are treated by Bohmann (a limited number of this
thesis can be requested).

4.3. Formulas for anharmonic oscillators

In the present section we give several terms con-
tributing to the vibrational PF of polyatomic mole-
cules in first and second order SPT. Third and
fourth order potential terms are considered. The
vibrational sum which can thus be calculated must
be multiplied by the appropriate rotational sum, a
discussion of which is given in Chapter 5. We use
the notation

w; = angular frequency of the normal mode j,
& =phw;,

b = (33)
Rj = coth (81/2) N

ZY =[2sinh (/2)]" .

43.1. Firstorder SPT

Generally, terms of the form

Z{" = — BTr {kijkmqi4;dxgmexp (—BHo)} (34)
arise, where the superscript » in brackets indicates
an arbitrary numeration. Subsequently we assume
that H{j consists only of the harmonic oscillator
Hamiltonians which correspond to the indices of the
anharmonicity constant Kj,; Zj is the PF cor-
responding to Hj, for example Zy=Z§ - Z§ for a
term proportional to kjjy.

From the structure of the GF (Eq. (31)) it is clear
that terms containing odd powers of the normal co-
ordinates do not contribute to the PF. Additionally,
it should be mentioned at this point that the Gibbs-
Bogoliubov lower bound is closely related to first
order SPT, as can be seen by comparison of Egs.
(16) and (13). Therefore, the following equations
can also be used for the calculation of Z5:

Z(V=—BZ4(3/4) k;yR3,
ZP=—BZ5(1/4) kR Ry .

(33%)
(36)

432. Second order SPT

In second order we get expressions of the forms

1
253"] = (ﬂ2/2) {kijk ks Tr { j ds
0

“exp (—BHo(1-51)) Gid; Gk

. exp (— B Hbs) 4,454,]} , @37
1
254"] = (ﬂ2/2) { kijkmkr.\'ler { j dSl
0
“exp(—fHy(1—sy) Gi4;4xdm
- exp (— B Hbs) msq,éw” LG9

where the superscripts [3n] and [4 7] correspond to
the arbitrary numbering of third and fourth order
terms.

Low order indices contributions are easily cal-
culated by the direct method, whereas higher
powers are calculated more economically by the
GF-method. As the results are very long, we only
give the third order terms completely and the fourth
order terms which are necessary for bent triatomic
molecules of the type XYX. The complete list can
be requested or easily calculated.

1
Z.L_Sllz'—IZﬂzk_/ka {Zl/'ZlkZlm Y(ej+gk+£m)

+Z1Z1u(Z\m+Zom) Y (&i+ ek m)
+Z;Z\m(Z 1kt Zok) Y (&j— ekt &m)

+ ZwZim(Z\j+Zo) Y(ektem—¢)

+ Z\j(Z\k+ Zok) (Zim+ Zom) Y (&j— ex— €m)

+ Z(Zyj+ Zo) (Zim~+ Zom) Y (k= &~ &m)

+ Z\w(Z1i+ Zop) (Zik+Zoi) Y (em—&j— k)

+(Z1j+ Zo) (Z1k+ Zow) (Zimt+ Zom)

(39

“Y(—g—er—em) .

This expression is calculated by the direct meth-
od. One observes a Fermi-type resonance for
;X wi+ o, which is treated consistently by L’'Hos-
pital’s rule. For the expressions calculated by the
GF-method we introduce

Y,(z) =2[cosh(z) = 1])/z,
Y_(z) =2sinh (z)/z

(40)
(41)
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for which the limits for z = 0 (anharmonic reso-
nances) also exist.

8
Zba = ry B Zyk%{RI9 Y_(g)+ Y_(3¢)]

—3RI[3Y.(g)+Y.(3¢)]
+3R[Y_(3¢)— Y_(g)]

—[Y+(3¢)—3Y+(e)]} (42)
1
Z¥ = — B Zo kjkk kjmm Rk Rm
32
(R Y_(&)— Y+ (&)}, (43)
3
2534] — 3_2 ﬂzz(/)kjjjk/'kkRij
AR Y_(e)—Y+(e)}, (44)

Zpl= glzﬂzzakfkk{R,Rim Y-(2)
+ Y_(gi+2er)+ Y_(6—2¢&x)]
—RE[4Y.(e)+ Yi(g+2e0)
+ Ye(g—26p)]
—2RiR[Yi(g+2ek) = Yi(ei—2¢0)]
+ 2R [Y_(gj+2e1) — Y_(&—2¢x)]
+ R;[Y_(gj+2¢e)+ Y_(g—2¢&x)
—2Y_ ()]~ [Y(g+2ex)

+Yi(g—260-2Y.(e)]) - (45)

ZB is identical to (27), though, because of the dif-
ferent methods it looks quite different.

