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O n the ground of a generalized equation for rotat ional diffusion which takes the inertial effect 
into account, an expression for the steady-state fluorescence depolarization for prolate molecules 
w i t h the emission transition moment parallel to t h e long axis, has been derived. The present 
theoretical results differ f rom those of previous studies and are in good agreement w i t h the ex-
perimental results. 

1. Introduction 

The effect of the Brownian rotational motion 
upon the fluorescence anisotropy (FA)1, r, of mol-
ecules has been so far an object of numerous ex-
perimental and theoretical investigations [1,2]. For 
asymmetric molecules, the generalized Perrin theo-
ries predict extremely complex relations between 
parameters which are characteristic of the lumines-
cent molecule itself (limiting fluorescence anisotropy, 
ro, molecular volume of a molecule together with 
its solvent shell, V, mean fluorescence lifetime, r) 
and the environment (solvent viscosity and tem-
perature, 7] and T, respectively) in which the mol-
ecule is located [3—9]. It was found, however, that 
the theories of fluorescence depolarization based on 
the approximation of rotational diffusion do not 
satisfactorily describe the experimental results ob-
served, in particular for prolate ellipsoid-of-revolu-
tion-shaped molecules for which the emission tran-
sition moment is parallel to the long molecular axis 
[10—12]. In such case, the complex relation men-
tioned above is simplified yielding the Perrin equa-

1 The F A is determined by 

r ~ 2 J 2 ' 

where J = J|| + 2J_L is the total fluorescence intensity; J\\ 
and «/x designate the components of the fluorescence 
intensity parallel and perpendicular to the direction of the 
electric vector of the exciting l ight. 
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tion for a spherical rotator (ro/r = 1 -f r/0, where 
0= Vrj/kT) [13], which does not reflect properly 
1/r versus Tjrj in the whole viscosity range. 

In order to explain this discrepancy (i.e. the non-
linear dependence of 1/r upon T/r) for a prolate 
molecule the emission transition moment of which 
lies along its longer axis), the libration motions were 
assumed to play the predominant role in thermal 
motions of prolate molecules [10]. Final expression 
obtained with such assumption describes properly 
the behaviour of 1/r as a function of Tjrj, neverthe-
less, the limitations assumed which were set upon 
the rotational motions of molecules in solutions 
raises certain doubts. The assumption as to the limited 
rotational motion is surely proper when the lumines-
cent molecules are in anisotropic environment (e.g. 
in biological membranes, liquid crystals, etc.) 
[14, 15]. 

We shall show hereafter that the mentioned dis-
crepancies between the experimental results and the 
existing theoretical studies result from the fact that 
the inertial effects have not been taken into account 
when considering rotational diffusion of molecules 
in liquid solutions. These effects turn out to influence 
substantially the decay of the fluorescence aniso-
tropy for short lifetimes of a molecule after the 
excitation. 

2. Theory 

Let us consider in detail the rotational motion of 
ellipsoid of revolution (Fig. 1), axes 1, 2 und 3 of 
which are the main ones of a friction tensor (£**), 
being simultaneously those of the inertia tensor 
(/tl). We assume moreover that £i = £2 = £ and 
Ii = 12 = I, and that the direction of the emission 
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Fig. 1. Geometry of the system. 

transition moment is parallel to the long axis 3 of 
the molecule. Electric vector E of the exciting light 
is directed along the z-axis. 

We concern ourselves with the time changes in 
the direction of axis 3 determined by angles # and 
cp. The anisotropy of the excited molecules at a 
moment t is described by the probability distribu-
tion (p). The change of pt{cp) in time is 
given by the following generalized equation for 
rotational diffusion (Appendix): 

dt* 
jG{s)AS}pt-s{^,(p)ds, (l) 

where A a is the angular part of the Laplacian opera-
tor, and 

G (S) = <C0i (0) CUl (S)> = <ft>2 (0) <02 (s)> (2) 

is the autocorrelation function of the angular veloc-
ity with respect to axis 1 or 2. <*••> denotes the 
averaging process over the assembly of molecules. 

