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The existence of quasi-periodic eigensolutions of a linear second order ordinary differential 

equation with quasi-periodic coefficient f{a>it, io%t) is investigated numerically and graphically. 
For sufficiently incommensurate frequencies coi, a>2 a doubly indexed infinite sequence of eigen-
values and eigenmodes is obtained. 

The equation considered is a model for the magneto-hydrodvnamic "continuum" in general 
toroidal geometry. The result suggests that continuum modes exist at least on sufficiently ir-
rational magnetic surfaces. 

1. Introduction 

For the linear second order ordinary differential 
equation with periodic coefficient f(t)=f(t + Ji), 
(Hill's equation) 

y(t) + [Uf(t)]y = 0 (1.1) 

it is well known [1] that with mild assumptions for 
f(t), there exists an infinite sequence of character-
istic values or eigenvalues X = Xn, n = 0 , l , . . . , such 
that the solutionsy =yn{t) have the same periodicity 
as the coefficient f(t). 

As a generalization of Hill's equation we consider 
the differential equation with quasi-periodic coef-
ficient / : 

y(«) + [ * + / K < , o > 2 0 ] y = o , (1.2) 

where / is periodic with respect to both arguments 
/(0,9?) =f(9 + 2n,<p) = f{6,cp + 2n) (1.3) 

but is not periodic in t in general if the ratio w1/co2 

is irrational. (It is convenient here to use 2 rc for 
the period instead of si.) The purpose of the follow-
ing investigation is to find out numerically — in-
sofar as this is possible — whether eigenvalues ln 

again exist for this generalized equation. Eigen-
values are defined here by the analogous require-
ment that for X = ln the solutions y = yn (t) be quasi-
periodic with the same quasi-periodicity as the 
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Plasmaphysik and EURATOM. 
Reprint requests to D. A. Salat, Max-Planck-Institut für 
Plasmaphysik, D-8046 Garching. 

coefficient f{t) : 

yn = u(co±t,(o2t) (1.4) 

with 
u(6,cp) =u(0 + 2ji,<p) = u(0,<p + 2n). (1.5) 

As we shall briefly explain below this eigenvalue 
problem arises naturally in the theory of the so-
called MHD continuum in general toroidal geometry. 

Equation (1.2) is equivalent to the partial dif-
ferential equation of the parabolic type 

3 3 Y2 m , 

+ [Uf(0,cp)]y = 0 (1.6) 

with the real characteristics 
6 = co1t + c1, cp = 0J2t + c2 (1-7) 

with ct, c2 = const. A quasi-periodic eigenmode cor-
responds to a solution with periodic boundary con-
ditions on the square 0 ^ 6 ^ 2 ji, 0 ^ cp ^ 2 n. 
While for elliptic operators the existence of such 
solutions is guaranteed by the theory of Sturm-Liou-
ville, no equivalent theorems are known for para-
bolic equations. The existence of eigenmodes is 
therefore uncertain a priori. 

Difficulties in analytic investigations of (1.2) or 
(1.6) usually come from the problem of "small 
denominators". If y(6, (p) is Fourier analyzed in 6 
and 99 the operator d2/dt2 corresponds to — (raj cOj + 
n2w2)2 whose inverse becomes arbitrarily small if 
the integers nt and n2 are appropriately chosen in 
the limit | |, j n2 \ —> 00. This problem makes the 
generalization of the Floquet theory [2] of systems 
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of periodic differential equations to systems of quasi-
periodic differential equations so difficult and in-
complete [3 — 6]. We shall discuss in Section 3 
below some results relevant to us. 

The paper is organized as follows: Section 2 
presents a short discussion of the physical problem 
which prompted the investigation. For a quasi-
periodic (5-function-type/(wj t, co21) (1.2) is trans-
formed into a recurrence relation in Sect. 3, and the 
general features of the numerical solution [7] to-
gether with pertinent analytic results [5, 6] are re-
called. In Sect. 4 numerically obtained eigenvalues 
and eigensolutions are presented and discussed. Sec-
tion 5 contains a critical discussion. 