The contributions due to fourth order potential
constants are:

2= P 2o
{RY[Y_(4¢) +16 Y_(2¢) +36]
—4RIY,(4e) +8Y,(2¢)]
+6RY[Y_(4e)+ Y_(2¢) — 6]
—4R;[Y,(45)-2Y.(2¢)]

+[Y_(4¢)—4Y_(2¢) +6]}, (46)

5 1
2 = —= P Zo ki (RFRAA Y_(22) +4 Y_Q2en)

+ Y. (2egt+2e)+ Y(2g—26)+16]

+ AR Ri[Y_(2e+2¢e) — Y_(26—2¢&1)]

+[Y_-(Qei+2e)+Y_(26—2¢x)

—2Y_(2¢)—2Y_(2¢r) +4]

+2 (RAY_Qeg+2e) + Y_(2—2¢)
0

Jjk

+4Y_(2e)—2Y_(2¢)—8]
—2R;R}AY.(2e)+ Y. (2¢+2¢)
+ Y, (2e—2e)]-2R;[Y+(2g+2¢0)

+ Y, (2e—2¢)-2Y.(2¢))}, (47)

where the symbol ?k in the sum denotes a permuta-
tion of the indices /, k.

3
ZWl= = B2 Zykjjikjjnk RiREARI [Y-(2¢) + 3]

—2RjY+(2aj)+Y_(2£j)—2}, (48)
9
ZEM] = iﬂz Zy kjjyjkkkkkRjz'R% s (49)
3
2= =5 B Zo ki hxsmm RIR(Rp (50)
1
ZE%] == E ﬂzzé kjjkk kkkmijRm
- {RE[Y-(2e0) +4]
— 2R, Y. (Rer)—Y_(Ler)—2}. (51)

5. Rotation-vibration interaction,
large amplitude motions

5.1. Rotational PF

As the PFs of rigid rotation are well known, but
often overlooked in textbooks and reviews, they are
sketched briefly.

5..1. Spherical top
The eigenvalues

E;=h2DJ(J+1) (52)

are (2J+1)%fold degenerate, so that the PF can be
evaluated by means of #-transforms. For high tem-
peratures Fox [54] gave a detailed discussion,
whereas for low temperatures the classical work by
Maue is still important, where the symmetry of
nuclear spin and rotation is taken into account [54].

5.1.2. Symmetric top
The eigenvalues

Ejx=0*21)J(J+1)

+ {(W*/2) (1/1.,— /1) K? (53)

are (2J +1)-fold degenerate. Depending on the pro-
late or oblate form, the equilibrium moments of
inertia can be commuted. One can calculate the PF
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by various methods, the customary one is by Euler-
MacLaurin asymptotic series [S5].

Following Kassel [56], the different terms arising
in the perturbation expansion

ZRor@) =3 2 QJ/+DHe
J=0 K/=J
cexp{—a J(J+1)—yo K%
=ﬁf12/2]“; /:(Ixx/[zz)_] (54)

which are characterized by the different values of
@, can be calculated by parameter differentiation.
The zero and first order terms are

ZRbr(1) =n'267*2exp (0./4) (y+1)712
{1+y0/12(y+1)+--+}, (55)

ZR51 (K?) =126 exp (0./4) (y+1)732
1l+(/—2)ax/12(y+l)+“-}, (56)

ZRor(J(J+1)) = ' 67 exp (o, /4)(/+1)_1/2
AQRy+3)2(y+ 1)+ (57)

If the exponential factor in Z§hr(1) is expanded
too, (55) becomes
Z§hr(1) = (n/6.) 263" {1+ (40— 62/6,)/12
+ (3202—2403/0.,+70%/02)/480 + -}

(58)

which will be compared to the PF of the asymmet-
ric top.

For completeness we also give the matrix ele-
ments in the symmetric top basis which are neces-
sary for the subsequent applications of SPT to
Coriolis effects and rotation-vibration interaction.

(K,J| B3 K, Jy={(K,J|P3 K,J)

=m2{JJ+1)-K3, (59)
(K,J| P K,J)=hK?,
(K,J| P4 K, Jy=<(K,J| P} K,J>
= ("*/8) 3J2(J+1)2=2J(J+1)
—6J(J+1)K*+5K2+3K*, (60)
(K,J|PK,JY=hK*. (61)

For some recent developments on the symmetric top
PF we refer to Kayser and Kilpatrick [57].

