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A synopsis of different selfsimilar spherical compression waves is given pointing out their 
fundamental importance for the gas dynamics of inertial confinement fusion. Strong blast waves, 
various forms of isentropic compression waves, imploding shock waves and the solution for non-
isentropic collapsing hollow spheres are included. A classification is given in terms of six singular 
points which characterise the different solutions and the relations between them. The presentation 
closely follows Guderley's original work on imploding shock waves. 

1. Introduction 

It is now 40 years ago that Guderley's pioneering 
paper on spherical imploding shock waves appeared 
[1]. The outstanding importance of this paper is 
not just that it solved the particular problem in an 
elegant way, but it opened the view to a much 
broader class of selfsimilar solutions in gas dynam-
ics. Guderley discussed the general pattern of these 
solutions, but time was premature then for a de-
tailed assessment of each individual branch. Now 
over the last 10 years, research on inertial confine-
ment fusion (ICF) has triggered specific new inter-
est in this problem. The concept of spherical implo-
sion of small target spheres [2] leading to very high 
compression 103 times solid density) and high 
temperatures (ignition temperature of DT fuel 
^ 5 keV) exploits the singular behaviour of spheri-
cally imploding waves near the center, and self-
similar waves represent a basic approach to the gas-
dynamical part of the problem. Several papers on 
isentropic selfsimilar compression to high densities 
have been published. In particular, Kidder's ana-
lytical solution for homogeneous compression [3] 
has played a considerable role in clarifying general 
features of the process. Its derivation in Lagrangian 
coodinates as given by Kidder is remarkably simple, 
but leaves the relation to other selfsimilar waves 
obscure. 

It is the intention of this paper to show the ge-
neric relations between the different isentropic and 
non-isentropic selfsimilar waves, imploding and ex-

* This work was supported by the Bundesministerium für 
Forschung und Technologie and Euratom. 
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ploding, by placing all of them on Guderley's 
original chart of solutions. This will include the 
cumulative isentropic solutions of Kidder [3, 4] 
and Anisimov et al. [5], where all matter finally 
collapses into a point, the non-cumulative isentropic 
solutions discussed by Ferro Fontan et al. [6] and 
Rodriguez et al. [7], which contain the reflected 
shock after the imploding wave has reached the 
centre, and finally the imploding shock solution [1] 
and its extension to non-isentropic imploding shells. 
The latter is closest to the situation in ICF target 
implosions, and it will be shown that the solution in 
the centre behind the reflected shock after shell col-
lapse, where DT ignition and burn has to be achiev-
ed in fusion applications, is of the same origin as 
the famous blast wave solution of Taylor [8] and 
Sedov [9]. 

Let us make some further remarks on the history 
of the problem and add some references. Accord-
ing to Zeldovidi [10] the imploding shock solution 
has been found independently of Guderley's work 
also by Landau and Stanyukovich around 1945, and 
Russian physicists and mathematicians have been 
most active in the study of selfsimilar motion in the 
following time. The books of Sedov [11] (1959), 
Stanyukovich [12] (1960), Zeldovich and Raizer 
[10] (1967), and the recent one of Barenblatt [13] 
(1979) give broad access to this work. An early 
account of spherical selfsimilar waves is also given 
in the book of Courant and Friedrichs [14] (1948). 
An extension of Guderley's work to plane shock 
waves has been investigated by Weizsäcker [15] 
(1954), Häfele [16, 17] (1955) and others [18, 
19]. The important problem of impulsive load on a 
plane surface has been thoroughly discussed by 
Zeldovich (1956, see Ref. [10]). Propagation of a 
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plane shock in a medium with decreasing density 
(power law distribution) has been treated by Saku-
rai [20] (1960). The problem of a collapsing 
bubble turned out to be of Guderley's type as shown 
by Hunter [21] (1960). Several authors have de-
termined the selfsimilarity exponent of the im-
ploding shock as a function of the specific heat ratio 
y by approximate methods [22 — 24] and numerical 
calculations [25, 26]. A rather detailed study of the 
different y regions for shock and bubble implosions 
has been performed by Brushlinski and Kazhdan 
[27] (1963). The linear stability of various self-
similar spherical waves with respect to spherically 
asymmetric perturbations (e. g. Rayleigh-Taylor in-
stability) has been investigated recently, in particu-
lar by Kidder [4], Bernstein and Book [ 2 8 - 3 0 ] , 
and by Brushlinski [31]. An assessment of this 
work would be beyond the scope of this paper. 

A further comment is made on the general nature 
of selfsimilar solutions. It has been emphasized by 
Barenblatt [13] that these solutions are more than 
just incidental particular solutions which happen to 
be simple, but that they represent important 
asymptotic solutions in a certain sense which Baren-
blatt calls "intermediate asymptotics". In the case 
of Guderley's shock solution this implies that a 
large class of non-selfsimilar spherically imploding 
waves with rather general boundary conditions out-
side and a shock front propagating into unperturbed 
gas at the inner boundary approaches the selfsimilar 
solution asymptotically for radii r and times t close 
enough to the collapse point r = 0 and t = 0. On the 
other hand, shock velocity and strength as well as 
temperature behind the front and other quantities 
are diverging upon spherical convergence in Guder-
ley's solution. This is certainly an unphysical be-
haviour and will be limited e. g. by heat conduction, 
radiation and other processes which are neglected 
in pure gas dynamics as considered here. For this 
reason real shock implosions will deviate from the 
selfsimilar solution also in the centre and a small 
region surrounding it. It is therefore typically an 
intermediate region where the selfsimilar solution is 
approached by more realistic, non-selfsimilar solu-
tions and this leads to the term "intermediate 
asymptotics". In most cases it is very difficult to 
determine the regions of intermediate asymptotics 
in a general way since usually nothing general is 
known about the larger class of non-selfsimilar solu-
tions. A remarkable attempt to gain some general 

insight in non-selfsimilar flow neighbouring self-
similar flow in Guderley's problem has been made 
by Häfele [17]. But otherwise only numerical re-
sults based on finite difference schemes exist for 
comparisons. They have been studied extensively 
for ICF target implosions. It is interesting to see 
that salient features of such numerical implosion 
calculations are indeed well reproduced by self-
similar solutions, and the concept of intermediate 
asymptotics appears to be useful, although no 
precise statements can be made so far. More work 
has to be done to establish the regions of inter-
mediate asymptotics for spherical implosions more 
precisely. 

In the following the different branches of self-
similar solutions which may be approached in ICF 
target calculations are discussed. Although the basic 
equations have been derived at a number of places 
(see e. g. Refs. [1, 10 — 12, 14]), a brief derivation 
is repeated in Sect. 2 and the appendix. A new 
aspect is found in Sect. 2.2 by taking into account 
particle trajectories explicitly; this leads to a general 
theorem concerning ratios of density, pressure etc. 
on such trajectories. Algebraic integrals expressing 
mass and entropy conservation are derived in 
Section 2.3. The reduced differential equation is 
obtained in Section 2.4. Singular points and bound-
ary conditions are discussed in Section 2.5. The 
particular solutions shown in the figures of the fol-
lowing sections have been obtained by numerical 
integration of the reduced equations in those cases 
where no analytic solution exists. 