2. The MHD Continuum in General Toroidal 
Geometry 

For a plasma confined in a toroidal equilibrium 
configuration and described by magneto-hydro-
dynamic equations the linearized equations of mo-
tion may be put in the form [8] : 

d X = A X + B - Y , (4.1a) 
dtp 

L Y = K X , (4.1b) 

where X and Y are vectors with two and four com-
ponents, respectively and together describe the per-
turbed fluid motion and the perturbed magnetic 
field. A, B, K and L are matrix operators contain-
ing derivatives in the magnetic surfaces rp = const. 
Derivatives out of the surfaces are explicitly indi-
cated in (4.1a). The operator L is particular in 
that it only contains derivatives along the magnetic 
field lines on y = const. The existence of equilibria 
with a continuous set of nested toroidal magnetic 
surfaces is non-trivial in the general case but is as-
sumed here. 

If (4.1 b) can be solved for Y an equation for 
the radial variation of X is obtained. With suitable 
boundary conditions a set of discrete eigenvalues co2 

may be determined, where an ansatz ~ exp (i co r) 
is made for the time dependence of the perturba-
tions. If however 

L(t,<o2,rp)Y{t) =0 (4.2) 

has a non-trivial solution — here t is a coordinate 
along the field line considered — another set of 
eigenvalues w2 results directly from (4.2). If L is a 

continuous function of the radial coordinate xp the 
same is true of the eigenvalues co2. Hence the name 
"continuum" for the eigenmodes and eigenvalues of 
(4.2). 

Equation (4.2) consists of a system of four 
ordinary first order differential equations along a 
field line. It may be written in the form 

Y(<) = SI (t, co2,tp)Y. (4.3) 

The matrix ß contains quasi-periodic functions of 
t since the equilibrium depends periodically on 
poloidal and toroidal angles 6 and cp, respectively, 
which may be chosen such that the linear relations 

$ = B61 + const, cp = B'pt + const (4.4) 

hold along the magnetic field B. Here Be = B -V0, 
Bf = BVcp. As boundary conditions for (4.3) it is 
required that Y(Z) also be periodic in the angles 0 
and cp. The existence of such eigenmodes is, how-
ever, uncertain and the present investigation is in-
tended to contribute to this problem. 

In equilibria with cylindrical or axial symmetry 
or with closed field lines the matrix & becomes 
either constant or a periodic function of t. In these 
cases continuum eigenmodes exist (see e. g. [9 — 
14]) and have been proposed for efficient local 
plasma heating ("Alfven wave heating"). Their 
radial dependence, which in cylindrical geometry 
includes a logarithmic divergence, has been prelimi-
narily discussed in [15, 16] for general toroidal 
geometry. 

In the limit of low plasma pressure (4.3) to 
lowest order reduces to 

d 
dt (by) + c co2 y = 0 , (4.5) 

where the quasi-periodic coefficients a, b, c are defin-
ed in [17]. Clearly, (1.2) which we shall investi-
gate for particular f(ooxt, co21) is a simplified model 
equation of Eq. (4.5), where I, B6 and Bv corre-
spond to co2, wt and co2, respectively. The case 
OJ 2 > 0 und q^Bv/B6 irrational will be considered 
here exclusively. 

3. Numerical Solution for 8-function-type 
Coefficient 

We consider (1.2) in the form 
y(t) + [co2+f(cox t,co2t)]y = 0 (3.1) 
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with particular 2 -T-quasi-periodic functions 
f(t) = f(Q(t),<p(t)) 

= + f {-l)n[Fxd{t-nTx + c) 
n= —oo 

+ F2d{t-nT2)] (3.2) 
+ oo 

= 2 cnd{t-tn) 
n= — oo 

with 
0 = a)1(t + c), <p = oo2t, (J0i = n/Ti, £=1,2. 

(3.3) 
/ ( f ) is an imitation of cos (oo1 t + c) + F2cosco2t 
with (5-functions. F1 and F2 are arbitrary amplitudes. 
Together with the factor + 1 they are collectively 
called Cn . 