5.1.3. Asymmetric top PF

It is well known that the asymmetric top eigen-
values cannot be given in closed form, but extended
tables for the numerical calculation are available.
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For an excellent review on the asymmetric top see
van Winter [58]. An elegant semiclassical Wigner-
Kirkwood expansion leads to simple closed expres-
sions. Stripp and Kirkwood derived [59]

ZRbr = (n/oy0,0.) *[1+(1/12) (20, + 20, (62)

+20.-0,0,/0.—0,0./0,—0.0,/0,) + ]

which in the symmetric top limit agrees with
Viney’s result. Independently Kaplan [60] derived
the same asymptotic expansion using Feynman’s
ordering technique. We shall use their results in the
zero order terms. For perturbation calculations,
however, these formulas are not suited. We prefer a
symmetric top approximation which was similarly
used by Gordon [61]. One writes

= (PY/1 .+ P¥YI,,+PYI.)/2=Ho+ H;, (63)
Ho= (PY/1 .+ P3(1,,1..)"*+ P2/(1,,1.)"/2,
H = (1/1,,—1/(1,,1.;)' P/2 (64)

b (Ui~ 1Ty L) By P2 ,

so that H, is small because of the difference of the
inverse moments of inertia and can be neglected to
a good approximation. The pseudo symmetric top is
used in the following calculations with a second ap-
proximation. For the anharmonic oscillators the
ordering transformation can be performed easily as
the set {d,a*,1} is closed under a commutator
operation and [4,4%]-=1 leads to a c-number which
commutes with & and a* respectively. Matters are
more complicated for {J,, J,,J.}={P,, P,, P.,}. The
commutator no longer leads to a c-number, but to
an operator. The Hausdorff-ordering transform
(Appendix C) can no longer be summed easily. We,
therefore, neglect the higher terms of the series and
take only the first (constant) one.

5.2. Coriolis-coupling

Coriolis-coupling is usually associated with the
vibrational angular momentum of degenerate
modes and is, therefore, treated in connection with
the spherical and symmetrical top. This Coriolis
effect is called of first order. The quantum mechan-
ics for the symmetric top is simple, but for the
spherical top it is a field of active research. In addi-
tion, Jahn (see Nielsen [12]) showed that Coriolis-
coupling of second order arises in asymmetric top
molecules like formaldehyde and water. Though
this effect is small, it should be treated for com-
pleteness.
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52.1. Sketch of first-order
Coriolis-coupling

As the influence of Coriolis-coupling was treated
recently for degenerate modes [62], only the method
will be outlined: after translation to occupation

number representation the vibrational angular
momentum operators read:
. Y
Px=1 Z Q;(t\iuS(a;AZG;AJ_ a;lZa;d) 5
i
P
p,\' =1 Z ‘:}1):?.;11 (auS ay) _a/daul) ) (65)
"

ﬁ: =y Z CL:I),;IZ((;;H&;Z—&ZI éuZ) .
u

It is obvious that the ordering transformation be-
tween the components of a degenerate mode does
not contribute.

exp {+ B hw, (af G+l a,+ a53d,3) s1} 4, a5
“exp{—phw, (a5 au+ a5 d,0+d5a,3) s (66)
=a, exp(—phw,s) dpexp(Bhw,s)=a,a;,.
For brevity, the final formulas will not be written

down but can be obtained easily by the operator
techniques of Appendix C.

522. Second order Coriolis-coupling
Following Jahn (see [12]) we take H,O as example

B = (PY1)+(Py=py = p) /1y + P/ L+ Hyis,

P ="C0(qipa—prga) = (=il (G a,—azay),  (67)

P =C3(qips—prgs) = (— i) (@f a3~ aiay) .

H is separated into a zero order term H, and a per-

turbational part H, containing the Coriolis opera-
tors and anharmonicity.

HYY = (PY1.) + (PY1,) + (PYL)+ 2 #§,  (68)
J
Hy=Q2P,/1,) - i{{; (a7 a;—a3 ay)
+ (i3(ata;—as ay))
- (]/In) {QIZ(&T(}Z_&;&])
+ {i3(at a3— a3 @) 12+ Vann (q) (69)

where V,(g) contains the anharmonic part of the
potential energy.

The second term in H, already contributes in first
order SPT

ZICC = (/))/111) ZQE)T (70)
AZe(1L,2) Ch2Z0Z1+ Z1 Zoy+ Z01 Z13)
+Z§(1,3) h2Z0Zi3+ 21 Zos+ Zon Z13)} -

Z{&4r denotes the rotational PF and Z§(j,k) the
vibrational PF in the harmonic approximation
without the PF of the normal modesj and k.