2. The Basic Equations and Guderley's General 
Solution 

2.1. The Gasdynamical Equations and the 
Selfsimilarity Ansatz 

The basic gasdynamical equations 
d/dtQ + d/dr(gu) + (n-1) Qu/r = 0, 
3/31 u + u(d/dr) u + (1 Jo) (3/3r) p = 0 , (1) 
d/dt(p/er)+u(d/dr) (p/Q?) = 0 

express conservation of mass, momentum and 
entropy. They are given here for plane (rc = l ) , 
cylindrical (n = 2) or spherical (n = 3) symmetry 
with a single spatial coordinate r. The entropy 
function A = p/@y is chosen for an ideal gas with 
the adiabatic exponent y. For selfsimilar solutions 
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the equations of gas dynamics (1) reduce to a single 
ordinary differential equation. The selfsimilarity 
ansatz for the density Q(r,t), the velocity u(r,t) 
and the sound velocity c(r,t) (defined by c2 = 
y P/Q) is chosen in the form 

u(r,t) = (ar/t)Utf), 

c ( r , l ) - ( a r / l ) C ( f ) , (2) 

where the selfsimilarity coordinate is defined as 
£ = r/|*|a. (3) 

The selfsimilarity exponent a and the density ex-
ponent x are free parameters. It is assumed that 
radius r and time t are measured in units r0 and t0, 
and velocities in units rjt0. For singular waves like 
an imploding spherical shock wave converging to a 
point r = 0 at t = 0 or an outgoing shock emerging 
from r = 0 at i = 0 in a point explosion, the ansatz 
(2) and (3) is very useful since the shock front 
moves on a line of constant £ under certain condi-
tions. These are the selfsimilar waves considered in 
this paper. For example, the shock front of a strong 
point explosion in a uniform gas travels along 
R& = £2/5 where the selfsimilarity exponent a = 2/5 
follows from simple dimensional analysis in this 
case. For illustration, lines of constant f in the r, t 
plane have been plotted in Figure 1. The | lines 
emerge from r = 0, t = 0 symmetrically for t < 0 and 
f > 0 ; the time axis r = 0 corresponds to £ = 0 and 
the radial axis t = 0 to £ = oo. Material boundaries 
such as a surface and characteristics may coincide 
with | lines as well as shock fronts. This is discus-
sed in the next section. 

Here, we add a remark on the special form of 
ansatz (2) for t = 0 and a list of notations. At time 
t = 0, the variables of selfsimilar flow obey simple 
power laws 

u(r,t = 0) =uQr~x, c(r,t = 0) =c0r~x, 

e(r,t = 0) =Q0r\ p(r,t = 0) = p 0 r * - 2 ' , 
A{r,t = 0) =p/Qy = A0r~* ( 4 ) 

provided that the limits for f 0 exist. The con-
stants are obtained from (2) with |f| = (r/£)1/a in 
the limit oo. Combinations of the basic param-
eters n, 7, a, x appearing in (4) and throughout the 
paper are listed here, for reference: 
A = l / c t - l , e = x ( y - l ) +2X, (5) 
ju = 2j{y— 1), ß = n — juX, v = ny + x - 2\. 

ponent a = 1/2 has been chosen. In some important cases, 
£ lines coincide with material boundaries, shock paths or 
characteristics. A particle trajectory 1) is also shown. 

Isentropic flow occurs for £ = 0. Also note from 
(4) that selfsimilar flow is characterised by uniform 
Mach number M0 = u0/cQ at t = 0. 

2.2. Particle Trajectories and Characteristics 

Before discussing the reduced equations, some 
important relations are derived which are a direct 
consequence of the selfsimilarity ansatz itself. Let 
us introduce trajectories R (t, a) of gas elements 
where the Lagrangian coordinate a = R(t0, a) labels 
each element by its position at a suitable time t0. 
Combining the equation for R 

dR/dt = u{R, t) 

with the selfsimilar form (2) for u(r,t), one finds 
after some algebra 

dlnR(£,a)/dln£ = U(£)/(U (£) — 1 ) , ( 6 ) 

where R(£,a) is now interpreted as a function of £ 
and time follows from 11(£, a) | =(/?/£)1 /a . An 
illustrative example of a particle path is shown in 
Figure 1. From (6) it follows immediately that 

17 = 1 (7) 
is the condition for a trajectory to coincide with a 
£ line. Selfsimilar motion of a free surface is there-
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fore described by U = 1. Another important con-
sequence of (6) follows from the fact that its right 
side does not depend on a: 

R(i1,a1)/R(i2,a1)=R^1,a2)jR($2,a2) (8) 

(arbitrary |1>2 , a\$) • 

The ratio of positions /?(£, e^) of a particle at on 
different | lines ^ and £2 is the same as for particle 
a2 or any particle. Proportions of form (8) hold 
also for the particle's density 

Q (h , «i) /e (£2 . °i) = Q (£1 > «2) /q (£2 > «2) (9) 
and all other state variables like pressure p, temper-
ature T etc. where a) : = Q(R (|, a), f(|, a) ) , 
etc. This is obtained from combining relations (2) 
and (8). These general proportions are very helpful 
for discussing properties of particular solutions in 
the following. 

Characteristics R± (t, a) are defined by 
dR±/dt = u(R±,t) ±c(R±,t). (10) 

Applying the same transformations as to (6), one 
obtains 

d\nR±/d\n^ = (U±C)/(U±C- 1). (11) 
From this it follows that characteristics R± coincide 
with £ lines exactly when U ± C = 1 is fulfilled. 
These limiting characteristics play an important role 
with respect to causality in the flows to be discussed. 
They divide flow regions which are in causal contact 
with the gas at r = 0, t = 0 from those which are not. 
For times £<0 this is illustrated in Figure 1. 

2.3. Conservation of Mass and Entropy 

Inserting ansatz (2) and (3), the continuity 
equation in system (1) can be written in reduced 
differential form 

dll + (U — l ) d l n G 
+ (n + x)U d l n | = 0 . (12) 

Dividing (12) by (U — 1) and taking into account 
(6), one obtains a complete differential with the 
integral 

(1 - U t f V G M R f o a y - K M (13) 
for U < 1 expressing conservation of mass. The 
constant K t is independent of The adiabatic in-
tegral pIq7 = Q1 '7 c2/y = const expressing conserva-
tion of entropy along particle trajectories as long as 
no shock passes reduces to 

(R* G)1~r(a (Z/R)1/3 RC)2 = K2 (a). (14) 

The conservation laws (13) and (14) allow to ex-
press G(£) and /?(£, a) as functions of U(£) and 
C(£) alone 

(1 (15) 

(1 — U ( ! ) ) ~1/y? (16) 

with ju = 2/(y — l), ß = n— a x, A = l /a — 1, and 
constants K3 and which are independent of | 
and a. Notice that R(£,a)/a has to be independent 
of a due to (8). These algebraic relations for den-
sity and particle trajectories reduce the mathemati-
cal problem to one of finding U (£) and C(£). 