Between the ö-functions the solution of (3.1) is 
y(t)= a cos co t+ b sin co t. (3.4) 

Integration across the ^-functions at t = tn yields a 
jump condition for the derivative y, while y is con-
tinuous. From the jump conditions the recursion 

an\ _ /1 + cn sin 2 a) tn 2 cn sin2 co tn \ 
bn) \ —2 cn cos2 co tn 1 — cn sin 2 co tn ) 

for the amplitudes an , bn for tn<.t<tn +1 may be 
derived, with cn = Cn/(2co). The recursion allows 
fast and accurate numerical determination of y(t) 
and y(t) at multiples of T1 and T2 . It was perform-
ed partly on an AMDAHL 470 V/6 and partly on a 
CRAY-1. Different word lengths on the two com-
puters allow evaluation of round-off errors. 

For each "run" not only the amplitudes Ft , F2 

and the frequencies co, cot, co2 have to be specified 
but also the phase (-difference) c and the initial direc-
tion of the vector (y(0), y(0)/co). The latter is 
done by specifying the coefficient r, with 0 ^ r 1, 
in the ansatz 

Y (0) = cos r TI , y(0)/co = sinrn;. (3.6) 

The result of many such runs have been reported in 
[7]. Both, cases with stochastic and cases with 
ordered behaviour in phase space were presented 
and the integrability of (3.1), written as a Hamil-
tonian system, was discussed. 

Cases with unbounded solution for t ->oo, i.e. 
n ^ 1, were found. Detailed investigation reveals 
that the solutions y(t) become unbounded if the 

eigenvalue parameter <o is located in a doubly in-
dexed infinite sequence of gaps situated in the vicin-
ity of co = <JJ0 which are defined by the resonance 
condition 

n0co() + n1co1 + n2<jo2 = 0 (3.7) 

with n0 = 2 and nx, n2 arbitrary integers. As func-
tions of co2 the gaps become bands, see Figures 1 a, 
1 b. In Fig. 1 a the band structure in the region 
0 < c o < 2 , 0 < c o 2 < 2 is shown for F1 = F2 = 0.2. 
Owing to the course grid many bands are only in-
termittently visible. In Fig. I b a magnified view at 
increased amplitudes Ft = F2 = 0.5 shows more de-
tails. Some (TI0 , MJ, n2) triples are indicated to-
gether with the corresponding lines (3.7), for 
arbitrarily fixed co1 = l . The bands are slightly 
shifted from the position (3.7) owing to the finite 
amplitudes Fx, F2 and they are deflected somewhat 
whereever they cross each other. A high growth rate 
corresponds to a small number in Figures l a , l b . 
The values of co and co2 are indicated at the top of 
figures and in their right margin. Bands with n1 and 
n2 large are not easily detected numerically because 
they are very narrow and the growth rates become 
exceedingly small. 

Equation (3.1) was investigated analytically by 
Dinaburg and Sinai [5] and Ruessmann [6] for the 
complementary case of smooth functions f((ott, 
(o2 t). They find that if OJ1/CO2 is "sufficiently" ir-
rational and co2 is sufficiently large the solution is of 
the generalized Floquet type: 

y («) = eivt u (cox t, w21) + c c. (3.8) 

where v is real and u is 2 Ti-quasiperiodic, provided 
co is outside a doubly infinite sequence of gaps which 
are again situated close to co = co0 as given by (3.7). 
Since v is real the solutions therefore are bounded 
outside the same set of gaps as in our case with <3-
function pulses. Inside the gaps, however, the prop-
erties of the solutions were not specified in [5, 6] 
and their width cannot easily be compared with 
ours. 

It will become clear in the next section that re-
garding the search for eigenmodes it would be 
helpful to know whether the solutions y(t) may 
possibly be represented in the generalized Floquet 
form (3.8) for all co and <ox, co2, but of course 
with v being complex in general (and the factor 
exp (i v t) being replaced by the more general ex-
pression exp( iKf) with constant matrix K) . In 
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general, however, this representation is not possible, 
see [3], not even for the first order equation y = 
f(<o1t,a)2t)y as discussed in [4, 18]. There always 
tend to be restrictions on the frequencies involved 
caused by the previously mentioned problem of 
"small denominators". 