The first term of H, only contributes in second
order SPT:

Z5C=2(p/1,,)* Wrot
AZ5(1.2) Y (2= 1) Z11(Z12+ Zo2)
+ Y(e1—e) Zi2(Zn+Zo)]
+ Z5(1,3) (5[ Y (63— 1) Z11(Z 13+ Zo3)
+Y(i—e) Zis(Zu+Zo)l} - (71)

Wrort contains the rotational part which is approxi-
mated in the averaged symmetric top approxima-
tion. The matrix element is taken from (59).

Wrotr = "* ZRo1(K?) . (72)

In contrast to the symmetric and spherical top the
contributions in first and second order SPT do not
cancel. The reason is that for degenerate modes the
ordering transform vanishes, whereas for different
vibrations it contributes to the PF.

523. Coriolis resonance

Though the effects of Coriolis resonance are even
smaller than for ordinary Coriolis-coupling, we shall
discuss it to show the generality of the method.
Following Nielsen [12] we treat Coriolis resonance
between the fundamentals ws and wg of formal-
dehyde in the symmetric top approximation /,,=1,,.
The part of the Nielsen Hamiltonian responsible for
resonance is in the original notation

T=6/45)"*Gs ps— (Vs/06)"*Ge ps| L P/,

where 7, = (27(d,))% @, is the normal frequency in
cm~!, not to be confused with w; used in the text.
One gets with

1 =(wg/ws)'?—(ws/we)'?,

r* = (we/ws) "+ (ws/we) 2,

(73)

(74)
T={tatat—r*atag+r*asat—1tasag) (i (R P/21,)
(75)

so that after a simple calculation with the technique
discussed for the anharmonic part the results is:

| .
Z§R = 3 (BRI Wror - (1Y (—es—e6) Z15Z 16

+12Y (es+e6) (Z1s+ Zos) (Z 16+ Zos)
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+ 1*2Y (es—e6) Z16(Z 15+ Zos)

+ %2 Y (es—¢s5) Z15(Z16+ Zos) ) - (76)

One sees that the resonance is caused by the
Coriolis-coupling and not by anharmonic-coupling
terms. The quantum mechanical treatment of this
effect is fairly complicated [12, 14], but the present
results show that resonance effects and irregularities
can be incorporated into the PF easily. Furthermore,
it can be seen that the effects are small, so that in
contrast to some suggestions they need not be taken
into account in level density calculations, as the
anharmonic resonances are much more important.

5.3 Rotation-vibration-coupling

For brevity we consider only the most important
term, diagonal in the angular momentum operators.
As the constants are not of special interest, we
abbreviate them all by Cj, so that the rotation-
vibration term reads:

=_Z Z ‘C qu/J
=__Z Z ;2—1/20@ PZ(

From the generating function given in Sect. 4.2 it
follows immediately that only terms of H, contain-
ing odd powers of the §; will contribute to the PF in
second order SPT, if TRV is taken into account. The
most important contribution results from the diag-
onal cubic anharmonicity k;; ¢}. Using the methods
discussed above, the respective term reads

T+ a)) . a7

1
78V === ] ds, [T {exp (- AT
275
- exp (= fHE"s))
: (Z km‘ﬁ) exp (BHE 51) ‘Z Z Mt H’
+Tr {exp (- BHEY) exp (— fHE 51)
[z ¢

== _ﬁ Z Z ng/\/// wrY (g.)
[Y(ﬁi)+ Y(‘ eN2Zy+2Z i+ Zy)],

qq,] exp (BHEs)) (Z kjjj ‘13)}]

(78)
where
W (g.)) =

Tr (Bexp[-BAR()];  (79)

The Polyatomic Molecule Partition Function 177

HEV(j) is the zero order rotation Hamiltonian plus
the zero order vibration Hamiltonian but without
the Hamiltonian of the j-th normal mode .
WRY(g, j) can be evaluated in the same approxima-
tion as for the Coriolis-couplings. Furthermore,
second order SPT leads for the diagonal part to
rotational powers ~ P4, which are much smaller
than the anharmonic rotation-vibration interaction.

5.4. Internal rotation and large amplitude motion

For completeness we want to refer to molecular
motions which are not included in the Nielsen-
Hamiltonian and which cannot be treated by pertur-
bation methods.

5.4.1 Internal rotation

The problem of internal rotation was treated from
the practical point of view by Frankiss and Green
[1], who also gave a large number of examples. They
used numerical summation of Boltzmann-factors
from available tabulations. Details of the quantum
mechanics with extended references are given in
Chapt. 8 of [63]. These techniques are not well
suited for the calculation of the PF and level
densities which are needed in reaction kinetics.
Vojta [64] showed that Wigner-Kirkwood semiclas-
sical expansion to order /* gives good analytical
results for symmetric hindered tops in terms of
modified Bessel-functions. It is, therefore, easy to
incorporate these degrees of freedom in the calcula-
tion of level densities. Kaplan [66] used ordering
techniques to get analytical results for symmetric
hindered tops and Zaitsev [65] applied a resolvent-
type technique to the same problem.

