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The dynamic evolution and the saturated state of a long sheet pinch subject to growth of re-

sistive tearing modes was investigated by numerical solution of the 2D MHD equations. Both the 
compressible and the incompressible equations were used, and the difference is found to be neg-
ligible. The necessity of considering a resistive equilibrium is stressed. The paper concentrates 
on a static equilibrium maintained by an external electric field and requiring a special distribution 
of the resistivity rj. In addition the dynamics of the resistivity plays an important part. Assuming 
rj to be time independent, the sheet pinch develops a number of soliton-like magnetic islands, 
which coalesce. The final state consists of a single soliton, while the generation of further sol-
itons is inhibited by a strong shear flow allong the current sheet. When allowance is made for 
parallel diffusion of the resistivity such that r) is essentially a flux function, the final state is 
quite different. Here the longest wavelength dominates, leading to a single, large island and 
completely destroying the original sheet pinch. 

I. Introduction 

The tearing instability of a plane sheet pinch is 
the prototype of a resistive instability. It has been 
investigated in detail in the first paper on this topic 
by Furth, Killeen, and Rosenbuth (1963). Later the 
theory was generalized to more complex geometries, 
in particular cylindrical, to describe resistive modes 
in tokamaks. Nonlinear studies, primarily computa-
tions of the saturation widths of magnetic islands, 
have been performed in both plane and cylindrical 
geometry. While in the latter case island widths are 
computed quite accurately or estimated semiquanti-
tatively by a simple criterion [1, 2], the attempts to 
calculate the saturation widths in the plane case 
seem to have been less successful. Although a num-
ber of papers treat the nonlinear evolution of tear-
ing modes in a plane sheet pinch (see, for example, 
references 3 and 4) , no generally accepted picture 
of the saturation width as a function of the wave-
length or possibly other parameters has emerged. 

The main difference seems to reside in two points: 
long wavelength and the question of resistive equi-
librium. In the tokamak tearing mode computations 
unstable wave numbers |re rather close to marginal 
conditions, at least for normal current profiles, and 
by choosing a resistivity profile inversely propor-
tional to the current density one is dealing with a 
resistive equilibrium. The computed island widths 

Reprint requests to Dr. D. Biskamp, Max-Planck-Institut 
für Plasmaphysik, D-8046 Garching. 

are usually small, more or less independently of the 
time evolution of the resistivity, and there is quite 
good agreement with experimental observations 
[2]. On the other hand the sheet pinch configura-
tion of most interest has spatial dimensions 
large compared with the thickness a of the cur-
rent sheet and hence modes of long wavelength 
ka^l, far from the marginal point ka = l, have 
to be considered. However, no paper, treating the 
nonlinear behavior of tearing modes with ka ^ 1 is 
known to the author. In addition, a homogeneous 
resistivity distribution is usually assumed, probably 
for simplicity. Hence there is no resistive equilib-
rium, and the evolution of the modes is affected by 
the diffusive broadening of the current sheet. It 
should also be mentioned that little observational 
evidence of tearing modes in plane configurations 
exists. 

We have therefore taken up this classical prob-
lem of 2 D tearing mode evolution in a plane sheet 
pinch, generalizing previous attempts and trying to 
avoid their shortcomings. We begin in Sect. II by 
briefly reviewing the linear stability theory, in 
particular the case of nonsymmetric position of the 
resonant surface, and also present some numerical 
results for finite values of the resistivity. In Sect. Ill 
we discuss the basic equations and indicate the 
numerical methods of solution. To solve a certain 
controversy that seems to have arisen in the recent 
literature, we study both the 2 D compressible MHD 
equations and the incompressible limit. In Sect. IV 
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we stress the necessity of a resistive equilibrium 
and discuss several types of equilibria that exist 
owing to different driving conditions. In addition to 
the question of equilibrium, the nonlinear behavior 
may strongly depend on the way the resistivity 
distribution evolves in time, particularly for large 
island size. We therefore consider the nonlinear 
development and saturation of tearing modes for two 
resistivity models. In Sect. V we treat the case of a 
static resistivity, while in Sect. VI we allow for the 
evolution of the resistivity distribution owing to 
convection and parallel diffusion. Section VII sum-
marizes the results and presents some speculations 
on the general three-dimensional behavior. 