4. Eigenmodes 

As stated in the Introduction a solution y(t) of 
(1.2) is called here an eigenmode if it has the same 
quasi-periodic behaviour as the coefficient f(t), i.e. 
if it satisfies (1.4) and (1.5). 

It is straight forward to test any numerically ob-
tained solution with graphical methods whether it is 
an eigenmode or not, — within the natural limits 
of numerical and graphical methods in general, of 

course: At multiples of the basic quasi-period rt = 
2 Tt for an eigenfunction the argument w11 of 
u(w11, CO2 t) by definition of cox is a multiple of 2 ti 
so that according to Eq. (1.5) the function u is con-
stant with respect to its first argument. Only the 
periodic dependence on the complementary argu-
ment a)2t remains, and analogously at multiples of 
r2 — 2T2. Hence yx = y [t = n rx) plotted versus co21, 
modulo 2 TI, and y2 = y{t = n r2) plotted versus CO11, 
modulo 2 JI for an eigenfunction each yield a well 
defined curve in the limit ra->oo, displaying the 
functional dependence of y(t) on the two sub-argu-
ments (JO1 t and co2 t. "Trivial" eigenfunctions of this 
type (see below) are shown in Figures 2 a, 3 a. 

Another useful representation is the pair of phase 
space diagrams y/co versus y, plotted at t — n r1 and 
t = nt2 , n = 1, 2 , . . . For eigenmodes a closed curve 

2a) 2b) 2c) 
Fig. 2. "Trivial" eigenmode y for periodic case jFi = 0.1, — 0, toi = l , a>2 = l / / 2 . Eigenvalue Q = 0.28675534, initial 
direction r — 0.500, initial phase c = 0. y as function of o>2< and coi t (Fig. a) and phase space diagrams (y, y/co) at multiples 
of periods n (Fig. b) and r2 (Fig. c). N = 8000. 

3a) 3b) 
Fig. 3. Same as Fig. 2 with r = 0.111. 
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results for n—>00, or rather a curve with disconti-
nuities in y since in our case only y is continuous 
but y in general is not (except if y = 0). Figures 2 b, 
2 c, 3 b, 3 c, for example, correspond to the cases 
2 a and 3 a. 

For all solutions which are not eigenmodes the 
graphs show at twodimensional distribution of scat-
tered points [7] instead of curves except for sub-
harmonics of eigensolutions, i. e. solutions with 
quasi-periods m2n, m ^ 2. Such subharmonics, 
however, may be identified by the fact that for them 
y has more than one branch. 

In order to search for eigenmodes the following 
procedure has been applied. A coj-ojg-quasi-periodic 
eigensolution was constructed for a eoj-periodic 
f(t). In small steps a co2-periodic contribution was 
then added to f(i) and the eigenvalue parameter co2 

was adjusted each time so that the solution looked 
as like as eigenmodes as possible. In the Appendix 
the construction of the initial "trivial" eigenmodes 
is explained. Such an eigenmode with eigenvalue 
co = Q = 0.28675534 is shown in Figs. 2 a — 2 c and 
3 a — 3 c for two values of the initial value parameter, 
r = 0.111 and r = 0.500, respectively, for later refer-
ence. The amplitude is F1 = 0.1 and the frequencies 
are co1 = l , co2= 1/Y2. The same frequencies are 
used throughout in the following for all cases con-
sidered ; see Sect. 5 for discussion. 

Unfortunately, it turns out that the intended 
procedure does not work. Once the originally vanish-
ing amplitude F2 reaches a few percent of F1 even 
the best fit of co does not yield well defined curves 
but some structure of finite width. Figure 4 shows 
how poorly one such "optimum" fit, <0 = 0.27504376, 
works when F2 is pushed up to equality with F1, 
for N = 16 000 iterations. Additional parameters are 
r = c = 0. If the number N of iterations is increased 
it turns out that the "optima" obtained are in fact 
unstable, i. e. | y | grows slowly but without bounds. 