Equation (1) describes the effect of "memory" 
related to the molecular inertia which is taken into 
account, i. e., the change of pt (#, 9?) in time depends 
upon pt also for t'<. t. In order to calculate the 
autocorrelation function G (s) = <a> (0) co (s)} we shall 
apply the Langevin equation 

d (o{t) 
dt 

-£co(t) + M(t), ( 3 ) 

where: 7 the effective moment of inertia with re-
spect to axes perpendicular to the long axis 3 of 
a molecule, | the rotational friction coefficient, 

M (t) the respective component of a stochastic force 
moment, co = coi or C02 • The mean value of M(t) 
over the assembly of molecules is assumed to satisfy 
the condition (/)> = 0. The solution to (3) is 

co(*) = exp { - ( £ / / ) * } ( 4 ) 

co (0) + J exp { - (I / / ) t'} M (t') dt' 
0 

Hence, we obtain 

<co (0) co (*)> = <o>2 (0)> exp { - (|/7) t}. (5) 

From the rule of the equipartition of energy 

^I(coH0)} = ^kT. (6) 
On the basis of (2), (5) and (6) we obtain the follow-
ing expression for the autocorrelation function 

kT 
G(s) = — exp { - ( £ / / ) * } , ( 7 ) 

where the decay time of this function is to = 7/£. 
When, e.g., 7 - > 0 , then 

0(s) ->DÖ{s), (8) 

where D = kT/f, and d(s) is the delta-function. 
Hence, we can conclude that for 7 -> 0, the gen-
eralized diffusion equation (1) becomes the ordinary 
diffusion equation 

8pt{&, cp) 
61 = DAoPt(&, <p), 

where D is the rotational diffusion coefficient inde-
pendent of time. 

Instantaneous values of the fluorescence aniso-
tropy (FA) of a solution on an impulse excitation at 
t = 0 is described by the following formula 

r(t) = jdÜpt (0, <p) [f cos2 $ - 1 ] , (9) 
where dQ = sin^d^dqp. 

On differentiating equation (9) and employing 
equation (1) we obtain 

= JdsG(s) J d Q ( A 0 p i s ( # , <p)) 

• [f cos2 0 - 1]. (10) 

To find an equation describing function r(t) we 
shall take advantage of the following facts: 

a) the Laplacian operator A a is self-adjoint 

fdQ(Aßp)/ = jdüp(Aüf), 
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b) spherical functions Yim (#, 9?) are the eigenfunc-
tions of the Laplacian operator A q , 

AaYlm=-l(l+l)Ylm, 1 = 0 , 1 , 2 , . . . , 
ra = — ? , . . . , + I. 

c) § cos2 # — \ = CY20, C — constant. 

Applying properties a), b), and c) to (10) we obtain 

dr(f) 
d t 

-6jG{s)r(t-s)ds. (11) 

Function r(t) possesses the following qualitative 
properties which meet (11): 

dr(f) 
1) d t 

= 0, (12) 
< = 0 

2) If the decay time, to = //£, of the autocorrelation 
function G(s) is markedly shorter than tha t of 
function r(t), and t>to, then the following ap-
proximated equation may be substituted for (11): 

dr(f) 
d t 

= - 6Drlt), ( 1 3 ) 

where 

D = J(?(s)ds. 
0 

(13) implies that for the properties mentioned 
above, function r(t) is proportional to e~6Dt. Func-
tion r(t) is shown schematically in Figure 2. 

For continuous excitation of an isotropic fluores-
cent solution, the mean FA can be calculated from 
the expression 

1 00 

<r> = — Jexp{-* / r} r (* )d* , 
T 0 

( 1 4 ) 

where r is the mean lifetime of an excited molecule. 
The knowledge of the solution of (11) is not in-

dispensable to calculate <V> according to formula 

rtt) 

rtO) 

(14). I t is sufficient to take advantage of the fact 
that <r) is a value of the Laplace transform of 
function r(t) at a point A = l / r . Applying the La-
place transform to both sides of (11) in which func-
tion G(s) is given by (7), after simple transforma-
tions we obtain 

1+Ar/6 
(15) r = r0 1 + (1 + A)rld 

where 

A = I/QkT T2, 

d = £l&kT= VrjIkT. 

(16) 

( 1 7 ) 

As is known from experiments [10—12,16], ^l2 1, 
so that (15) is identical with that obtained in paper 
[11], which properly describes the experimental 
values of <V> as function of r/0. 