2.4. The Reduced Differential Equation for U and C 

Complete selfsimilar reduction of system (1) by 
(2) and (3) and elimination of In G by (12) gives 
finally the differential equations 

^ d U + bi dC + d In I = 0 , 
a2 dU + b2 dC + c?2 d In £ = 0 (17) 

with coefficients 
= C/f1> b1 = U — 1, 

a2 = U —1, b2 = /JLC , 
d1 = C[XJ (1 + n/fx) — l /a ] , (18) 
d2 = U(U-l/z) + C2[ju+ (x + Jul)/(y(l-U))], 
where ju = 2/(y — 1), 2 = l/a— 1. The remarkable 
feature of this reduction first noticed by Guderley 
is that the coefficients (18) depend, except for the 
fixed parameters n, y, a, x, exclusively on the re-
duced velocities U and C, but not on space-time 
variables, r, t, This means that one has to solve a 
single ordinary differential equation 

dU/dC = A1(U,C)/A2(U,C) (19) 
with the determinants 

At(U,C) =b1d2-d1 b2, 
A2(U,C) =d1a2-a1d2. (20) 

Explicit expressions for At and A2 are given in the 
appendix. Having solved (19) for appropriate 
boundary conditions to obtain U (C), the function 
C(£) follows from 

d In f /d C = A(JJ(C),C)/A2(U(C) ,C) (21) 
with 

A = a1b2 — b1a2 = C2 — (1 -V)2 (22) 

by simple integration, and U ( ! ) correspondingly. 
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In general, (19) and (21) have to be solved 
numerically. Analytical solutions exist for a few 
important cases, and some of them will be presented 
in the following sections. A rather general overview 
over the solutions of (19) was given by Guderley 
in his 1942 paper, and his essential figure is re-
produced here in Figure 2. It shows the solution 
curves in the U, C plane for a special parameter set: 
n = 3, 7 = 7/5, a = 0.75, « = 0. The arrows indicate 
the direction of increasing The selected sector of 
the U, C plane contains all the different solutions 
discussed below and provides a unifying picture. 
The plane is shown under central projection such 
that points U, C at infinity £ / ->—oo , C-+ + oo 
are mapped into the line PßP?; also coordinate lines 
U = const intersect in P6 and lines C = const in P7 . 
The advantage of this mapping is that the important 
behaviour of the solutions at infinity are displayed 

P? 
Fig. 2. Guderley's chart of solutions in the U, C plane for 
n = 3, y = 7/5, a = 0.75 and x = 0. Singular points are la-
belled by Pi to P7. Solid curves describe solutions of (19), 
dash-dotted curves are separatrices. The arrows give the 
direction of increasing A projection of the U, C plane 
has been chosen such that the behaviour of solutions at 
infinity is seen. The plot has been taken from [1]. 

explicitly. Solution curves U (C) of (19) cannot 
intersect except at singular points where both deter-
minants 

AX{U,C)= 0 , A2(U,C)= 0 (23) 
vanish. In the U, C plane of Fig. 2 one finds seven 
singular points designated by Pi to P7 in Guderley's 
notation. The separatrices which connect the singu-
lar points and divide the U, C plane in subregions 
are plotted as dash-dotted lines. Another important 
line is given by U + C = l. On this line one has 
A = 0 and therefore 

d ln £/dC = 0 (24) 
due to (21) and (22) except at the singular points 
Pj , P2 and P3 where also A2 = 0. Equation (24) 
implies that solutions £(C) have an extremum when 
crossing the U + C = 1 line, and no single-valued in-
version C(£) exists. Such solution curves are reject-
ed as unphysical. Physical solutions have to cross 
at the singular points. 

Important solutions are given predominantly by 
the separatrices. Examples are: 
(1) the solitary separatrix PßP2 (the lower one in 

Fig. 2) representing central explosions and 
centrally reflected waves after implosion; 

(2) the separatrices P1P5 and PgPg representing 
cumulative implosions where all matter finally 
collapses into a point; 

(3) the separatrix P4P3P6 or P ^ P j (for different 
parameters y, a) representing non-cumulative 
implosions of Guderleys's type. 

Before going into the detailed description of the 
particular solutions, a brief characterisation of the 
singular points Pj to P7 is given. 

2.5. The Singular Points and the Shock Line 

The condition (23) for the singular points is that 
the determinants (20) 

= bi d2 — d± = 0, 
A2 = d± a2 — a1d2 = 0 

vanish simultaneously. This is satisfied for 
(1) a1=a2 = b1 = b2 = 0, (PJ, 
(2) aja2 = bjb2 = djd2, (P2andP3), 
(3) d± = d2 = 0 , (P4 and P5). 

With the explicit form of the coefficients (18) one 
obtains the coordinates of the singular points. 
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Point Px is located at U1 = 1, 6^ = 0. It satisfies 
the boundary conditions of a free surface, since it 
corresponds to a fixed gas element (Z7=l, compare 
(7)) with vanishing density (G1—>0 due to (15)) 
and vanishing pressure C 

Points P2 and P3 are located on the sonic line 
U + C = 1 where A = a1b2 — b1a2 = 0. They corre-
spond to limiting characteristics (compare (10)). 
Physical solution curves connecting flow regions 
U + C> 1 with flow regions £/ + C < l have to cross 
the sonic line through P2 or P3 . These points exist 
only for a limited region of the parameter space. 
The quadratic equation to determine U2,3 is dis-
cussed in the appendix. 

Point P4 is located at £/4 = 0, C4 = 0. In the neigh-
bourhood of this point (19) reduces to dU/dC^ 
U/C showing that it is a proper node point. Solution 
curves come in on straight lines with slopes given 
by the Mach number M=U/C. Equation (21) re-
duces to d ln |/dC ^ — a/C with the integral 

1/C* for 0 (25) 
showing that P4 corresponds to £ = 00 (assuming 
a > 0 ) and describes the flow for r—>- 00 at times 
t ^ 0 as well as for t = 0 and r > 0. 

Point P5 is located at 
U5=(ju/(n + ju))( 1/a), 
C5 = t/5 'l/n/ju for isentropic flow (£ = 0), (26) 
C5=((ny/ju)U5m-U5)/((n-2)U5 + x + 2)y'2 

for non-isentropic flow (e 0). 

Since A2 = 0, but A =j= 0 for P5 in general, one has 
d ln£ /dC->± 00 when approaching P5 and | tends 
either to +00 or to 0. Therefore P5 describes 
boundaries either far outside at 00 as point P4 

or in the centre at r = 0. 
Point P6 is located at C 6 -> 00 and U6 finite. Its 

analytic structure is investigated in the appendix. 
Solution curves enter either along the solitary sepa-
ratrix (P2P6 in Fig. 2), which describes central ex-
plosions with diverging temperature in the centre 
r —> 0, or they approach the U = 1 line (for £ > 0) 
and describe non-isentropic imploding shells. 