II. Review of Linear Theory 

Let us briefly recall the basic properties of the 
tearing instability. Throughout the paper we con-
sider the equilibrium current density (in the z-direc-
tion) most frequently chosen: 

/o 0*0 = Bja cosh2 {x/a). (1) 

The equilibrium magnetic field depends on the 
boundary conditions for large | x |. For the tearing 
mode to be unstable B or some component By of B 
must pass through zero at some surface .rs within 
the current sheet I J < a, 

By(x) = B0 (tanh — — tanh ~ ] = rpo 
\ a a ) (2) 

with the magnetic flux 

I I X \ X X I 

log cosh — tanh — • (3) 
\ a I a a J 

We assume a magnetic Pertubation B1 = z x V y 1 , 
yJi = rp1(x)exp(i kyy), giving rise to a plasma flow 
Uj =£x V<pl5 cp1 =<p1(x)exip(i kyy) which is con-
ventionally assumed to be incompressible since the 
phase velocity of the mode is small compared with 
the sound speed. We shall see in Sect. Ill that the 
effect of plasma compressibility is also negligible in 
the nonlinear phase of the instability. The linearized 
MHD equations in this limit reduce to two equations 
for and (px: 

dyjdt - i ky cpx = r] [\p" - ky2 , (4) 

"37 ~ k y 2 ^ = 1 k y ^ ( v * ~ k y 2 v J ~ ' 
(5) 

where we have introduced the following units: 
a, B0,V a = Bj Y (4 JI Q0), and Q0 . In these units R\ is 
the inverse magnetic Reynold's number S = 
4>Jiv\a/r]c2. The density Q = Qo i s assumed to be 
homogeneous, while the pressure is eliminated by 
the assumption of incompressibility. With , cpx cc 
exp(yf), (4) and (5) constitute an eigenvalue 
problem for the growthrate y which has been solved 
by Furth, Killeen, and Rosenbluth [1] for sufficient-
ly small rj. The tearing mode is unstable for ky<. 1 
(for zs = 0 the threshold is exactly unity, while for 
xs =!= 0, xs < 1, it is slightly larger). For not too 
small ky the constant-^ approximation is valid. Here 
an analytical expression is given: 

y ̂  0.5 [ky Vo") 2,5rj315 , (6) 
where A = (xp[-— ) . For kY ^ 1 it is found 
that 

Ä = WM' + 
= 2 cosh (2 x8)/ky cosh2 xs (7) 

which does not vary very strongly with xs. It thus 
follows that 

y Si rj (xs)3/5 V2/5cosh~4/5 (x8), (8) 

It appears that because of the last factor the sym-
metric case xs = 0 is the most unstable. However, the 
a:s dependence of the first factor should not be 
overlooked. Let us consider a current sheet with a 
strong constant component of B, Bz, parallel to the 
current direction, and admit tearing modes of 
general wave vector fc = (ky , kz), the possible values 
of kz being determined by the boundary conditions 
in the z direction. The position of the resonant 
surface is determined by kyBy{x) +kzBz = 0. All 
these different modes may grow simultaneously 
and their relative growthrates depend on the re-
sistivity profile. If we assume a static resistive equi-
librium, which implies r\ (x) oc / 0 - 1 (a;) = cosh2 x, we 
find y cc cosh2/5 xs. Hence modes with 0 would 
grow faster than the central modes. On the other 
hand, the growthrate is not a good indicator of the 
mode's actual importance. As we shall see in 
Sect. V, the saturation island size is smaller for 
xs 0 despite the larger growthrates. 

Equations (6) and (8) indicate that because of 
A cc ky"1 the growthrate increases with decreasing 
ky down to a value km , where the constant-^ ap-
proximation becomes invalid. An estimate of km can 
be obtained in the following way. The constant-^ 
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approximation breaks down if A' approaches <5_1. 
d = resistive layer width, where the variation of xp 
within d, Axpfxp, becomes of order unity. Within the re-
sistive layer the diffusion term dominates in eq. [4] . 
With xpi' = xpt A'/d we have y xpt^rj A'xpjd and 
hence S^r jA ' / y . For this implies that 
y /r j^A' 2 , and hence the wave number km, where 
the growthrate is largest, is of the order 

A / = 0 ( l ) (9) 

and the maximum growthrate is 
ymS*r]Mg(xa), g - O ( l ) . (10) 

For k<. km, where the eigenvalue equations have 
been treated numerically in Ref. [5], y decreases 
monotonically to zero at k = 0. 