5.4.2. Large amplitude motions

A good review on the quantum mechanics and
spectroscopy of large amplitude motions like torsion
and ring-puckering is given in Chapt. 7 of [63]. One
customarily reduces the problem to the Hamiltonian
of an one-dimensional single or double well oscil-
lator

H=1hop*+08)+k:¢*+kag*,
k4,k3§0, o=+1
ky>0, k3y=0, 6=—1 double well.

single well,
(80)

The Wigner-Kirkwood expansion can be evaluated
analytically to arbitrary order in series of exponen-



178 J. Bohmann and W. Witschel - The Polyatomic Molecule Partition Function

tial functions and parabolic cylinder functions. In
addition exact upper and lower bounds including
variation, and the variation-perturbation series can
be evaluated analytically [67].

6. Numerical results and discussion
6.1. Numerical results

As rotational effects are small and well under-
stood, we evaluated only the vibrational part for
two examples H,O and SO, with the potential
constants from Morino and Kuchitsu [68], for a
detailed recent discussion of these constants see
Isaacson et al. [11].

Anharmonic force field:

Hi=kingi+ kg 3+ ki g 3
+ ka1 G2 G+ ko §3 + k233 G2 3
+ kgt + ki gt 3+ ki 61 63
4
3

81)

The vibrational PF of H,O in different approxima-
tions is given in Table 2 for several temperatures. As
expected, the PF Zp from summed Boltzmann
factors agrees very well with second order SPT, as
the eigenvalues are calculated by Van Vleck pertur-
bation theory. Good agreement exists also between
SPT and the accurate results. The results for high
temperatures are only given to show the behaviour
of both approximations. Unfortunately the agree-
ment is lost below 1000 K, where the approxima-
tion Zg is valid, whereas SPT, as a high tempera-
ture expansion, leads to wrong and at room tempe-
rature to meaningless negative values. As will be
discussed in the appendix, for molecules with high
frequency X-H vibrations SPT does not work well at
low temperatures, but sufficiently well at higher
temperatures.

~4 A2 a .
+ ko G+ ko33 G343+ k333 3 -

Table 2. The vibrational partition function of H,O. —
Comparison of first (Zy;) and second (Zy,) order SPT with
the PF from summed Boltzmann factors Zg and accurate
results from Isaacson et al. [11], Z;. Molecular constants
from [68].

TinK ZB Z()] Zl ZOZ

1000 1 1.39 (=3)

2000 6 -

3000 3.
8
1
3

4000
5000

1
6

- 3

8.06 (1) 8.

= 1

6000 3

Table 3. Contributions of various orders SPT for SO,.
Z,=harmonic PF; Z{1=first order SPT, fourth order
potential; Z§)=second order SPT, third order potential;
Z$1 = second order SPT, third and fourth order potential.

TinK Z, A Z¥ z§

400  477(=3) -—387(=5) 196(—4) 4.10(—6)
1000 294(=1)  L71(=3) 104(=2) 6.18(-4)
2000 293 4.92(-2) 167(=1) 2.12(-2)
3000 1.03 (+1)  2.72(=1) 843(=1) 1.63(=1)
4000 248 (+1)  887(=1) 267 6.91 (=1)
5000 489 (+1) 220 6.51 2.11

Table 4. The vibrational partition function of SO,. —
Comparison of different approximations. Z;= accurate
results from Isaacson et al. [11]; Z§P = first order SPT,
fourth order potential; Z{ =second order SPT, third
order potential, Z{) =second order SPT, fourth order
potential.

TinK Z zZ§ zg ZQ

400 - 473(=3) 493(=3) 493(-3)
1000 3.06(—1) 2.95(—=1)  3.05(—1)  3.06(—1)
2000 3.17 2.98 3.15 3.17
3000 - 106 (+1)  L14(+1)  L16(+1)
4000 - 257 (1)  2.84(+1) 291 (+1)
5000 - 510(+1) 576 (+1) 597 (+1)

A comparison of the different contributions to the
PF in first and second order SPT is given for SO, in
Table 3. One sees that the contribution of second
order SPT is smaller than the first order form, only,
if potential terms up to fourth order are considered
rather than a potential limited to third order terms,
and if the temperature is not too high. The observa-
tion that the contributions of different orders n of
SPT may increase with n was also made for other
systems [see appendices A and B] and seems to be
related to the convergence problems of SPT.