Point P7, located at t/6—> — 00 and C6 finite, has 
no immediate physical significance and is only 
mentioned for completeness. 

Shock point A. Shock discontinuities represent 
another important boundary situation, not describ-

ed by singular points. A shock front moving on a 
£ line, Rs = £

g
 11 j

a

, has the velocity us = a Rs/t or, in 
reduced form, Us = 1. This allows to express the 
jump relations at a shock front in terms of the re-
duced quantities as given in the appendix. For a 
strong shock running into a gas at rest, one obtains 

UA = 2/(y + l), 
___——— (27) 

CA=V2y(y-l)l(y + l) 
for the velocities behind the shock. 

When varying the parameters n, y, a, x, the 
points P 2 , P3 , P5 and A change their position or 
become complex and disappear as points in the U, C 
plane. The singular points may also interchange 
their individual character (e. g. saddle, node) when 
meeting each other. No attempt is made in this paper 
to discuss all possible cases. However, various situa-
tions which are important for spherical implosions 
are exposed by the examples given below. 

3. The Taylor-Sedov Point Explosion 
and Related Solutions 
As a first example the explosion solution cor-

responding to the lower separatrix P2Pß in Fig. 2 is 
discussed. It describes strong central explosions in 
a uniform gas as well as centrally reflected waves 
which occur in spherical implosions. In both cases 
it has to be connecteed to an outer solution by a 
shock front. Different examples will be shown in 
Figs. 3 b, 5 b, 6 b and 7 b. 

First, the general asymptotic form of the solution 
in the neighbourhood of the singular point P6 is 
derived. The basic differential equation (19) has 
the form (for details see appendix) 

d U (1 -U) nU+(x-2X)ly 
d C 

for C-
l-U + e/2y 

(28) 

Apparently, the solution curves U (C) approach con-
stant U values for 00, either U = 1, a solution 
discussed in Sect. 6, or 

U= - {x-2X)/ny (29) 
which corresponds to the solitary solution curve ap-
proaching P 6 . Inserting (29) into (21), one ob-
tains d ln£ /d lnC= - 1/(1 + en/2 v) with v = 
(n y + x — 2 k) and the integral 

£„C-1 /(1 + t B / 2") (30) 
which shows that £ - > 0 for C - > 00 when approach-
ing P6 on this line, provided that £ n/2 v> — 1 which 
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1.0 r/RA 

Fig. 3a. Taylor-Sedov solution for a strong point ex-
plosion in the U, C plane. Parameters: n = 3, y = 5/3 
a = 2/5, x = 0. 

Fig. 3b. Density Q, pressure p and velocity u of the 
Taylor-Sedov solution as a function of radius r. The 
label A denotes the values at the shock front. 

r.nelv . - ne/v) 
-nelv . fiinelv -2X) 

r 1 i 
(31) 

is fulfilled for the cases studied here. It is therefore 
a solution which includes the centre r = 0. 

With (29) and (30), one obtains from (2) and 
(15) the expressions 

u (r, t) = - a (x - 2 l)jny (r/t), 
Q(r, t)~rn 

T{r,t)~c2 

p(r, t) ~r°-*a(*-2A> 
which describe the flow asymptotically for r/ta—0 
and £>0. A characteristic feature of this solution is 
that the pressure p ~ r° is uniform in the centre, 
whereas the density Q ~ rnslv vanishes and the tem-
perature T ~r~nelv diverges in case that the entropy 
exponent is £>0. For the definition of the various 
exponents compare (5). 

For the special parameters a = 2/5, x = 0, n = 3, 
the present solution represents the famous solution 
of a strong point explosion in a uniform gas which 
has been discovered independently by Taylor [8] 
and Sedov [9]. It is shown explicitly for 7 = 5/3 in 
Figures 3 a and 3 b. Figure 3 a shows a part of the 
U, C plane with the solution curve coming from P6 
and terminating in the strong shock point A with 
coordinates given by (27). It corresponds to the 
shock trajectory R± = £a t2 5- The dashed line AP4 in-
dicates the jump to the unperturbed gas (U = C = 0) 
in front of the shock. It has been shown by Sedov 
that there exists a closed integral of (19) in this 
case C2 = (y(y— l ) /2 ) • U2{U - 1)/(1 - y U) due to 
energy conservation, and the solution can be given 
completely in analytical form [11, 32]. Distribu-
tions of density, pressure and velocity are plotted in 
Figure 3 b. 

Another interesting analytical situation is ob-
tained for x = 2 1. In this case, the lower separatrix 
P2P6 coincides with the U = 0 axis, the gas in the 
centre is at rest and the relations (31) hold exactly. 

In particular the pressure is constant in space and 
time. This situation may occur as a result of a 
spherical implosion behind the centrally reflected 
shock and is of special interest for fusion applica-
tions. The isentropic case with e = x(y — 1) + 2 A = 0 
is discussed in Sect. 5 and the non-isentropic case 
with e > 0 in Section 6. 

4. Kidder's Homogeneous Compression 
and Related Cumulative Solutions 

In this section, it is shown that Kidder's solution 
for homogeneous isentropic implosions is represent-
ed by the separatrices P6P5 (full sphere implosion 
[3]) and P1P5 (hollow sphere implosion [4]) in 
Guderley's chart of solutions in Fig. 2, provided one 
chooses a =1/2 and x=— 3 in addition to n = 3 
and 7 = 5/3. Generalisations as discussed by Anisi-
mov et al. [5] then follow for other values of a and 
x. With a = 1/2 and x— — 3, the entropy exponent 
(5) is £ = 0 and the corresponding flow is isentropic. 
According to (26), the singular point P5 is located 
at 

TF5 = 1 , C 5 = 1 /1 /3 (32) 
and the separatrix PjPgPg in the U, C plane falls 
into the U = 1 axis as shown in Figure 4 a. This is 
easily checked from ( 1 8 ) - ( 2 0 ) . In Sect. 2.2 it 
has been derived that particle trajectories R{t,a) 
coincide with £ lines for U = l, and therefore one 
has £ = R(t, a)/\ t \1/2 = a/tc112 where a is the parti-
cle's position at time t = — tc, and one can write 

R{t, a) = a h(t), 

h(t) = (-tjtc)112 

(33) 
(34) 

for f < 0. Relation (33) defines homogeneous flow 
and already proves the equivalence with Kidder's 
solution. Its explicit form is obtained from (21) 
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Fig. 4 a. Kidder's solution for homogeneous compression in 
the U, C plane. Parameters: n = 3, y = 5/3, a = 1/2, * = — 3. 
Full sphere implosion is described by line PÖPS, hollow 
sphere implosion by line P1P5. At P= one has £ = 00. 