These results are derived by making use of the 
smallness of the resistivity. To obtain an idea of 
how small rj must be for the results to be valid, we 
integrated (4) and (5) numerically in time for a 
number of intermediate rj values. Figure 1 presents 
the growth rates y(k) for boundary conditions cor-
responding to a conducting wall at Lx — 10 as well 
as Lx = oo, making use of the asymptotic behavior 
xpx cc exp{ — ky \ x |}. The presence of a wall has a 
noticeably stabilizing effect only on modes with 
ky<.2Lx~1. Apart from the regime of very small ky 

Fig. 1. Linear growth rate y(k) for different values of r\. 
Solid lines for open system LX = oo, dashed line for con-
ducting wall at x = i Lx, LX = 10. 

the analytical results predict the actual y values 
quite accurately for rj < 10 -2, and also for rj = 10 - 1 

the prediction is still qualitatively correct. In the 
nonlinear computations discussed in the remaining 
sections we restrict ourselves to 10~2 ^ rj 10~3, 
20 Lx ^ 10 and modes with 0.5 > ky > 0.1. 

III. Basic Equations and Numerical Procedures 

We consider two different two-dimensional MHD 
models, 1) a compressible MHD system with vanish-
ing normal magnetic field Bz, and 2) the incom-
pressible limit of 1), which can also be considered 
as the opposite limit of a strong normal field 
Bz^> Bx , By giving rise to incompressible E X B 
motions in the (x, y) plane. The equations of system 
1) are 

(dv \ 
e \ 3 7 + v ' v v j = -vp-vyjz, ( i i ) 

^ + V ' V t p = r j j g - E 0 , (12) 

-Q - + V-VQ=-QV-V , ( 1 3 ) 

+ V V p = - 2 p V - t > , (14) 

where B = (Bx, By) = z X Vxp, j = (0, 0, V2 xp), V = 
(vx, vy). E0 is an integration constant which can be 
interpreted as the electric field applied to the system 
at the boundary, and which with an appropriate 
resistivity distribution allows for a static resistive 
equilibrium. Equations (11) — (14) are solved in a 
rectangular system — Lx ^ x ^ Lx , 0 ^ y Ly 

with a rigid conducting wall at + Lx implying 
vx(±Lx) = 0 and the magnetic flux enxlosed in the 
system xp(Lx) —xp(—Lx) fixed in time, and impos-
ing periodic boundary conditions in the y direction. 
The equilibrium current distribution and magnetic 
field are given by eqs. (1) and (2), while the pressure 
results from the balance p0{x) +By2(x)/2 =P 0 = 
const. The finite difference scheme is a variant of 
spatial resolution in the vicinity of the resonant 
the FCT methods [6]. To provide for adequate 
surface a non-equidistant mesh is used in the x 
direction. Typically Axm-m 0.1 at x^xs, while 
4rm a x^i 1 for | x ] > 1. 

The second system investigated is the incompres-
sible limit of eqs. (11) — (14), which results either 
from choosing a high background pressure P0 1 
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(high ß limit) or, as mentioned before, by assuming 
a large, normal magnetic field Bz (low ß limit). For 
simplicity we choose a homogeneous density £ = 1. 
Taking the curl of eq. (11) eliminates the pressure 
as an independent dynamic variable and yields an 
equation for the vorticity function W 

dW/dt + VVW = z- (vy X VV2y) (15) 
which is related to the stream function <p by W = V2 cp 
with V=9xV<p. Equation (12) for xp remains un-
changed. Hence there are only two quantities to be 
computed, <p and xp, instead of five in the com-
pressible system. More importantly from the com-
putational point of view is the fact that the fast 
compressional wave is eliminated, which allows 
substantially larger time steps and hence compu-
tational economy. As in the compressible case we 
use a Cartesian mesh in x and y with grid point 
concentration around xs and with equivalent bound-
ary conditions. Poisson's equation is solved by a 
hybrid scheme using fast Fourier transform in y and 
tridiagonal matrix inversion in x to allow for the 
non-equidistant grid point spacing. 