In Table 4 the PF of SO, in the different approxi-
mations is given. The agreement with the accurate
results by Isaacson etal., which differ also little
from the perturbation results, is quite good. We
expect, therefore, that second order SPT is a good
approximation for heavier molecules between room
temperature and 2000 K.

6.2. Conclusions

We conclude from the numerical results and their
good agreement with accurate independent calcula-
tions for selected triatomics that SPT to second
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order is comparable to conventional numerical
methods for calculating PFs. The advantages are:

A) once the force field in normal coordinate
representation is given, SPT to arbitrary order even
for high powers of the normal coordinates can be
performed by GF-methods. The calculations are
simple, but tedious and lead to long expressions.

B) the results are given in terms of simple
transcendental functions which can be easily dif-
ferentiated. Thermodynamic functions H, E, S, C
can be given in analytical form, no numerical
differentiations are necessary. As the specific heat C
is closely related to the level density, calculated by
steepest descent methods, it can be evaluated ana-
lytically in first and second order. We showed in a
previous paper the good agreement with level
counting [45a].

C) all resonances which make the level pattern
irregular and become more and more important
with increasing number of normal vibrations are
included consistently.

D) it was mentioned that Wolfsberg and co-
workers applied SPT to off-diagonal force fields in
the harmonic approximation. Their success suggest
the same technique for anharmonic force fields, too.
The calculations may, however, be very long.

We shall also mention the disadvantages and
open questions.

E) SPT was shown to be equivalent to degenerate
Rayleigh-Schrédinger-perturbation theory. For an-
harmonic oscillators it suffers not only from the
principal convergence problems for perturbation
theories, but also from the special divergence even
for infinitesimal small anharmonicity.

F) SPT is a high temperature expansion which is
wrong at low temperatures and also leads to wrong
results at very high temperatures. This was shown
explicitly for the linear quartic anharmonic oscil-
lator. It happens (see Appendix A and B) often, that
the third order SPT is worse than the second order.

6.3. Outlook

We plan further systematic investigations of the
convergence behaviour using algebraic computer
languages and summation techniques. We hope to
get criteria for the range of reliable approximations
depending on harmonic frequencies, anharmonici-
ties and temperature. A crucial test will be the
calculation of the isotope equilibrium constant for

H,0 + D,0 =2HDO

by variation-perturbation methods and the compar-
ison with precise numerical results by Wolfsberg
with eigenvalues from variational calculations.

Part of this work was performed at UC Irvine. W.
W. wishes to thank the Department of Chemistry
for the invitation and Prof. M. Wolfsberg for many
stimulating discussions. A travel grant by the DFG,
and support by the Fonds der Chemischen Industrie
is gratefully acknowledged.

Appendix A

Numerical investigation of the convergence be-
haviour for a perturbed harmonic oscillator.

Harvie, Bopp and Wolfsberg [47] investigated in
an important paper the convergence behaviour of
SPT to fourth order for polyatomic molecules in the
off-diagonal-representation. From the behaviour of
the different orders they suggested convergence of
this model system. As the perturbation of the non-
diagonal operators is not very strong, we consider a
one-dimensional oscillator, where the exact result is
known and the perturbation can be varied arbi-
trarily:

H=wy+H,;, #y=MNowl2)p*+4§,

H =hwk,§*. (A

This corresponds to a harmonic oscillator with a
new frequency

o*=w(1+2ky)"?, and Z§=[2sinh(fhw*/2)]""

(A2)
We investigate the following questions:

— how does the convergence of SPT depend on the
temperature and perturbation

—1is |Z,+1|=1|Z,| a reasonable criterium for the
applicability of SPT

— how do the different orders of SPT behave?

We calculated SPT to fourth order; the lengthy
formulas are given in [10]. For small perturbations
k, < 0.1, the results practically agree with the exact
results. The agreement improves with increasing
order of SPT for the whole temperature range from
200—10000 K. On the other hand, for the extremely
strong perturbation k,= 1.5, SPT gives completely
wrong, divergent results for all orders and all tempe-
ratures. We, therefore, investigated the behaviour
for different k, at 4000 K, where SPT should work,
and @ =27-10"3[sec™'] in Tables 5, 6, and 7.
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Table 5. The partition function of a harmonic oscillator
with quadratic perturbation. Contributions of different
orders of SPT Z; as a function of the perturbation param-
eter k. w =27 103 sec™!, T'= 4000 K.

ks Z; 7, Z, Z z,

030 833 —250 113 —=5.62(-1) 295(-1)
040 833 —333 200 -1.33 9.34 (—1)
0.50 833 —4.17 313 =260 223