which for the present parameters and U = 1 reduces 
to 

d ln |/dC = 3 C/ (1 — 3 C2) (35) 

and has the integral 
C(Z)2=(l+k£2)/3kP, (36) 

where k is the integration constant. It is seen that 
C—> l/VS for 00, and P5 is a | = 00 point in 
this case describing the flow far outside at r—>• 00. 
The inner boundary £ = 0 is reached with C—> 00 
at P6 for &>0, and in this case P6Ps describes a 
full sphere. For c(a, t) = a R(t, a) jt'C(£) one ob-
tains with a = 1/2, £ = a/*c1/2 and (33), (34), and 
(36) 

c2(a, t) - c02(1 + ß(o/Äa)2)/h{t)2, (37) 
c0 = Rj(2tc 1 /37), ß = kR2/t,, 

and /?a is the outer radius of the sphere at t = — tc . 
The solution for the hollow sphere is obtained from 
(36) with &<0. The inner boundary is described 
by the singular point Px from where the solution 
curve starts with C = 0 and a finite value of £ and 
runs to P5 . Taking k = — tc/R{2 and c0 = c(/?a, — tc) 
where Rx and /?a are inner and outer radius of the 
hollow sphere at time t = — tc, respectively, one ob-
tains from (36) 

c2 {a, t) = c02 (a2 — R-2) /(/?a2 — R 2) 
•l/h(t)2 (38) 

and the collapse time is related to the radii by 

tc=V(Rj^R[2)/3/(2c0) (39) 

• Selfsimilar Spherical Compression Waves in Gas Dynamics 

in this case. Isentropic flow implies and 
p ~ c2yl{-y~x\ and one has therefore for density and 
pressure 

Q{a,t)fe0=(c(a,t)/c0)s, (40) 
p(a,t)/p0=(c{a,t)/c0)5. (41) 

Equations (37) — (41) represent Kidder's solution. 
It is illustrated in Figure 4 b. It holds also exactly 
for non-selfsimilar time evolution [3] 

h(t) = (-t/tc(l+t/4 *c))1/2 

which approaches selfsimilarity only for t -> 0. 
Kidder's solution belongs to the cumulative im-

plosions where all imploding matter finally collapses 
into the centre r = 0. It is now shown that all solu-
tions running into the singular point P5 for £—>00 
are cumulative. In the neighbourhood of P5 one has 

dRldt^{aR/t)Us (near P5) (42) 
with U5 = ju/(n + tu) •1/a from (26) and the integral 

R{t,a) + . (43) 
This means that all particle trajectories R(t, a)—0 
for t->- 0, and the flow is cumulative. 

Driving the gas by a piston which moves on one 
of the trajectories (43), say R^ = R(t, a), the me-
chanical power of the piston acting on the gas is 

P W " * » " - 1 ^ * . , « ) • « ( * . , I ) . (44) 
With the pressure at the piston 

p (R,, t) ~ (c (Äa , t ) ) - ((Rjt) C5) -

outer radius Ra are shown. Density distributions Q {r, t) have 
been inserted as shaded areas at three times; the vertical 
extension of these areas gives the density. 
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the piston velocity 
u(R&,t)~(Rjt)Us 

and (43) one derives from (44) the general law for 
the piston power [5] 

P(l)~|l|-<8'»+*0/(«+/0. (45) 

One should notice that relations (43) and (45) hold 
for flows near P5 and times t > 0 for any n and 
ju = 2/ (y —1) and are independent of a and x. Tak-
ing the spherical case n = 3 and a 7 = 5/3 gas one 
obtains from (43) 

R(t,a) ~\t\112 (43 a) 

showing that asymptotically for t—*- 0 Kidder's 
trajectories (33), (34) hold for any P5 flow, and 
the corresponding power law (45) of the piston is 

P(f )~l /|*| 2 . (45 a) 
This is the power law which has been found for 
optimal isentropic compression of ICF targets by 
Nuckolls et al. [2] from a series of numerical im-
plosion runs. Here it follows as a general law for 
cumulative flows with n = 3 and y = 5/3. As we shall 
see in the next section it holds also approximately 
for non-cumulative flows for which the solution 
curve passes close to P5 . 

It is apparent from Guderley's chart in Fig. 2 
that generalized cumulative solutions of Kidder's 
type exist for parameters a, x chosen such that U5 + 
C 5 > 1 and U5 ^ 1. They may be isentropic or 
non-isentropic. In addition to the implosions dis-
cussed above, there are also solutions with a strong 
shock at the inner front running into undisturbed 
gas. They correspond to solution curves connecting 
P5 with the strong shock point A. All these cases 
have been discussed in the context of ICF target im-
plosions by Anisimov and Inogamov [5]. 

5. Uniform Gas Compression 

In this section, selfsimilar compression of an 
initially uniform, isentropic gas sphere into a final-
ly uniform, isentropic gas sphere of arbitrarily high 
density is described. It corresponds to solution 
curves connecting the singular points P2 and P4 for 
J<0, and to curves in the lower part of the U, C 
plane which are connected to the final uniform gas 
by a shock front, for t > 0. The curves are shown for 
a = 1 and x = 0 in Figure 5 a. Compare also Fig-
ure 2. An illustration of how the gas elements move 

and how the density distribution evolves during 
compression is given in Figure 5 b. These solutions 
have been investigated by Ferro Fontan et al. [6] 
and by Rodriguez and Linan [7] and are discussed 
in some detail below. 

The initial and final gas is at rest and corre-
sponds to points on the U = 0 axis. For the uniform 
gas one has x = 0, and isentropic compression with 
£ = x(y— 1) + 2 ( l / a — 1) = 0 then requires a = 1. 
For these parameters, the singular point P2 has 
moved to U2 = 0, C2 = l and serves as boundary 
point at the inner front of the compression wave. 
Since P2 is a node point, a whole bundle of physical 
solution curves starts from P2 . They correspond to 
different degrees of final compression Qc/QQ . Four 
of them are shown in Figure 5 a. The limiting curve 
d is given by the separatrix P2P5P4 . Since it con-
tains P5 , it is a cumulative solution with infinite com-
pression. In contrast to Kidder's case in Sect. 4, how-
ever, P5 has now moved from the region U + C > 1 
into region U + C < 1 and has changed from a node 
point into a saddle point when crossing U + C= 1. 
The curves a, b, c neighbouring d therefore do not run 
into P5, but turn around and move to the £ — 00 point 
P4 . The closer they approach P5 , the higher is the 
compression during this initial phase with £<0. For 
2 = 0 (£=00) when the compression wave has reach-
ed the centre, the state of the gas is uniform with a 
uniform velocity inwards, as given by (4). Self-
similar flows containing the singular point P4 can 
be continued from times f < 0 to times £>0. This 
was first discovered by Guderley [1]. Having in 
mind u(r, t) = (a r/t)U ( ! ) , the sign of U has to 
change when the sign of t changes. The solution 
curves therefore continue for J>0 in the lower half 
of the U, C plane. In the neighbourhood of P4 which 
corresponds to regions r—> 00 the curves have the 
same Mach number M=U/C as the ones for i < 0 . 
However, in the central region r —> 0, the imploding 
flow is now disrupted by an outgoing shock and the 
flow behind this shock is described by the separatrix 
P6P2 which has been discussed already in Section 3. 
For the present parameters a = 1 and x = 0, the 
central solution is simply a uniform gas. The loca-
tion of the shock jump SXS2 in Fig. 5 a is determin-
ed by the general shock conditions (A 8) and (A 9) 
given in the appendix. 