For all problems considered the difference be-
tween both models has been found to be practically 
negligible. Because of the relatively slow phase and 
plasma velocities involved even in the fast resistive 
processes such as island coalescence the plasma 
motion is to a high degree incompressible. Most of 
the computation reported in the subsequent sections 
of this paper were therefore performed using the 
incompressible model. 

IV. Resistive Equilibrium 

The linear tearing instability only depends on the 
value of the resistivity (or the resistivity gradient in 
the case of the rippling mode not considered here) 
at the resonant surface xs. Since the growth rate, 
which scales as a fractional power of the resistivity, 
is large compared with the rate of global current 
diffusion, the latter is neglected in linear theory. At 
finite amplitude or magnetic island size, however, 
the dynamic evolution takes place on the diffusion 
time scale, as was first pointed out by Rutherford 
[7] , and is therefore expected to be influenced by 
the evolution of the average current profile. If a 
homogeneous resistivity rj = rj0 is assumed, as is 
frequently done, the current sheet system is evident-
ly not in resistive equilibrium but broadens dif-

fusively on the resistive time scale. When perturbing 
this system by a tearing mode of small amplitude 
we find that after an initial phase of growth the 
mode decays. The maximum amplitude reached dur-
ing this process strongly depends on both rj0 and the 
initial amplitude, and the maximum island width is 
in general small compared with the width of the cur-
rent sheet. A current sheet can thus only be signif-
icantly affected by the tearing instability if it is 
maintained for a sufficiently long time, i. e. if there 
is some kind of resistive equilibrium. We may 
distinguish between essentially two types of resistive 
equilibria. On the one hand, the current layer is 
maintained by counterstreaming plasma flows. The 
prototype is the Sweet-Parker model of magnetic 
reconnection. In this case there is, however, an in-
homogeneous plasma flow along the magnetic field 
in the current layer, which would not be compatible 
with the periodic boundary conditions assumed in 
this paper. Tearing mode growth of this kind has 
recently been investigated in the current layer be-
tween two coalescing magnetic islands [8] . In 
the absence of plasma flows an equilibrium state 
requires an externally applied electric field E0. 
Current density and resistivity adjust themselves in 
such a way that = const as seen from (12). 
These are roughly the conditions in the quasi-
steady state of a tokamak discharge. In the present 
paper we shall restrict ourselves to the case of static 
resistive equilibrium. 

Since the resistivity profile is inhomogeneous, it 
will in general evolve in time. In the nonlinear 
theory of tearing modes in tokamak-like plasmas it 
is often assumed for simplicity that the resistivity 
profile remains fixed, rj = rj0 (r). This is certainly not 
correct since because of the high parallel thermal 
condition of the electrons rj = rj(Te) is to a large 
extent a flux function, rj = rj (xp). Numerical com-
putations, however, taking the time variation of rj 
into account reveal that the difference is rather in-
significant, which justifies the simplifying assump-
tion of a static rj profile. As discussed in the in-
troduction, tearing modes in tokamaks correspond 
to A;~l, while in the present paper we are mainly 
interested in long-wavelength modes k 1. We 
therefore investigate both cases of a static resistivity, 
Sect. V, and a dynamically evolving resistivity pro-
file, 

-A7+1>-V*7 = *,|V||2»7 (16) 
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in Section VI. As we shall see, the latter model entails 
basically different saturation properties of tearing 
modes. The resistivity model (16) has been chosen 
for simplicity. It is somewhat different from as-
suming a collisional resistivity rj(T) cc T~312 where 
T satisfies Eq. (16), but we expect the difference to 
be qualitatively unimportant. 

V. Saturation of Tearing Mode for a Static 
Resistivity Model 

In this section we choose a time-independent re-
sistivity model in eq. (12), r] = r](x) =i1o/jo(x)> an(^ 
the applied electric field E0 = t]0. As a consequence 
of this choice the saturated island state cannot be a 
static configuration, but requires a plasma flow V, 

0 y 16 Tt 

Fig. 2. Time evolution of islands for a static resistivity pro-
file rj(x) = 10~2/jo(x). Contours of y>(x,y) at a) time t — 200; 
b) f = 400; c) t = 1000; d) f = 8000. 