There is a further "correlation" of eigenmodes 
with unboundedness of solutions. As mentioned in 
Sect. 3, under certain conditions the solutions y(t) 
are of the form (3.8). Clearly, the solutions are 
eigenmodes if 

v = m1co1 + m2co2 (4.1) 

with m1, m2 being arbitrary integers, because 
exp (1 TTij u>i t) is 2ji-periodic in co* t, £ = 1,2. In-
spection, however, shows [6] that for v given by 
(4.1) the eigenvalue parameter (O is exactly in one 
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of the "forbidden" gaps, Eq. (3.7), which for our 
(5-functiontype f(t) were shown in the last section 
to be connected with unboundedness of the solu-
tions. 

Although the foregoing results seem to give evi-
dence against the existence of eigenmodes, such 
modes may nevertheless be found. Consider again 
(3.1) with coj-periodic coefficient, equivalent to 
Hill's equation. It is well known [1] that ^-peri-
odic eigenmodes occur exactly if the eigenvalue 
parameter is at the boundary between bounded and 
unbounded behaviour of the solutions, i. e. at the 
boundary of gaps which for small amplitude are 
situated approximately at co = <o0 

co0 = /I1CO1 (4.2) 

with integer nx . (At the boundary of the gaps close 
to fo)= (2n1 + l)co1/2 the solutions have the period 
2 t j . Such subharmonic solutions do not interest us 
here.) At this position of co, however, there is 
another linearly independent solution of the form 
y(t) =t u(co11), i.e. a solution with unbounded 
secular behaviour; see [19], for example for 
Mathieu's equation. If the initial values y (0 ) , j ( 0 ) 
are chosen at random, the solution will always pick 
up a secular contribution and mask the existence of 
the eigenmode. For periodic ^-function coefficient 
this situation can be studied analytically (see Ap-
pendix) . 

These considerations suggest that in looking for 
quasi-periodic eigenmodes it is not enough to ad-
just the eigenvalue parameter co properly; the initial 
condition specified by the coefficient r in (3.6) has 
to be as well. Otherwise at best a secular solution of 
the type y (i) = t u(cox t, co2 t) might be seen. Indeed, 
the above mentioned "optimum" solution shown in 
Fig. 4 grows essentially linearly in t, viz. in the 
number N of iterations. 

In consequence, the search for eigenmodes was 
modified in the following way: The amplitudes and 
phase were fixed at Ft = F2 — 0.\ and c = 0. Then, 
with arbitrarily fixed initial condition (direction) 
r = 0 a crude search with the eigenvalue parameter co 
was made for the position of the gap close to co = 
<o0, with 

co0=co1 = co2. (4.3) 

Even values = — 2, n2 = 2 were selected in order 
to avoid the possible construction of subharmonic 
solutions. With the approximate position of the gap 



Fig. 6. Eigenmode for = ^ 2 = 0.1, « 2 = 1/1/2, r = 0.111, c = 0 with eigenvalue ü" = 0.27504376. 

5a) 5b) 5c) 

Fig. 5. Eigenmode for Fi — F2 = 0.1, w2 = l/j/2, r = 0.500, c = 0 with eigenvalue ü' = 0.27495798. 
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4a) 

Fig. 4. "Optimum" solution for Fi 

4b) 4c) 

= F2 — 0.1, cü2 = 1/1/2, r — 0, c = 0 for co = 0.27504376. N = 16000. 
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7a) 7b) 
Fig. 7. Eigenmode for Fy = F% = 0.1, a>2 = 1//2, r = 

7c) 
0.6085, c = 0.5 jr with eigenvalue Q " c = 0.27504378. 

known a detailed investigation of the behaviour of 
y(t) in the region of the left and right boundaries 
of the gap was made. In particular, max | y (t) \ was 
determined on a two-dimensional co — r ( = initial 
value) grid. In the most promising regions of this 
grid the solutions were visually checked to see how 
far they corresponded to an eigenmode. And indeed 
an eigenmode was found on each boundary of the gap. 
the two eigenvalues are <t> = ß ' = 0.27495798±3-
1(T9 (see Fig. 5 a - 5 c ) and Q " = 0.27504376± 
7 • 10-9 (see Fig. 6 a — 6 c). The corresponding initial 
value parameters, see Eq. (3.6), are r— 0.500 + 
5 • 10~4 and r " = 0 . 1 1 1 ± 1 1 0 " 3 respectively. The 
parameters co and r, in particular co, have to be 
determined more and more precisely if one wants 
to go to higher and higher numbers N of iterations. 
A r = 1 . 2 8 x l 0 5 was used to determine the eigen-
values above. In Figs. 5a — 6c . /V=16 000 and only 
every 2nd iteration is plotted. 