The separation into two flow regions connected 
by a shock is clearly seen in the density distribution 
the shock is constant in space and time. The shock 
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a) 

• 
r / r 0 

b) 

Fig. 5 a. Solutions in the U, C plane 
describing compression of a uniform 
gas into a uniform gas at higher den-
sity. Parameters: n = 3, y = 5/3, a = 1, 
x = 0. The curves a, b, c and d corre-
spond to different ratios between the 
final density Qc and the initial density 
eo. 

Fig. 5b. Solution b of Fig. 5a in the 
r, t plane. The front trajectory (£ = 1) 
of the compression wave for t < 0 and 
the trajectory of the reflected shock 
(£ = £s) for t > 0 as well as two particle 
trajectories are shown. Density distri-
butions have been inserted as shaded 
areas for the initial unperturbed gas, 
for a time t < 0 when the wave is trav-
elling inwards and for a time t > 0 with 
the constant gas in the centre and still 
imploding gas in front of the reflected 
shock. A uniform, vertical density 
scale has been chosen. 

for t > 0 in Figure 5 b. The gas in the centre behind 
is weak and has constant strength. The entropy of 
each incoming gas element is raised by the same 
amount so that the gas is transformed from one 
isentropic state into another. Actually, the entropy 
increase is very small. An upper limit is given by 
case d. One obtains numerically for the shock 
strength S = p2/px = 1.96, for the density jump 
Q2/Q1 = 1.48 and for A2/A1 = 1.016 in this case. 
Here, A = plQy and the indices 1 and 2 refer to the 
gas in front of and behind the shock, respectively. 
The density ratio between the final state and the 
constant state at i = 0 is Qc/Q{t = 0) =5.90 in the 
limit d. It should be understood that the major part 
of the compression is achieved in the period <<0 
when the solution curve passes close to point P 5 . 

The closer this passage near P5 is, the more the 
present solution approaches the cumulative flow de-
scribed in Section 4. This includes that during the 
period of maximum compression at intermediate 
times — l < j / £ 0 < 0 particle trajectories approxi-
mately follow parabolas R(t, a) ~ 1 1 j

1 / 2

 as derived in 
(43 a). This behaviour is seen in Figure 5 b. During 
this intermediate period also the piston power fol-
lows P(t) ~ 1/| 112 as given in (45 a). However, the 
present selfsimilar flow behaves more smoothly at 
the start (t/t0 = —1, flow near P2) to avoid shock 
generation and at the end ( t / t 0 ^0, flow near P4) 
to avoid total collapse. Here, we add that the prob-
lem of completely adiabatic compression of a con-

stant gas into a compressed constant gas which 
avoids the reflected shock has been treated numeri-
cally by Morreeuw and Saillard [34] using charac-
teristics. Their solution is of course non-selfsimilar. 

Concerning ICF target implosions, pulse shapes 
with P(t) ~ l/| t j

2

 behaviour are difficult to achieve 
with existing drivers. Also compression to a finally 
uniform gas is not an optimal situation for ICF ap-
plications. A non-isentropic final configuration with 
a high temperature region in the centre is preferable. 
A selfsimilar implosion with such properties will be 
discussed in the next section. 

6. Guderley's Imploding Shock Wave 
and the Non-isentropic Collapsing Hollow Sphere 

As a last case, Guderley's solution for a spherical-
ly imploding shock wave [1] is discussed and how 
it can be generalised to describe a non-isentropic 
collapsing hollow sphere leading to arbitrarily high 
compression with diverging temperature in the 
centre of the compressed gas [35]. 

The imploding shock solution is shown in Figs. 
6 a and 6 b. For times t < 0, it connects the shock 
point A with the £ = oo point P4 by passing the 
sonic line U + C = 1 through point P3 . For given 
parameters n = 3, y = 5/3 and x = 0, this solution 
exists only for a single value a = 0.688 and is uni-
quelly determined. Exponents a for other values of 
y are found in Refs. [25 — 27]. The solution for 

reflected shock 
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t> 0 describing the flow after shock collapse in the 
centre is constructed in the same way as in Sect. 5 
for the case of uniform gas compression. In Fig. 6 a 

VS2 P6(C=-) * • 

Fig. 6a. Guderley's imploding shock solution in the U, C 
plane. It corresponds to A P 3 P 4 for £ > 0 and to P4S1S2P6 
for t > 0. Points on the dash-dotted line AS2 can be reached 
from points on P4S1 by shocks. Parameters are » = 3, 
y = 5/3, a = 0.688 and x = 0. More details are given in the 
text. 

Fig. 6b. The solution of Fig. 6a in the r, t plane. Trajec-
tories are plotted for ingoing and outgoing shock as well 
for three gas elements. The broken line (£ = 1) is the limit-
ing characteristic. Density profiles before, at and after col-
lapse are shown as shaded areas with a uniform vertical 
density scale. Distributions of pressure and temperature 
behind the reflected shock are shown in the insert in units 
po and To which are the values at r = ro and t = 0. 

it consists of the line P4S1 for the outer flow region 
and the line S2P6 for the central flow region with 
the shock S ^ connecting both regions. The dash-
dotted line AS2 represents gas states behind the 
shock which may be reached from points on P ^ 
by the general shock relations (A 8) and (A 9) 
which are given in the appendix. 

Trajectories of the ingoing and outgoing (reflect-
ed) shock front and three particle trajectories as 
well as three density profiles (inserted shaded areas) 
are shown in the r, t diagram in Figure 6 b. For large 
radii the densities converge to a finite value which 
is indicated at the right end of each profile. This 
value is independent of time and 9.47 times larger 
than the density Q0 of the unperturbed gas for the 
present parameters. The gas is compressed 4 times 
at the shock front and the additional density in-
crease is due to adiabatic compression. At collapse 
time t = 0, the density is uniform, although velocity, 
pressure, etc. are not as one may check from (4). 
The Mach number is M0 = 0.956 and the entropy 
exponent £ = 0.907. For times <>0, the reflected 
shock is travelling outwards and the state of the gas 
in the centre behind the shock is approximately de-
scribed by (31). The density vanishes in the centre 
due to £ > 0 and rises to a value of 32.0 £0 behind 
the shock front. This is the maximum density in 
Guderley's solution for y = 5/3 and stays constant 
with the shock running outwards. Higher compres-
sion cannot be readied by a selfsimilar shock wave 
imploding in a y = 5/3 gas. The reason is that the 
gas is strongly heated by the shock. This prevents 
further compression. The maximum compression, 
however, is a function of y and increases without 
limit for y-*-l (see [25, 26]) . Distributions of 
temperature T and pressure P at t/t0 = 1 are shown 
in the insert in the upper right corner of Figure 6 b. 
The temperature diverges for r 0, whereas the 
pressure is almost uniform in the centre and rises 
slightly towards the shock front. The gas velocity 
behind the shock is directed outwards, whereas the 
gas in front of the shock is still flowing inwards. 