V • \xp = rj0 (/'f — ;0) where j{ = jf(if) is the final cur-
rent distribution. We investigated the size of the 
saturated islands varying the wave number k of the 
initial perturbation as well as r]0 . We also considered 
the asymmetric case xs 0. The distance of the 
confining walls ± Lx was chosen Lx = 10 such that 
the size of islands is independent of Lx. The main 
results are: 

a) The island size W\ increases with decreasing k 
in the regime which corresponds approximately to 
the right-hand part of the dispersion curve 1 > k > 
km, where km is given by eq. (9). The islands of dif-
ferent wavelengths are self-similar, width and length 
being proportional. 

b) No islands of wave number k<km are formed. 
In a sheet pinch of large dimensions, Ly ^ 
k m1, several islands of wave number k^km are 
formed. These tend to coalesce. The result of 
coalescence o af pair of km islands is again a km 

island. These isolated islands may be called mag-
netic solitons. The final state is a single soliton 
moving with a certain velocity v0 either to the right 
or to the left, depending on the initial conditions. 
The magnitude of v0 does not seem to depend on the 
system length Ly but only on the resistivity. We 
find VQ CC rj11'2 approximately. The neutral sheet be-
tween these final solitons is stable with respect to 
tearing modes owing to a strong shear flow along 
the sheet, the magnitude of which increases with 
increasing Ly and is much larger than the soliton 
velocity v0 . 

Figure 2 shows the development of islands with 
a periodicity length Ly = \6 jt and >y0 = 10-2. Only 
the smallest wave number k = 0.125 was excited at 
time t = 0. It soon gives rise to formation of a single 
soliton of spatial dimensions corresponding to a 
dominant wave number 0.3. The current 
layer between two solitons, however, becomes un-
stable and a further km soliton is generated. Owing 
to the symmetry of the formation process a long 
time passes until a coalescence instability develops 
at £~4000 from round-off errors. The final result 
is again a single soliton which, however, is now not 
at rest but moves with constant speed v0 = 0.056 to 
the left. Note this asymmetry which has developed 
spontaneously due to the asymmetry of round-off 
errors. With more general and less symmetric 
initial conditions this final state is reached much 
sooner. In Fig. 3 we see the final state for r)0 = 3 X 
10~3. Here the soliton moves to the right, f 0 = 
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Fig. 3. Final state t = 8000 as in Fig. 2d, but with rj(x) = 
3 X 10-*/jo(x). a) j(x,y); b) q>(x,y)\c) y>(x,y). 

— 0.027. It should be noted that the asymmetry is 
not in conflict with momentum conservation which 
is automatically satisfied by the boundary condi-
tion <p(±Lx) =0. 

In the asymmetric case, x s ± 0 , saturation ampli-
tudes rapidly decrease with increasing | xs | (see 
Fig. 4) although the linear growth rates are larger, 

x i— o 

o z < 1 
CO 

0.2 OA 0.6 0.8 

as discussed in Section II. The dependence on the 
wavelength is qualitatively the same as for xs = 0, in 
particular there being no long-wavelength islands. 

The absence of magnetic islands or solitons of 
longer wavelength and larger size is apparently due 
to the fixed resistivity distribution. Consider the xp 
— equation (12) averaged over y 

dxp0 (x, t) 
31 + (V-Vxp)y = rj{x) (j0(x,t) -;0(:r,0)). 

(17) 

A large size island would generate an average cur-
rent distribution j0 (x, t) strongly deviating from the 
equilibrium current j0(x, 0) . So the r.h.s. of (17) 
r](x)dj0(x) tends to restore the original current 
distribution. Another way of arguing is to point out 
the flows associated with the variation of the re-
sistivity along the flux surfaces. Noting that 
(t)-\rxp)v averaged over a flux surfaces vanishes, 
equation (12) can be written in the stationary case 
in the form 

VVxp= (Y) - (rj)w)j{xp). (18) 

Fig. 4. Saturation island width Wi for static resistivity 
T) (x) as a function of the position xs of the resonant layer. 

Hence the plasma flow velocity increases with in-
creasing island size. Since the resistivity is large 
outside the current sheet, the kinetic energy as-
sociated with the plasma flow becomes a significant 
fraction of the available free magnetic energy if the 
island size exceeds the current sheet thickness, which 
effectively limits the final island size. 

