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Toroidal magnetic fields B= By + ¢Bj + ..., where the unperturbed field By has closed lines
of force, are considered. Single-valued formal solutions ¥ = Fo -+ ¢ F1 + ... of the equation B - VF

=0 are explicitly determined.

If a magnetic field B only slightly deviates from
a fundamental field By without rotational trans-
form, then the field may be written in the form

B = By + B,

where Bj is everywhere small compared with By.
The asymptotic magnetic surfaces [1] are single-
valued formal solutions F of the equation

B-VF =0. (1)
If one writes
F=F0+8F1—}—£2F2+..‘, (2)

then the surfaces Fy= const are not uniquely deter-
mined by the equation

B-VFy=0

but follow from solubility conditions in higher
order. It has been shown in [2] that for analytical
fields the asymptotic surfaces (2) uniquely exist in
all orders. In this paper the F’s are explicitly com-
puted.

We use the notation of [3] rather than that of [2]
and express the solenoidal property by

Bo'—:V?/)XVX
and
B; =Vu X Vy — Vo X Vy.

Here, v, yx are single-valued functions of the posi-
tion vector x, while u, v are, in general, multi-
valued. The functions y(x), x(x) are well suited to
serve as coordinates. In addition, we choose a third
function ¢ (x) which increases monotonically along
the field lines By with total increase 1. Further-
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more, let the functional determinant
D= (Vy x Vy)- Vo

be everywhere positive. In these coordinates Eq. (1)
reads
F>O' + U)GF9W + u,gF,x
_(u,x+v,w)F,a=0, (3)
where comma and subscript denote partial deriv-

atives.
Let the increase of the functions u, v be

oo+1 co+1
u*= [ uodo, v*= | v,0do,
oo oo

respectively. Because of

( f B-de),,,:v*,

= const

( ) B-dzf),,,,:u*,

z=const

these functions represent fluxes across the unper-
turbed field lines. The left-hand sides of the equa-
tions

D-1B;-Vy =v,q,

D'—lBl . Vx = U,q,

D_1B1 Vo = — U,y — Vyp
are single-valued, i.e. periodic in ¢. Thus, these
equations imply

ou* ov*

060 Oao

=u¥, +vf,=0. (4)

Equations (4) are satisfied if we put
v*¥=U,y, u*= —U,y, (5)

so that the increase of the functions u, v is solely
described by the function U (yp, ¥).
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Assuming series of the form

u=cu + us + ...,
v =¢gv1 + &2vg + ...

(6)
and for the increases
U=¢eU;+€2Uz2+ ..., (7)

the expansions (2), (6) are substituted in Equation
(3). This yields in lowest order

FO:U =0
with the solution
Fo=G(y, %)

and in higher order

fn,o :kz [uk,y + V&, v) fn-k, 0
=

— k,0(fa—k,v + In—k,v)
— Uk, o (fn—k,x + In-k,2)],

n=1,2,3,... (8)
with
Fop=tfa(p, 2,0)+ gn(p, %),
go=0G, fo=0.
go+1

For n=1 we have
flLo= —1,6Gp —u1,6@, 4. 9)

Here, two cases are distinguished: a) U; %0, b) U;
=0.
a) In this case the solubility condition for Eq. (9)
is
0 ==l Ul,xGaw + Ulwa,x,

which can be satisfied by putting

Gy, x) =G(U,y). (10)
Equation (9) can be integrated in the form
fl':—‘le,w‘-uIG,z, (11)

which, with the choice (10), is single-valued.
In order to determine g; we go on to consider
order ¢2 of Eq. (3),i.e. n=2 in Eq. (8)
f2,0 = (w1,x + v1,9) f1,6 — V1,6 (f1,9 + 91,4)
—u1,0(f1,x + 91,2) — v2,6G,y

—ug,6G,y, (12)

implying that

0= I dO'['Ul.a(’Ul G,ww - ul,xG,w + ul,wG,x -t uIG:wx)

+ u1,0(v1, 3G p — V1,9 Gy + 016G, py + UGy gy)] — V1%91, 9 — U1* g1,y — V2* Gy — u2* G,y

d@

:dUl(

dG@
4+ (U1, 0y — U1,40y) g1 — = (U1, 0y — U1,20y) Uz,

dU,

where

U =u —u*o, U =v1—vi¥co

are single-valued and Egs. (5), (7), (10) have been
used. The form Eq. (13) of the solubility condition,
which is tedious but straightforward to derive, has
the advantage that it can readily be integrated.

gl?—m[Uz—fﬂl,ﬂhdU (14)

+ Ul,xfa1d6+ Ul'wj.ﬁlda].