060 833 =500 450 —4.50 473

070 833 —584 613 —7.15 8.75

080 833 —6.67 800 —107(+1) 149 (+1)

Table 6. The partition function of a harmonic oscillator
with quadratic perturbatiog‘ — Dependence of the SPT in

different orders n, Z,,= >, Z;, on the value of the per-
turbation parameter k,. w = 27 - 103 sec™!, T = 4000 K.

ky Y4 Zy Zy Zy3 Zo4
0.30 6.58 5.82 6.95 6.39 6.68
0.40 6.20 4.99 6.99 5.66 6.59
0.50 5.88 4.07 7.32 4.68 6.96
0.60 5.61 3.32 7.83 3.32 8.05
0.70 531 2.49 8.61 1.47 1.02 (+1)
0.80 5.16 1.65 9.66 -1.01 1.39 (+1)

One observes that the different orders Z,, oscil-
late. Up to k = 0.5, the | Z,| form a monotonically
decreasing sequence, whereas for k£ = 0.58 the se-
quence increases. Below k& = 0.5, the results improve
with increasing order SPT, whereas above, the
accuracy decreases. For more detailed discussion
see [10]. To show this behaviour explicitly, we give
the percentage deviation 4Zg,= 100 (Z¢,—Z%)/Z%
in Table 7.

We conclude that for the harmonic oscillator with
quadratic perturbation there exist a perturbation
parameter k%, where the SPT gives wrong results
with increasing order of SPT. The temperature
behaviour is shown in Figs. 1 and 2. In any order of

0.05
I 0.0k H
o
N
<
0.03 T
0.02 f
0.01
0.0 1 1 1 1 1
0 2000 elele} 6000 8000 10000

T in K =——®»

Fig. 1. The partition function of a harmonic oscillator with
quadratic perturbation. — The relative (percentage) devia-
tion AZOI =100 (ZOI = Zﬁ)/Z’(')‘ (Zm = Z() 2 Zl) as a func-
tion of the temperature T for a small perturbation: k; =
0.01.

=g

o
N
<

8000

6000 |

2000 |

L 1 1 1 1

8000 10000

T dn K ===

Fig. 2. The partition function of a harmonic oscillator with
quadratic perturbation. — The relative (percentage) deviation
AZO4 = 100(204 . ZE)/Zs (204 =. ZO + Z] + Zz + Z3 + 24)35
a function of the temperature 7 for a strong perturba-
tion: k, = 1.5.

Table 7. The partition function of a harmonic oscillator with quadratic perturbation. Percentage
deviation AZj, for the approximations in different orders n of SPT. w=2r-10"sec™!,

T =4000 K.

ki AZ, AZy, AZy, AZy; AZy,

0.02 1.98 -3.95(-2) 1.97 (-3) —6.90 (-5) 2.48 (—6)
0.10 9.56 ~1.41 233 (-1) —4.07 (<2) 730 (=3)
0.20 183 (+1) 535 1.76 ~6.10 (=1 219 (1)
0.40 342 (+1) —1.95(+1) 1.27 (+1) —8.78 6.27

0.60 4.84 (+1) —4.07 (+1) 395 (+1) —4.07 (+1) 4.35(+1)
0.80 6.14 (+1) —6.79 (+1) 8.72 (+1) -1.20 (+2) 1.70 (+2)
1.00 7,34 (+1) ~1.00 (+2) 1.60 (+2) —274 (+2) 485 (+2)
1.20 847 (+1) ~1.37 {4+3) 262 (+2) ~536 (+2) 114 (+3)
1,40 9.53 (+1) —1778 (+2) 3.96 (+2) —0.44 (+2) 234 (+3)
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SPT and for arbitrary values of k, the relative
deviation from the exact PF approaches an asymp-
totic value for 7 — oco. This high temperature be-
haviour is observed even if SPT leads to meaning-
less figures. The temperature, where the asymptotic
value is practically reached depends on w and k,.
From these results we conclude that it is necessary
to investigate systematically high order perturbation
theory for different types of perturbation over a
range of anharmonicity constants and temperature.

Appendix B

Third order perturbation results for diatomics to
fourth order Dunham-expansion.

Though we dealt in the text with polyatomics,
some unpublished results for third order SPT of
diatomics should be given to illustrate the behav-
iour for molecules with cubic and quartic anhar-
monicity; for brevity we discuss H, with large
anharmonicity (Tables 8 and 9). HBr, HCI, HF, CO,
J, are treated in [10].

Generally, it follows from the numerical calcula-
tions that third order SPT does not improve the
agreement with numerical results, whereas second
order SPT gives a good approximation and always
lies slightly above the exact upper bound with
variation of the internuclear distance and the fre-

Table 8. The vibrational partition function of H,. —
Contributions Z, arising from zero to third order SPT.
Molecular constants calculated from [70].