Let us briefly comment on a recent article by 
Hayashi [4], where the author claims that the 
spontaneous process of island coalescence investi-
gated by Pritchett and Wu [9] and by Biskamp and 
Welter [10] does not take place for islands gener-
ated by the resistive tearing instability. This is at-
tributed to the numerically observed current distribu-
tion with j being larger at the appoints than at the 0-
points, which counteracts the mutal attraction of the 
islands. Apparently, the islands generated in 
Hayashi's computations are rather small because of 
the assumption of a homogeneous rj distribution 
(see our discussion in Section IV). We, too, find 
this behaviour of the current density, but it becomes 
less pronounced as the island width increases. Spon-
taneous island coalescence takes place even if in a 
small region around the x-point j is larger than 
within the island, because this process depends on 
the global current distribution. 
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VI. Effects of Dynamic Resistivity Behavior 20 

The static resistivity model of the previous section 
represents a rather artificial assumption which is 
difficult to justify on physical grounds. This is 
especially true if large islands occur where rj would 
vary appreciably across the island. We therefore in-
vestigated a more realistic behaviour of rj, eq. (16), 
taking into account both convection with the plasma 
velocity V and diffusion along the magnetic field, 
where the latter process is in often the dominant 
one, making rj essentially a flux function rj (y). 
Perpendicular diffusion xj_ as well as ohmic heating 
or other energy sinks or sources will usually only 
play a role on the longer transport time scale, where 
the manner of sustaining the equilibrium would also 
matter. 

For short periodicity length Ly allowing only for 
modes with k > 0.5 the behavior is quite similar to 
the case with static resistivity, the saturated islands 
being somewhat larger. For larger Ly only the first 
phase of the island evolution resembles the static rj 
case. Because of the increase of the resistivity due 
to both plasma flow and rj diffusion along the 
separatrix the current density in the x-point region 
becomes smaller and is more and more concentrated 
in the island interior, while the island continues to 
grow to a large final size. If several islands are 
created initially they will coalesce in an early stage 
of the evolution. Hence the final state of the tearing 
instability in a sheet pinch of periodicity length Ly 

is a single island, as shown in Figure 5. (A similar 
behavior has recently been found for the collision-
less tearing mode [11].) The islands are self-
similar, width and wavelength being proportional. 
The final state is a new essentially static equilibrium 
with rj(xp) = E0 . For large Ly (and Lx) this 
configuration tends toward the one generated by a 
periodic sequence of line currents flowing at the 
0-points. In this case the flux function is given by 

ln 
2jz 

cosh 2 n x + cos 2 TI y (19) 

leading to an island width W\ — 0.56 Ly. For the 
islands shown in Fig. 5 we find W\ ^ 0.4 Ly. This 
is, however, not due to Ly (or Lx) being too small 
for the asymptotic formula (19) to be valid but to 
the fact that the original resistivity distribution was 
chosen rj (x) = rj0 cosh2 xj (1 + 0.03 cosh2 x) allowing 
for a finite value rj = 33 rj0 for | x | — o o . After 
island formation rj and hence j are finite outside the 

y 1 6 t i 

8 IT 0 

Fig. 5. Final distributions of j(x,y) and ip{x,y) for a dy-
namically evolving resistivity for different system lengths 
a) Ly — 16n; b) Ly — Src-, c) Ly = 4:ji. 

main current carrying region at the 0-point, j = 
0.03. Though this is small compared to the maxi-
mum value 7 = 1 at the 0-point, it is sufficient to 
reduce the island width to the value observed. In 
particular the angle of the separatrix at the x-point 
is smaller than 90°, which value would be expected 
if j vanishes. 

The final island size is practically independent of 
the magnitude of the resistivity rj0 , as long as it is 
small, and also of the value of X\\, at least if the 
diffusion term dominates in Equation (16). The 
case, where this term is small compared to the con-
vection term, has not been considered. 