Figure 3 shows a family of curves calculated from 
(15) for different parameters A. When . 4 = 0 , or 
when the solvent viscosity, 1], increases,i.e., T/rj-^O, 
the well-known Perrin equation is obtained which 
yields the linear dependence of 1/r upon T/rj. Table 1 
summarizes the values of ro and Feff, which were 
determined basing on the linear dependence of 1/r 
upon Tjrj for high viscosities, of several compounds 
examined in our previous papers [10—12, 16, 17]. 
Parameters A were obtained for the above-men-
tioned compounds by comparing the experimental 

Fig. 2. Qualitative properties of function r(t) given by (11). 

Fig. 3. Theoretical curves of F A as a function of r / # 
[Eq . (15)] for different values A. Experimental values: 
© for diphenylenestilbene and O for 4-amino-4'-nitro-
stilbene f rom [10, 11]. 
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Table 1. 

Compound r0 Vett X 1030 r A Ietf x 1041 

(m 3 ) (ns) (kg m 2 ) 

p- terphenyl 0.3450 206 1.15 0.007 22.6 
diphenylenestilbene ( D P S ) 0.3030 823 1.1 0.12 390 
2,2'-p-phenylenebis(5-phenylooxazole); (POPOP) 0.3125 963 1.35 0.14 625 
p-bis[2-(5-a-naphthyloxazolyl) ] -benzene; (ot-NOPON) 0.3067 1001 1.64 0.11 725 
4-amino-4'-nitrosti lbene ( A N S ) 0.3125 1533 2.3 0.28 3635 

results (1/r versus Tjrj) for r0 and Feff determined 
previously, with theoretical values obtained accord-
ing to formula (15) within the whole viscosity range 
examined. The knowledge of A and r enables the 
determination of the moment of inertia, I , of the 
molecules under study. The value of I obtained 
with trans-stilbene is 4.3 x 10 - 4 1 kg • m2 which is 
consistent with a value of 3 X 10~41 kg • m2 , as 
estimated by Sarshevskii et al. [18]. 

I t is worthy of mention that the effect of molec-
ular inertia upon the FA <V> was recently con-
sidered by Sarshevskii and coworkers [18], who made 
use of the results contained in a paper by Steele [19]. 
The modified diffusion equation given by Steele [19] 
was derived previously in a monograph [20] basing 
on less precise theoretical considerations and there-
fore it describes wTorse the process of rotational dif-
fusion of molecules. 

Appendix 

Derivation of a motion rule for a system with n 
degrees of freedom (e.g., a Brownian particle), inter-
acting with a thermal bath with temperature T. 

1. Let us consider an open system described by 
generalized coordinates x(x±, ..., xn), and momenta 
p = (p

1
,..., p

n
), which interacts with the environ-

ment characterized by coordinates \ (£ i , . . . , and 
momenta n = (m, ..., tin) (dynamical variables), 
with N very high. The state of the whole system 
is described by the probability distribution ft (x, p ; 

it) over a phase space, meeting the Liouville 
equation 

6ftlU={H\ft}, (I) 

where { } denotes the Poisson bracket with respect 
to all canonical variables, and HA is the total Hamil-
tonian 

k + XV&x), (II) 

where the first term corresponds to the kinetic 
energy of an open system, the second one describes 
the total energy of a reservoir, and the last one — 
the interaction between the open system and the 
reservoir. 

I t is assumed tha t the system is invariable with 
respect to a translation in space (x, {•). 

2. The first stage consists in the elimination of 
the variables of reservoir (I-, 7t) assuming a thermal 
reservoir (thermal bath) with temperature T. This 
can be achieved applying the so-called projection 
technique [21]. We obtain an equation for 

<pt{*,p) = J d ? d n - f t { x , p ; it): 
8 <pt{x,p) pk d 

+ J l U ^ - s ( * , . p ) d s , ( I I I ) 
o 

where Ls is a certain operator acting upon cpt-s and 
depending on time s. 

3. Assuming a weak interaction with the reser-
voir (a standard assumption) we can substitute the 
Markov equation for (III) 

8cpt ^ Pk 8 

where 
oo 

L = Jmds. o 
The form of operator L is not essential for further 
considerations, nevertheless, the so-called Fokker-
Planck equation [22] can be in general substituted 
to a good approximation for (IV). 

