Potential Energy Distribution in the Presence of Redundancies
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A theory is outlined for the potential energy distribution in the presence of redundancies.
Numerical examples are given for the cage-like molecules PsS3, PsSes, AssS3, AssSez and PAs3Ss,
for which the molecular vibrations have been analysed previously.

Introduction

Let S denote a complete set of independent inter-
nal coordinates in the theory of molecular vibra-
tions [1, 2]. They may, for instance, be symmetry
coordinates. The matrices F (force-constant matrix)
and L (S = L@, where  designates the normal co-
ordinates) are supposed to be based on the S co-
ordinates. For the frequency parameter 1; one has

Ak =2 2 LuLjFi. (1)
i

3

This parameter is the coefficient in the part of
2V (V is the potential energy) belonging to the
normal coordinate Q. The potential energy dis-
tribution (PED) terms are defined by [3—5]

Tix = L?kF“/lk. (2)

Cyvin et al. [5] have discussed the influence on
PED terms when redundancies from the internal
coordinates are removed in different ways. The
PED for the cage-like molecule P4S3 was analysed
using two different sets of symmetry coordinates
(A and B), both without redundancies. The PED
terms were found to be critically dependent on this
choice of coordinates and hardly meaningful at all
in one of the cases (4).

In the present work it is shown how the PED
terms may be derived uniquely even in the presence
of redundancies. Hence the dilemma of choosing an
adequate set of independent internal coordinates
(such as the 4 and B symmetry coordinates in the
cited example [5]) is eliminated in one sense. But
it is true that the PED terms depend on the
particular choice of coordinates [5,6]. However,
they may be chosen as a set of linearly dependent
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coordinates. Let such a set of internal coordinates
be identified by the symbol R. The PED terms of
course also depend on the force field; it may be
defined by F in terms of the R coordinates.

The present theory is applied to P4S3 [5, 7, 8],
P4S63, AS4S3. AS4Se3 [7 9] and PASgSg [9]

Theory

Definition of &y

The PED terms based on a set of R coordinates
are defined in analogy with (2):

Eip = Lix® Fif 2. (3)

Here the L;; elements belong to the transformation
matrix of

R=1LQ. (4)

The #;; terms are not uniquely defined in as much
as the force field does not uniquely determine an
F matrix when redundancies are involved. When
a linear dependence exists among the R coordinates,
there is namely an infinite number of # matrices
compatible with the same physical force field. On
the other hand, when a definite ' matrix is chosen
to define a force field, the corresponding &;; terms
may be derived uniquely. The L;; elements are
completely determined when the force field is given.

Derivation of L
Let the R coordinates be given in terms of the
cartesian displacement coordinates by
R = B=x. (5)
In terms of a set of independent internal coordi-

nates, S, one has x = A4S, where A =m-1B'G"1 by
virtue of the Crawford-Fletcher formula [1. 2, 10].
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Hence

R=Bm1BG1S. (6)
This equation is consistent with the 7'-matrix for-
mulation of Cyvin [11],

R=7T8, T=Bm1BG!. (7)
By inserting S= L@ into (6) and simultaneously
making use of G-1=(L~-1)’L-1, one arrives at

R = Bm1B (L 1YQ. (8)
On comparing (8) with (4) one finally obtains

L= Bm-1B (L. 9)

It should be noted that the matrix L does not
depend on the particular choice of the S coordinates.

Alternative Derivation of L

The T matrix [11] is defined in a general sense.
It may be adapted to the L matrix when the in-
dependent coordinates are taken as the normal
coordinates (Q):

R=ToQ, To= Bm1ByGg*, (10)

cf. (7). Here To=L, Gq=G;'=E, and the By
matrix is obtained from

8§ =LQ = Bz,
Bg—I-1B.

@ = L 1Bux;
(11)

Insertion into (10) gives the above formulas (8)
and (9).

Practical Application

In practical computations it is often useful to
define a force field by means of an F matrix in the
presence of redundancies. The corresponding PED
terms, &;;, may hence be given according to the
theory outlined above. These terms are particularly
meaningful if # is a diagonal matrix. In that case
one has [5]

Z.j:ik =1.
i

A diagonal F matrix in terms of valence coordinates
including redundancies has frequently been as-
sumed to define an initial force field of cage-like
[5, 8,9, 12—15], planar cyclic [16] and planar poly-
cyclic [17—19] molecules.

(12)

w
jrd
w

Numerical Examples

The present theory has been applied to some
cage-like molecules with the structure of P4S;3
[5, 7, 8]. This molecule has one apical P atom (Py)
and three basal P atoms (Pp). The other molecules
of this investigation are PsSes, AssS3, AssSez and
PAsgS3 [7,9]. A simple force field approximation
represented by a diagonal F matrix in terms of
valence coordinates including redundancies was
assumed. In fact the same numerical form of the
F matrix [5,8,9] was assumed for all the five
molecules in question. All stretchings and bendings
were employed as the valence coordinates. They are
listed in Table 1.

Table 2 shows the calculated frequencies and
the PED terms #;; of (3) multiplied by 100. Con-
tributions from symmetrically equivalent coordi-
nates are added in accord with their multiplicity
(cf. Table 1). The condition (12) or

ZX“‘ = 100; X“C = 100 -’fik

2

(13)

is fulfilled in the present case.