TinK Zo Zl 22 23
1000 4.22(=2) —557(=3) 7.78(=3) —4.12(-3)
2000 2.14(-1) —1.66(=2) 2.44(-2) —149(-2)
4000 5.70(-1) —4.30(=2) 7.64(-2) —7.94(-2)
6000 9.05(—1) —845(=2) 171(-1) —2.54(-1)
8000 1.23 -142(=1) 3.15(-1) —6.06(-1)
10000 1.55 =216 (-1) 518(-1) -—1.21

quency. The convergence is strongly dependent on
the harmonic frequency. As a rule, second order
SPT works well for intermediate values of ¢ = fhw.
It follows, that the results are good for fairly low
temperatures, if « is small, whereas unphysical
negative figures are obtained for large values of w.
On the other hand, the results are bad even at inter-
mediate temperatures for small w, whereas the
results for high temperatures are reasonable. We
hope to improve the range of validity by variation-
perturbation techniques.

Appendix C

Formulas of operator calculus.

Though the relevant formulas of operator cal-
culus have been given in previous articles, we wish
to give some improvement which facilitate the cal-
culations. More details will be given in a forth-
coming lecture note [69].

Hausdorff-formulas:

exp(aAd) Bexp(—aAd)=B+a[A,B]-
+(@/2")[A[4, B)]-+...

=Y (a/n){4"B}-=B(a),
n=0

(ChH
exp (2 A) B*exp (—ad)={B (@)}*, «= c-number, (C2)
exp (aA4) exp Bexp (—ad)=exp {B(2)} . (C3)

Baker-Campbell-Hausdorff-formulas (BCH):

exp (xA) exp (BB)=exp{aA+ BB+ (xf/2)[4,B]_},

exp (aA+ B B) =exp (xA) exp (8 B)
~exp {— (2 4/2)[4,B]}

if [A,[4,B)-]-=[B.,[4,B]-]-=0.

(C4)

These formulas can be used as generating functions
for ordered expressions formed with the Lie-algebras

Table 9. The vibrational partition function of H,. — Comparison of first (Zy;), second (Zy,),
and third (Z,;) order SPT results with lower (Z}g) and upper (Zjp) variational bounds and the
PF from summed Boltzmann factors Zg. Molecular constants calculated from [70].

TinK Zy ZYy Zy Zy, Zo3 VA

1000 441(=2) 370(=2) 366(=2) 443(=2) 402(=2) 5.29(-2)
2000  221(=1) 198(=1) 197(=1) 222(-1) 207(-1) 232(-1)
4000  596(-1) 528(=1) 527(=1) 603(=1) 524(=1) 596 (-1)
6000  9.67(=1) 824(—1) 820(=1) 991(-1) 7.36(-1) 9.42(=1)
8000 1.35 1.10 1.09 1.40 7.97 (=1) 1.28
10000 1.76 1.35 1.33 1.85 6.41 (—1) 1.61
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g el [p.gl-=cl. \a,a* I} [a,a7-=1 [I, 4]
= [/, a*]_ = 0. Differentiation with respect to a char-
acteristic parameter or expansion and comparison
leads to ordered expressions.

GF =explk(at+a)}
= exp (ka*)exp (ka) exp (k*/2)
= exp (ka)exp (ka*) exp(—k%/2) .
Example: (a* + a)*

(C5)

Expansion of the left and right side leads to
(a*+a)*=at+4aa+6atrat+4atad+at
+6a"+ 124 a+64a%+3
(*normal-ordering™)
=a*+4a’at+642at +4aa+att
—6a*—12aa"—64"%+3
(“antinormal-ordering”) . (C6)
This is easier to derive than the related compact
formula from parameter differentiation.
(/2] n—2k (c/2)%n! g2k
g‘o SZO k!s'(n—2k—s)!
In method 4.1 for calculating traces it is often neces-
sary to commute high powers of noncommuting

operators. This can be easily performed by a BCH-
generating function:

exp(ka*)exp (k,a)=exp (k,a)exp (k,a")

(hp+q)"= (C7)

“exp(—k ky).
exp (kia)exp (kya*)=exp(k,a")exp (ksa)exp (k k»).
C8
Example (8
atat=a*att—4aat+2
a*at’=ata’+4ata+2 . (C9)

This again is to be compared with the correspond-
ing formula from parameter differentiation

Am—j

. 2 m\n!dg"p
"= Z ! I( 1
=0 J! (m=))!(n—))!
To express operator products in terms of the di-
agonal number operator, we need diagonal ordering

(C10)
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