4. Momenta p = {pi, ..., pn) are eliminated as-
suming that the momentum distribution at the 
initial moment is given by 

eT(P) = 5 > k T — ) -
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On employing the projection method once more, 
we obtain a generalized diffusion equation for a 
translational motion with the probability distribu-
tion pt(x) = Jdpq> t ( x ,p ) \ 

dpt(x) ^ , « 82 

" 1 ^ - 2 / ® * « a ^ » - « * . <v> 
where2 

Pk 
Gk («) = <yk (0) vk (s)> and vk = • 

2 W h e n Gk(s) decays to zero very rapidly (e.g., when 
JWjfc—> 0), the M a r k o v approximat ion can be also employed, 
yielding a common diffusion equation 

Bpt v n S2 

where 

Dk=jGk(s)ds. o 

[1] A . M . Sarshevskii and A . N . Sevcenko, Anisotropja 
Pogloscenja i Ispuskanja Sveta Molekulami (in Rus-
sian) Isdatelstvo B G U , Minsk 1971. 

[2] A . Kawski , Polar izat ion of Photoluminescence and its 
Appl icat ion to Biological Study, in "Problems of 
Contemporary Biophysics", ed. Polish Scientific Publ . 
Company P W N , Warszawa-Lodz, 3, 131 (1978) (there 
m a y be found earlier references). 

[3] F . Perrin, J . Phys. R a d i u m 5, 497 (1934). 
[4] F . Perrin, Acta Phys. Polon. 5, 335 (1936). 
[5] R . Memming, Z . Physik. Chem. N . F . 28, 168 (1961). 
[6] J . R . Lombard i and G. A . Dafforn, J . Chem. Phys. 44, 

3882 (1966). 
[7] T . Tao, Biopolymers 8, 609 (1969). 
[8] G. Weber , J . Chem. Phys. 55, 2399 (1971). 
[9] T . J . Chuang and K . B . Eisenthal, J . Chem. Phys. 57, 

5094 (1972). 
[10] A . Kawski , J . Kaminsk i , and J . Kukielski , Z . Na tur -

forsch. 34a, 702 (1979). 
[11] A . Kawski , J . Kukie lski , and J . Kaminsk i , Z . Na tur -

forsch. 34a, 1066 (1979). 

For rotational Brownian motions of molecules we 
assumed that axis 3 (see the theory) is the axis of 
symmetry of the friction tensor and the moment of 
inertia, and we are interested only in the position 
of this axis in space. Other degrees of freedom are 
included in the thermal reservoir. For this case, 
(V) can be easily applied to a particular case of 
rotational diffusion (with the assumptions under 
discussion) yielding 

M p v L = jG(s) A apt-s (#, <p) ds, (VI) 
ct o 

where 
1 8 / 8 \ 1 82 

A q = s i n0 ~60 \ S m ^ 6 0 / + sin2 0 I ty 2 " ' 
0(8) = <0>i(0)toi(«)> = <a>2(0)ft)2(s)>, 

and coi and w2 are the components of angular ve-
locity with respect to axes 1 and 2, which are per-
pendicular to axis 3. 

12] A . Kawski , Z . Kojro, and M . Al icka, Z . Naturforsch. 
35a, 1197 (1980). 

13] F . Perrin, J . Phys. R a d i u m 7, 390 (1926) ; Ann . Phys. 
Paris 12, 169 (1929). 

14] S. K a w a t o , K . Kinosita, and A. Ikegami , Biophys. 20, 
289 (1977). 

15] A . Kawski , Conference Digest (3rd Conference on 
Luminescence in Szeged, Hungary) 1, 167 (1979). 

16] A . Kawski , J . Kukielski , P. Baluk, and M . Len-
czewska, Z . Naturforsch. 35a, 466 (1980). 

17] M . Al icka, R . K . Bauer, and A . K a w s k i , Z . N a t u r -
forsch. 35 a, 896 (1980). 

18] W . A. Gajsenok, 1.1. Solnerevic, and A . M . Sarshevskii, 
Opt. Spektr. 49, 714 (1980). 

19] W . A. Steele, J. Chem. Phys. 38, 2404 (1963). 
20] R . Kubo, Lectures in Theoretical Physics, Vo l . I , 

Intersc. Publ . , New Y o r k 1959. 
21] R . Zwanzig, Physica 30, 1109 (1964). 
22] A . Isihara, Statisticeskaja F izyka, M I R , Moskva 1973. 