VII. Conclusions 

In this paper we have given a picture of the two-
dimensional, dynamic evolution of a long sheet pinch 
configuration due to finite resistivity. To clarify 
some recent arguments about the role of plasma 
compressibility, both the compressible and the in-
compressible MHD equations were solved numerical-
ly. In all cases considered the difference turned out 
to be negligible, in agreement with intuition and 
with a recent investigation of the process of mag-
netic island coalescence [8]. It is well-known that 
the nonlinear evolution of tearing modes is a slow, 
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resistive diffusion process on the same time scale 
as the resistive broadening of the current sheet. 
We have shown that in general the latter effect 
has a strongly stabilizing influence. The physically 
more relevant question is the stability of a current 
sheet maintained from outside for a period long 
compared with the resistive decay time, i. e. which 
is in some kind of resistive equilibrium. While we 
we previously [8] studied the effect of tearing 
modes in a current layer maintained by counter 
streaming plasma flows, we now concentrate on 
the case of a static equilibrium driven by an ex-
ternal electric field and requiring a resistivity distri-
bution Y] CC 

Whereas for typical tokamak current profiles only 
tearing modes with wave numbers of the order of 
the marginal wave number exist for topological 
reasons (k~m~ 1), the emphasis in the present 
paper is on long-wavelength modes (k ^ 1). Since 
these may lead to islands of large size W\ > 1, the 
dynamic behavior of the resistivity is expected to 
play an important role. We have therefore investigat-
ed two different resistivity models, a) For the 
somewhat artificial case of a static resistivity profile 
the main result is that a long current sheet breaks 
up into a number of soliton-like magnetic islands 
with k~km~r}xl* and island size W\ oc k which 
tend to coalesce. The final state consists of a single 
km soliton, moving at a certain speed t;0 depending 
only on the magnitude of the resistivity. The current 
layer is stable against generation of further solitons 

[1] R. B. White, D. A. Monticello, M. N. Rosenbluth, and 
B. V. Waddell, Phys. Fluids 20, 800 (1977). 

[2] J. D. Callen, B. V. Waddell, B. Carreras, M. Azumi, 
P. J. Catto, H. R. Hicks, J. A. Holmes, D. K. Lee, 
S. J. Lynch, J. Smith, M. Soler, K. T. Tsang, and 
J. C. Whitson, Plasma Physics and Controlled Nuclear 
Fusion Research 1978, IAEA, Vienna 1979, Vol. I, 
p. 415. 

[3] W. H. Matthaeus and D. Montgomery, J. Plasma 
Phys. 25, 11 (1981). 

[4] T. Hayashi, J. Phys. Soc. Japan 50, 3124 (1981). 
[5] H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. 

Fluids 6, 459 (1963). 

due to a strong shear flow, b) In the more realistic 
case of high parallel resistivity diffusion (heat con-
duction) the final state is quite different. Here only 
one large island remains with k Ly ^ 1, where Ly is 
the length of the system. The current sheet is com-
pletely destroyed, the final distribution being an 
isolated pinch of about circular shape. What hap-
pens in an actual physical situation is largely deter-
mined by the boundary conditions, such as the 
presence of walls, externally forced plasma flows 
and energy sources and sinks to control the re-
sistivity distribution. 

Finally, we should like to underline that the 
present results are restricted to two-dimensional 
geometry. The completely coherent behavior, i. e. 
absence of small-scale turbulence, observed in all 
computations is certainly due to this geometric 
restriction. Admitting variations in the third direc-
tion allows simultaneous growth and interaction of 
modes with different orientations of wave vectors 
(different "helicities"), which is known from 
tokamak theory to give rise to intense small-scale 
turbulence [12]. The three-dimensional behavior of 
a sheet pinch is currently under investigation. 

A cknowledgement 

The author would like to thank Mrs. M. Walter for 
carrying out the programming for the numerical 
computations. 

[6] D. L. Book, J. P. Boris, and K. Hain, J. Comp. Phys. 
18, 248 (1975). 

[7] P. H. Rutherford, Phys. Fluids 16, 1903 (1973). 
[8] D. Biskamp, Phys. Lett. 87 A, 357 (1982). 
[9] P. L. Pritchett and C. C. Wu, Phys. Fluids 22, 2140 

(1979). 
[10] D. Biskamp and H. Welter, Phys. Rev. Lett. 44, 1069 

(1980). 
[11] I. Katanuma, and T. Kamimura,, Phys. Fluids 23, 

2500 (1980). 
[12] B. V. Waddell, B. Carreras, H. R. Hicks, and J. A. 

Holmes, Phys. Fluids 22, 896 (1979). 