The modes in Figs. 5 and 6 are the generalization 
of the modes from the periodic case F2 = 0, Figs. 2 
and 3, to the quasi-periodic case F2 = Ft. Both eigen-
values Q', Q " are roughly 4°/o smaller than Q. If 
F2 (or Fj) is decreased both Q' and Q" increase 
and the width of the gap Q " — Q' shrinks until at 
F2 = 0 both eigenvalues coalesce into co = Q, the gap 
disappears and the eigenmode is degenerate with 
respect to the initial value r. In general the modes 
have a discontinuity in y at t = nT1 and t = nT2. 
The modes should be indexed with ( — 2,2) cor-
responding to the gap index (/^ , n2). 

In order to check the effect of the phase difference 
c (see Eq. (3.2)) on the eigenvalues, the search for 
eigenmodes was repeated with c changed from zero 

to 0.5 JI i. e. At = 0.5 Tx , on the right hand boundary 
of the same gap as before. Figures 7 a — 7 c show 
the resulting eigenmode. Its eigenvalue co = Qc" = 
0.27504378 ± 1.6-10 - 8 agrees with the previous 
value Q" for c = 0 within the limits of accuracy 
aspired. Hence, as expected for incommensurate cOj 
and co2, the effect of the initial phase difference 
disappears for sufficiently large N. The "proper" 
initial value is rc" = 0.6085 ± 1 • 10 -4. 

From the discussion above it is obvious that the 
existence of eigenmodes is not restricted to the par-
ticular values of the amplitudes, gap indices and 
phase Fi, /ij, c, i = 1, 2 used. Eigenmodes with other 
parameters have indeed been constructed. It might 
happen, however, that for large amplitudes some of 
the eigenvalues disappear when different gaps over-
lap. 

5. Discussion and Conclusions 

It has been shown within the limits of numerical 
and graphical methods, that the quasi-periodic dif-
ferential equation (3.1), (3.2) possesses a doubly 
indexed infinite sequence of eigenvalues co = ßm>M 

and co = Q'm<n and eigensolutions ym,n, ym,n with the 
same quasi-periodicity as the equation itself. The 
eigenvalues are situated at the edge of "gaps" in the 
vicinity of co = co0 , where co0 = m cox + n co2 , m, n, 
integer. Inside the gaps the solutions are unbounded. 
This situation is the complete analogue of the prop-
erties of Hill's equation with periodic coefficient. It 
seems plausible that the result is true of more gen-
eral, linear, quasi-periodic differential equations. 
The existence of subharmonic solutions with quasi-
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periods 2 r1 and/or 2 r2 was investigated more in 
passing. They exist at the edges of gaps with half-
integer m and/or n. 

A particular point which deserves discussion is 
the choice of q = OJ1/CO2 . In the paper q = \2 is used 
throughout, i. e. an irrational number, as intended. 
On the other hand, in the computer all numbers are 
truncated so that q becomes rational. During the 
computations, however, it was monitored whether 
two ^-function pulses ever coincided again if two 
pulses did so initially; in other words, whether c o j 
co2 = NJN2 for Nt,N2<L N, the number of itera-
tions. (Coincidence here is defined as j N1 Tt — 
N2 T2 I ^ 10~12, a small number but larger than the 
round-off error in double-precision operation.) This 
did not occur up to N = 1.28 X 105, the highest 
number used. The ratio q = 1/2 was therefore still 
"effectively irrational". 