We now turn to the case of a non-isentropic im-
ploding hollow sphere. As it is shown in Fig. 7 a, it 
corresponds to the same solution curve in the U, C 
plane as the imploding shock wave described above 
except that now the condition to hit the shock 
boundary point A is dropped and the separatrix 
P4P3 is followed up to the node point P6 . Such solu-
tion curves exist for a broad range of parameters a 
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and x as long as P3 exists and £>0 . The plotted 
solution corresponds to a = 0.7 and x = 3 again with 
n = 3 and y = 5/3. Here, the important new feature 

Fig. 7 a. Generalised Guderley solution in the U, C plane 
describing non-isentropic imploding hollow spheres. Com-
pare caption of Figure 6 a. Parameters are n = 3, y = 5/3, 
a = 0.7 and y. = 3 implying e = 20/7. 

Fig. 7 b. The hollow sphere implosion of Fig. 7 a in the r, t 
plane. For details see caption of Figure 6b. The solid line 
£ = £F gives the trajectory of the inner surface. Tempera-
ture and entropy diverge at this surface. 

is the density exponent x > 0 . It implies density 
distributions which are sloping towards the inner 
surface as shown in Figure 7 b. Such density profiles 
typically occur in ICF target implosions. The con-
tinuation of these solutions to times 0 is obtained 
in the same way as above for shock implosion. 
However, it turns out that depending on a and x 
arbitrarily high compression can be achieved in the 
present case. 

It has still to be shown that P6 when approached 
along U = 1 (see Fig. 2 and Fig. 7 a) describes the 
inner surface of a hollow sphere. From (28) one 
finds d ln | 1 — U | /d ln C as —2v/e and the integral 

C = CF(l-U)-°'2" (46) 

for Z7-> 1, oo. The £ dependence near P6 fol-
lows from dU/d ln £ ̂  — v/y and gives 

| = £ F exp( ( l -U)y/v) (47) 

for £/-> 1. Here, C F > 0 and £F>0 are integration 
constants, £ and v are defined by (5). A more de-
tailed derivation of (46) and (47) is given in the 
appendix. It is seen that the solution curves ap-
proach U = 1 for C—> oo if e/2 r > 0 and that 
I —> £F > 0 a t indicating that P6 describes an 
inner front. From (15) one obtains with Eqs. (46) 
and (47) 

G ( f ) ~ l / C ( £ ) 2 (48) 
showing that the density Q = r" G vanishes at P 6 , 
whereas the temperature T ~ C 2 —> oo diverges. A 
peculiar point is that the pressure does not vanish 
at P6 , but tends to a finite value p ~ C2 G — p p > 0 
at the front. Therefore the present solution does not 
satisfy the pressure boundary condition of a free 
surface. In fact, a free surface with diverging entro-
py will move in a non-selfsimilar way. Also, the gas-
dynamical description becomes invalid at such a 
front in general. Nevertheless, it is argued that the 
present selfsimilar solution represents an approxi-
mation to the actual gas flow in the sense of inter-
mediate asymptotics [13]. A similar situation oc-
curs in the problem of impulsive load on a plane 
surface where temperature and entropy diverge at 
the vacuum — gas interface. In the book of Zeldo-
vich and Räizer [10] this case is studied in detail 
showing that the motion of the free surface is always 
non-selfsimilar, but that the flow at some distance 
behind the front approaches the selfsimilar solution 
rapidly. In the present case it has been checked that 
the front pressure of the selfsimilar solution is 
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small as compared to typical pressures inside the 
imploding shell [35] and that it tends to zero 
P F ~ ( - * ) A R * " 2 ^ 0 for provided that 
x > 2 A. This indicates that the present solution re-
presents a valuable approximation, at least for 
a: > 2 A, a situation which is typically found in ICF 
target implosions of initially shocked hollow spheres 
[36]. For x 2 A, a careful comparison with non-
selfsimilar solutions would be necessary to sub-
stantiate the conjecture of intermediate asymptotics. 

The evolution of density distribution in time as 
well as some particle trajectories are shown in 
Figure 7 b. It is important to observe that the gas 
elements implode with almost constant velocity, like 
freely flying matter. The front moves along 
RF — £F 1110'7- The broken line £ = 1 is the limiting 
characteristic corresponding to the singular point P3 

in the U, C plane. Concerning the limiting character-
istic, compare the discussion in Sects. 2.2 and 2.5. 
At time 2 = 0, the gas state is given by the power 
laws of (4 ) ; for the present parameters one has 
g = Q0r3 and the Mach number M0 = 7.O9. Due to 
the density slope the flow develops somewhat differ-
ently from Guderley's case in Fig. 6 b for times 
J>0. The outgoing shock moves much slower, and 
the flow behind the shock is still directed inwards 
further compressing the gas. This situation occurs 
for x > 21. Distributions of density, temperature 
and pressure are shown as insert in the upper right 
corner of Fig. 7 b and should be compared with 
Figures 3 b and 6 b. Since £>0, the temperature 
diverges in the centre. The final compression of gas 
elements between time £ = 0 (£= oo) and time t = ts 

(£ = £s) when the reflected shock has just passed is 
the same for each gas element due to (9). Numeri-
cally it turns out that this final compression ratio is 
approximately a function of Mach number M0 alone 
and satisfies Qs/Q0^2A M0312. The corresponding 
relation for final pressure increase is ps/p0 = 3.6 M03 

(see Ref. [35]) . 
The formation of a hot region in the centre of the 

compressed gas is important for DT ignition in ICF 
target implosions [36]. This requires an entropy 
distribution increasing inwards as described by 
£ > 0 . From the present solution one learns that in 
single shell target implosions such an entropy distri-
bution is not produced by the reflected shock. The 
reflected shock has constant strength (compare 
Sect. 5) , and its effect is only to raise the entropy 
of each incoming gas element by the same amount. 

The entropy profile with £ > 0 has to be generated 
before void closure (t = 0) . We mention that this is 
achieved in ICF applications by initial shocks typi-
cally passing the target shell as a consequence of 
beam switch on. They produce increasing entropy 
towards the inner surface when running through 
sloping density profiles, e. g. a rarefaction wave 
[36]. This latter process is also described by a 
plane selfsimilar solution of Guderley's shock type 
[20]. 