It is interesting to observe the great shifts of
PED terms from one molecule to the other; in
many cases the whole pattern of dominating terms
is altered. These effects are entirely due to the large
mass shifts, in addition to smaller shifts in struc-
tural parameters [8, 9]. The present results show
many similarities with those of the computations
[5, 8, 9] based on the independent symmetry co-
ordinates designated Sy [5] (where the o and 6 co-
ordinates are omitted). The computations confirm
many of the empirical descriptions of normal modes
in the experimental assignments of P4S3 [7, 8],
P4Ses, AsqS3 and AssSes [7]. Thus, for instance,
the »1(4;) frequency is assigned to the s, s, t and
s types, respectively, through this series of mole-
cules. For As;S3 the agreement is excellent through-
out, but otherwise there are several controversies.

Table 1. The
employed valence
coordinates.

Definition referred
to the PaS:;(Pb);;
molecule (P4S3)

Multi- Sym-
plicity bol

Py-S stretching
Pyp-S stretching
Py-Py, stretching
PyPy,S bending
P,SPy, bending
SP,S bending
PypPyPy, bending
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Table 2. Calculated frequencies (in cm~1) and PED terms (Xl-k =1002;) for five molecules. Dominating terms are marked
with asterisks. In the one-dimensional block for »5(42) one has 100y throughout.

Species 4 Species £
1 2 3 4 6 7 8 9 10

P4S3 485 415 329 276 465 422 372 263 175

r 0.83 39.31 * 36.80 9.45 37.34 * 11.25 33.64 * 3.38 6.40
t 18.08 19.62 53.30* 7.79 28.14 28.06 * 13.39 13.01 5.42
S 57.83 * 15.84 8.34 11.07 0.11 28.58 * 24.30 8.11 0.18
b4 6.06 7.27 0.09 9.26 27.60 4.63 12.16 37.77% 27.92
o 12.92 1.17 0.35 38.97 * 3.17 11.88 0.46 17.06 0.54
B 4.29 16.79 112 23.46 3.58 0.01 2.79 16.25 59.43 *
4] — — — — 0.06 15.59 13.25 4.42 0.10
P4Ses 470 356 297 187 415 402 353 201 117

r 0.43 45.08 * 3.78 37.30 * 6.89 10.62 64.96 * 0.54 9.17

t 8.19 4.17 85.92 * 0.13 44 .63 * 0.11 6.70 33.08 * 3.69
s 75.65* 6.48 2.76 8.35 5.47 44.15* 6.11 5.29 0.33
v 6.23 2.01 2.36 11.40 38.57 11.57 7.87 28.23 23.76
o 8.38 10.79 4.21 30.75 0.23 8.46 1.44 21.85 0.00
B 1.11 31.46 0.98 12.07 1.24 1.00 9.60 8.12 62.86 *
) — - - — 2.98 24.08 3.33 2.89 0.18
AssS3 375 341 263 199 382 332 247 199 163

i 13.09 48.88 * 18.91 5.72 53.30 * 10.69 10.74 12.20 4.78

t 55.22* 0.13 10.43 33.29 * 22.22 55.78 * 5.04 0.06 4.62

8 4.73 17.35 67.08 * 3.83 0.07 3.87 48.17* 9.08 0.08
Y 0.05 20.37 0.08 2.51 18.20 291 9.03 44 .59 * 35.46
o 10.67 13.24 0.98 27.44 3.85 22.45 0.04 6.31 1.90
B 16.23 0.02 2.52 27.20 2.32 2.19 0.72 22.81 53.11*
) — — — — 0.04 2.11 26.27 4.95 0.04
AsgSes 312 258 211 176 298 271 238 168 110

r 1.28 41.48* 33.11 11.00 34.23 * 12.43 35.77%* 3.61 5.83
t 18.57 16.23 57.19* 6.73 30.93 24.48 13.01 14.09 5.36
s 57.07 * 16.95 8.17 10.99 0.02 29.91 * 23.33 7.89 0.19
y 5.56 7.07 0.01 9.61 28.77 4.53 11.87 36.60 * 27.33
o 12.82 1.09 0.50 38.60 * 2.82 12.31. 0.64 17.17 0.46
B 4.70 17.18 1.02 23.07 3.22 0.03 2.66 15.33 60.72 *
o) — — — — 0.01 16.31 12,73 4.30 0.10
PAs3S3 418 343 270 246 438 338 260 216 167

r 32.91%  3867*  12.04 2.51 75.26 * 2.75 4.37 0.44 9.25
t 25.01 8.34 40.29*  25.59* 4.44 75.15% 3.71 0.07 4.08

s 1.20 20.18 44.69 * 27.03 * 0.06 2.07 34.90 * 24.26 0.00
¥ 0.14 18.15 1.72 2.76 7.74 2.89 27.21 29.04 * 42.26 *
o 15.25 14.26 1.24 23.52 5.92 14.50 3.53 7.19 3.00
B 25.49 0.40 0.02 18.59 6.55 1.53 7.24 25.76 41.40*
4] — — — — 0.03 1.13 19.04 13.23 0.00

In particular the computations suggest the empirical
descriptions of »2(41) and v3(41) to be interchanged
for P4S3, PsSez and AssSes. This is also the case
for vg (E) and vg (E) in P4Ses. In species E the results
of the computations (Table 2) display a somewhat
confusing pattern. In general it is concluded that
the normal modes are highly mixed; a description

of them in terms of simple motions is hardly pos-
sible.
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