The formulae (10), (11), (14) are the main analytical
results for case (a).

(b) Since, for U; =0, u;, v; are single-valued,
there is no solubility condition in first order and

Ul,,,,éx— Ul,,,aw) [j'al,gﬁlda— Ul,xjdlda— Ul’wfﬁldo']

(13)

thus ¢ in Eq. (11) is a free function which is deter-
mined by the solubility condition for Eq. (12):
oo+1

0= [ do[(v1/1,0), v+ (1f1,0), 5]

— 'Uz*G,w —. uz*G,x

= (G, 0y — G, 00)H, (15)
where
H(y,z) = — Uz + Jus, 601 do. (16)
Equation (15) is satisfied by
Gy, x) = G(H). (17)

For f; we obtain
fZ = = ul,xvlayw + Ulul,wG,x + ‘%ulzG,xz
+‘%012G’ww+ulvla,w1
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+ (h,x_UZ)Gyw— (h,w‘:— ug) G,y
—V101,p — U191,y

where

o
h = ful,q’ v1do’.
Go

be considered, i.e. n=3 in Eq. (8):
f3,0 = (u1,x + v1,9) f2,6 + (u2,x + v2,9) f1,0
—v1,6(f2, 9 + 92,v)
—v2,6(f1,9 + 91,9) — v3,6G,p
—u1,o(fe,x + 92,%)

—u2,6(f1,2 + 91,2) — u3,0G,x.  (18)
For determination of ¢; order &3 of Eq. (3) has to Equation (18) yields the solubility condition
got+1
0= f do[(v1f2,6),w + (U1fe,0),x + (u2,x + v2,9) f1,6 — V2,0 f1,0 — %2,0/1,%]
—v2¥g1,p — u*g1,y — V3¥ G,y — ug* @,y
d@
= — (H,p 0y — H,,0y) g1 + aH (H,y 0y — H,30y)(b,p — a,y)
d@ d@
+ E(H,wax — H,,dy) fdff(muz,a — U1v2,0) — W(H,wﬁz —H,;0y) Us, (19)
where with
a=1}[dov,sui?, b=1}[dou,svi2. (20) r2
Ue = — —POn,z,
Equation (19) is integrated with
r2
d@ Ug = Ca,z,
g1 :ﬁ[b:’w—aal_ l73
+ [do(vius, 0 — u1v2,0)], (21) ve=—Sn.r,
which completes the first-order result for case (b). r
The solution for case (b) is thus represented by the vg = — —Cy,r,

formulae (16), (17), (11), (20), and (21).

Finally, we give an example. As zeroth-order
field we choose the toroidal vacuum field, given by
1/r, where r, @, z are cylindrical coordinates, and
represent this field by

w=—Inr, yx=z.
The third coordinate is given by
o=¢2n.

If a perturbing vacuum field B; with » periods
around the torus (n ==0) is given by its scalar poten-
tial @,, satisfying Laplace’s equation,

Dp=Cpcosng -+ Sysinng,
we find for the representation in terms of u, v

Uln == Ue COS NP + UsgSINN @,

Vip = Ve COSNQ + vgsinng,

where use has been made of Laplace’s equation for
Cyn, Sn. In the case n=0, the perturbing potential
C is related to u and v by

u].:TzOrz(pa vlz'—'rC:f(P’
so that
wm* =2nr2C,,, n¥=—2nrC,,,

and

U= — 2nrf0,,-dz’
0

+ (277" C,.(r',0)dr . (22)
To

Thus, v and v can be explicitly determined if an

arbitrary field is given by its Fourier-analyzed

potential; the expansions eqs. (6), (7) are then

trivial and the results Eqs. (10), (11), (14), (16),

(17), (20) are explicit.
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The most interesting case for stellarator applica-
tions is a first-order perturbing field with vanishing
mean value with respect to ¢ and a second-order
perturbation independent of . If we consider a
single n, the explicit results are

r3
H(r,z) = ‘n“ﬂ(on,zsn,r— Sn,zon,r) —Us,

where Uy is given by Eq. (22), and with G = H one
has
fi=vinrH,y —uwinH,;, g1 =0.

To summarize it is concluded that, with » and »
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