7. Summary and Concluding Remarks 

The different branches of selfsimilar compression 
waves have been described with regard to applica-
tions for inertial confinement fusion. The unifying 
viewpoint has been adopted from Guderley's original 
work on imploding shock waves. The general solu-
tion depends on four parameters: 

1. the dimensionality n (for spherical waves rc = 3), 
2. the adiabatic gas exponent y (for a monoatomic 

gas 7 = 5/3), 
3. the selfsimilarity exponent a, 
4. the density exponent x. 
The character of a particular flow is determined by 
the singular points to P6 which are passed by the 
solution curve. They are shown on Guderley's chart 
of solutions in Fig. 2 for a special set of parameters. 
The points P 4 , P5 and P6 are of particular im-
portance for imploding spheres and ICF applica-
tions. Points P4 and P5 correspond to £ = oo and 
describe the flow at collapse time £ = 0. Point P6 

describes the gas in the centre after collapse, i. e. the 
configuration in which fuel ignition and burn has to 
be achieved in ICF target implosions. In the follow-
ing, essential features are summarised. 

Cumulative flows in which a finite amount of 
matter is adiabatically compressed into a point are 
described by P 5 . Adiabatic compression to very 
high densities is crucial for fuel confinement in ICF 
applications. The cumulative solutions (e. g. Kid-
der's homogeneous compression) are basic for 
understanding this process. As an important general 
result it is found that trajectories of cumulative flow 
are given by R {t, a) ~ j t + ̂  with ju = 2/{y-l) 
and that the driving power has to follow the singu-
lar pulse shape P{t) ~ 111 " (3w + '')/(n + asymptotical-
ly for t-> 0. 
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Non-cumulative selfsimilar flows are obtained 
when the solution curve passes P 4 . The unique 
feature of point P4 is that it allows to connect solu-
tions before collapse ( f<0 ) to solutions after col-
lapse (z>0) . At time f = 0 the wave front reaches 
the centre. For 0 the solution contains an out-
going shock which is generated by wave reflection 
in the centre. It separates the flow into an inner gas 
region behind the reflected shock and an outer gas 
region which is still imploding. 

The gas state in the centre behind the reflected 
shock is governed by P6 . Equation (31) gives the 
general asymptotic solution near point P6 . Outstand-
ding features of combined P4, P6 flows (e. g. the 
uniform gas compression in Sect. 5, Guderley's 
shock wave and the non-isentropic hollow sphere 
implosion in Sect. 6) are: 

(a) almost constant implosion velocity of individual 
gas elements; 

(b) uniform Mach number at collapse time £ = 0 
which may be used to characterise the imploding 
wave, e. g. Guderley's shock wave has M0 = 
0.956 for n = 3, y = 5/3; 

(c) constant strength of the reflected shock which 
implies that the entropy distribution over the 
incoming gas elements is not changed by the 
shock (except for adding a constant) ; 

(d) approximately uniform pressure behind the re-
flected shock which is an important property 
for estimating energy gain of ICF targets [33] 
in a general way; 

(e) a velocity field u{r, - a(x - 2 X) / (n y) ]r/t 
in the centre for £>0 with the gas contracting 
for x > 2 A, expanding for x < 2 X and at rest 
for x = 2 X; the parameter combination (x — 
2 X), where X= (1/a —1), is determined by the 
pressure distribution p = p0r*~2x at t = 0; 

(f) diverging temperature T(r,t) ~ r - nclv the 
centre behind the reflected shock for e > 0 
where e = x(y — l)+2X and v=ny+x—2X 
(for cases of interest v > 0 ) ; the exponent e is 
determined by the entropy distribution of the 
imploding gas, p/gy ~ r~e at t = 0. 

Result (f) is important for understanding ignition 
in simple ICF targets. It says that the entropy profile 
required to form the hot ignition region in the 
centre of the gas has to be generated before col-

lapse during implosion and therefore depends criti-
cally on driver pulse shape and initial shocks [36]. 
All results (a) — (f) are observed, at least quali-
tatively, in numerical ICF target calculations. 

It is concluded that considerable qualitative in-
sight into the gas dynamics of spherical implosions 
is obtained from the selfsimilar solutions which have 
been studied in this paper. The question, however, 
of how the present results are related to general non-
selfsimilar implosions in a quantitative sense and to 
which extent and under which conditions they meet 
with Barenblatt's conjecture of "intermediate asymp-
totics" is not yet answered. It is our feeling that 
these fundamental aspects of inertial confinement 
fusion have still to be studied in more detail and 
that the selfsimilar solutions presented here will 
form the basis for a deeper understanding of the 
gasdynamical aspects. 

Appendix 

The explicit form of the determinants At and A2 

obtained by inserting the coefficients (18) into (20) 

A^Uil-U) V 

-C2[nU+(x-2l)/y], 

A9 = C (1 + £ / a + ( n - l ) 

(Al) 

(A 2) 

(U-l))//i-C + 
c2 

2 y (U-1) 

The location of the singular points P2 and P3 is 
determined by the quadratic equation 

(,n-l)yU2+[x-2X-y(n-l-X)]U 
- (x - 2 X)=0 (A3) 

giving f/2,3 and C2,3 = 1 — U23• Equation (A3) fol-
lows from A1{U,C)= 0 setting C=l-U. It has 
real solutions for 

(y(„_ l-X) - (X-2X))2 

(x-2X). (A4) 

Next, the point P6 at C - * and U finite is shown 
to be a singular point at infinity. The leading terms 
of Ax and A2 for C—> oo are 

A1*Z-C2[nU+(x-2X)/y], (A 5) 
Z l 2 ^ - C 3 [ l +e/(2y(l-U))]. (A 6) 
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Transforming P6 with the help of 
S= l/C, M=U/C 

into P6 ' at S = 0, M = 0, the differential equation 
(19) is transformed into 

dM = M_ _ M n + S(x — 2 X)jy 
dS ~ S S(l+e/(2y(l-M/S))) (A 7) 

using (A 5) and (A 6). Equation (A 7) has the 
structure dM/dS = 0/0 at P6 ' . This identifies P6 as 
a singular point. With expressions (A 5) and (A 6) 
one obtains 

dU ^ 1-U nU+ (x-2X)/y 
dC — C l — U + e/2y 

which may be written for U 1 in the form 

d In 11 — U | n+(x-2l)/y 2v 
d In C e/2 y 

leading to the integral (46) for the solution curves 
C(U) near P 6 . For the £ dependence one has 

dU C2[nU + (x-2 l)/y] __ v 
dln£~~~ C2-(l-U)2 ~ y 

leading to (47). 
The general jump conditions [37] at a shock 

discontinuity, which map the state U1, Cx in front 
of the shock into the state U2, C2 behind the shock, 
are given for the reduced quantities 

1 . 2 f Cx U2= 1-

C 2 = 

. 7 + 1 
2y(y-l) 

+ 1 - 2 

(7 + 1)2 

+

 7 + 1 \ 1 - U t 

U - t f i ) 2 

7 - 1 

(A 8) 
( 1 - t f i ) , 

- 2 
7 + 1 / ( 7 + 1 ) 2 

The density jump follows then from 
GjGi-il-UJlil-Ut). 

Cx 

l-U, 

(A 9) 

Ci2-

(A 10) 
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