There is a second necessary criterion for "effec-
tive irrationality" of q: The number of iterations 
has to be large enough, so that the effect of the 
initial phase difference c, Eq. (3.2), gets lost. Con-
sider, for example, 0^ = 1, co 2 =j /4 + £, j e j ^ l . 
This implies that Tx « 2 T2 . The order in which the 
pulses n Tt and mT2, n, m = 1 , 2 , . . . , follow each 
other gets mixed up only for N > N0 , where 2 T2 N0 

= TX(N0 + 1), i.e. for N^S/\e\>l. Thus, the 
criterion of "phase scrambling" leads to the re-
quirement of an exceedingly large number of itera-
tions if q is very close to a rational number m/n 
with small m, n. This was indeed observed numeri-
cally. For the case FX = F2 = 0.5, co1 = 1, co2 = (4 + 
l x l O - 8 ) 1 / 2 and c = 0 an eigenvalue was found at 
co = 1.126872 while for c = 0.5 n it changed to co = 
1.137703, even at N=2-105 iterations. In contrast, 
the eigenvalues for co = l / ] /2 were independent of 
c up to at least 7 decimal places. Such problems with 
rational versus irrational numbers have their coun-
terpart in the requirement of "strong incommen-
surability" ' (Ot + n2 co2 | Q (n) where ß is a 
sufficiently fast decreasing function of n = max 
(! j, ! n2 |) in the analytic treatment of (3.1) (see 
[5, 6 ] ) . 

In applying the foregoing considerations to the 
problem of the MHD continuum in general toroidal 
geometry (see Sect. 1 and 2) it seems plausible that 
eigenmodes exist on "sufficiently irrational" surfaces 
while their existence for other values of q is less 
certain. 
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Appendix 

In the periodic case, say F2 = 0, the solution y, y 
can readily be obtained from Eqs. (3.4), (3.5) 
after one full period r1 = 2T 1 as a function of the 
initial values y (0), y (0). The result is 

Y ( r 1 ) = A - Y ( 0 ) ( A l ) 

with 
An = cos 2 z — / sin z cos z, 
A12 = sin 2 z — / sin2 z , (A 2) 
A21 = — sin 2 z — f sin2 z — /2 sin z cos z , 
A22 = cos 2 z + f sin z cos z — f2 sin2 z , 

where 
Y ={y,y/A))T, f = Fjw, Z = JICO/(D1. 

(A3) 

According to the Floquet theory [2] the solution 
of (3.1) in the present case is of the form 

y{t) =eivtu{oo1t) +cc (A4) 

with u(Q + 2n) =u{9), provided v=f=nx<joJ2 where 
in addition to (A4) there is a solution of a differ-
ent type (see below). The exponent v is related to 
the eigenvalue A of the matrix A by 

A = 0 . 5 ( l ± 1 / 5 2 - 4 ) ; S(co) =An + A22, 
(A 5) 

exp {ivx1)=X. (A 6) 

It is therefore possible to construct quasi-periodic 
solutions of the periodic differential equation by 
setting v = mx OJx + m2 co2 with integer m^, m2 and 
numerical solution of Eqs. (A 5, A 6) for the eigen-
values co = wn, n = 1 , 2 , . . . For = 0.1, OJx = 1, 
co2 = 1/1/2, m1 = 1 and m2 = — 1 the eigenmode 
with the lowest eigenvalue w0 — Q is shown in Figs. 
2 a —3 c for two different initial conditions (see 
Section 4). 

The solutions (A4) are unbounded for complex 
v. The transition between real and complex v occurs 
at X= ± 1 . The case 2 = 1 corresponds to co = nco1 

with integer n. A in this case goes over into the 
identity matrix, which implies that the solution is 
corperiodic for all F1. It is an eigenmode corre-
sponding to m2 = 0 above. There is a degeneracy 
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here: the usually existing finite co region of un-
bounded solutions has collapsed and disappeared. 
This degeneracy, which does not occur in Mathieu's 
equation, is due to the infinite number of harmonics 
of equal amplitude which build up the (3-functions. 

The case X — — 1 implies 
Fi = i 2 co ctg z (A 7) 

which is satisfied by two infinite sets of co = an , ßn 

which are situated pairwise to the left and right of 
(2 n + l)coj2, n — 0 , 1 , . . . Between each conjugate 
pair the solutions are unbounded. It is easily checked 
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