
E x p lic it A s y m p to tic  M ag n etic  Surfaces

Dietrich Lortz and Jürgen Nührenberg
Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Garching

Z. Naturforsch. 36a, 317-320 (1981); received February 12, 1981

Toroidal magnetic fields B = Bo+ ..., where the unperturbed field Bo has closed lines
of force, are considered. Single-valued formal solutions F = Fo + sFi + ... of the equation B ■ VF 
=  0 are explicitly determined.

If a magnetic field B only slightly deviates from 
a fundamental field Bo without rotational trans­
form, then the field may be written in the form

where Bi is everywhere small compared with Bq. 
The asymptotic magnetic surfaces [1] are single- 
valued formal solutions F  of the equation

B • VF =  0 (1)

If one writes
F  =  F 0 +  eF 1 +  e*F* +  . . . t (2)

then the surfaces Fq =  const are not uniquely deter­
mined by the equation

B • VFo =  0

but follow from solubility conditions in higher 
order. I t  has been shown in [2] that for analytical 
fields the asymptotic surfaces (2) uniquely exist in 
all orders. In this paper the F 's are explicitly com­
puted.

We use the notation of [3] rather than that of [2] 
and express the solenoidal property by

Bo =  V^ x V*

and
ß 1 =  V« X V y - V d  x V ;̂.

Here, ip, % are single-valued functions of the posi­
tion vector x, while u, v are, in general, multi­
valued. The functions ip(x), %(x) are well suited to 
serve as coordinates. In addition, we choose a third 
function a(x) which increases monotonically along 
the field lines Bq with total increase 1. Further-
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more, let the functional determinant 

D =  (Vy> X Vx) • V(7

be everywhere positive. In these coordinates Eq. (1) 
reads

F ,a +  v,aF ,v +  u,aF ,x 
— (u,x +  vtV)F,a =  0, (3)

where comma and subscript denote partial deriv­
atives.

Let the increase of the functions m, d be
CT0 + 1 <70 + 1

u* =  J u,ad o , v* =  J v,ada,
ao ao

respectively. Because of

f J B .d * f ) ,x =  v*,
\y = const /
/ J B d*f),w =  u \
\z = const /

these functions represent fluxes across the unper­
turbed field lines. The left-hand sides of the equa­
tions

D -1 Bi • Vy =  v,a , 
D~iB1-Vx =  u,a , 
D -1 Bi • Va =  —u,x — v,y,

are single-valued, i.e. periodic in a. Thus, these 
equations imply

8 u* dvi
=  u*x +  v*v =  0.

8(T0 8cr0 

Equations (4) are satisfied if we put 
v* =  U,x, u* =  — U,v ,

(4)

(5)

so that the increase of the functions u, v is solely 
described by the function U (xp,
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(6)
U =  E U\ -j- £2«2 +  • • •» 
V — EVI +  £2 V2 -j- .. •

and for the increases
U =  eC7i +  e*U2 +

the expansions (2), (6) are substituted in Equation 
(3). This yields in lowest order

F 0,a =  0 

with the solution

Fo =  G(v,x)
and in higher order

n
fn, a =  2  tUk< * +  Vjc> v) fn-k, a k = 1

— V/c, a [fn-k, w +  Qn-k, v)
— U]c, a {fn-k, x +  9n-k, x)] >

n =  1 ,2 ,3 ,...

Assuming series of the form For n =  1 we have

h ,a  =  — vii(JG,v — u i,aG,x. (9)
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with
Fn =  fn{ip, X, a) +  gn{y>, x) > 
9o=  G, /0 =  0.

Here, two cases are distinguished: a) Ui $  0, b) U\ 
= 0.

(7) a) In this case the solubility condition for Eq. (9) 
is

0 =  -  UltXGtV-\- UltV>G,x,

which can be satisfied by putting

G(y>,X) =  G(U1). (10)

Equation (9) can be integrated in the form

f i = —viO,v — uiO,x, (11)

which, with the choice (10), is single-valued.
In order to determine g\ we go on to consider 

order e2 of Eq. (3), i.e. n — 2 in Eq. (8)

/2, a =  («1, x +  vi, v) h , o — vi,a{fi,v +  gi, v) 
— u ii0{fitX -f giiX) — V2,oG,v 
-U 2 ,0G,x, (12)

implying that

(8)

CT0 + 1
0 =  J da[vito{viG,y,y, — UliXG,y, +  Ulty,G,X +  UlG,y,X)

oo
+  ui,a(vitXOtV — V1,VG,X -f ViG,vx +  uxG,xx)] — Vi*gi,v — ux*g1>x — v2*G,V — u2* G,x 

(UitWdx — UifXdv) [Jü \,av\dor — UitX J Wido- — UiiVjv id a ] 

d G

d G 
d ü x

+  (U i,v dx — UifXdy,)gi — " ^ " ( ^ i . v 8* ~  U i,xdy,)U2, (13)

where
u\ =  u\ — u\* a , v\ =  v\ — v\* a

are single-valued and Eqs. (5), (7), (10) have been 
used. The form Eq. (13) of the solubility condition, 
which is tedious but straightforward to derive, has 
the advantage that it can readily be integrated.

9i
d G 

d lh
[U2 - jüx^vxdo (14)

+  UitX jü id o  +  U i^ jv x d a ] .

The formulae (10), (11), (14) are the main analytical 
results for case (a).

(b) Since, for U i= 0 , u \, v\ are single-valued, 
there is no solubility condition in first order and

thus G in Eq. (11) is a free function which is deter­
mined by the solubility condition for Eq. (12):

oo +1
0 =  J d<y[(i7i/itff), v +  (tti/i, <r), x]

oo
— V2 *G,V — U2*G,x 

=  (G,y,dx - G , xdv)H , (15)
where

ff(V>jt) =  - f f a  +  J~i.at>idcr. (16)

Equation (15) is satisfied by
G(rp,X) =  G{H). (17)

For f2 we obtain

h = — ui,xvi G>v +  vi ui ,v G>x +  \u ^ G ,xx 
+  it>i 2G ,Vy, +  Ul V\ G,wx
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, xp — (h, v +  u2) G, x be considered, i. e. n — 3 in Eq. (8):
— V\ gri, v — Ui rjiiX , /3, a — («1, x +  vl, v) /2, a +  (^2, x +  v2, v) fl, a

— Vito(f2, v +  92, v)where .. , n
— f 2, a (fl, y> +  9 l,v) — V3,ob,y,O

h =  Jwi>(T'v id a '. — u ita(f2,x +  92,x)
- u 2,a(fi,x +  gi,x) - u 3taG,x. (18)

For determination of g\ order e3 of Eq. (3) has to Equation (18) yields the solubility condition

<70 +1
0 =  J do[(vif2,o ),v+  (Ulf2,a),x +  (U2,X +  V2ty,)fl,a — V2,ofl,V> — u2tafhx]

<70
— v2*gi,p — u2*gltX — vz*G,v — u3*G,x

d G
=  -  (H,wdx -  H ,xdw)gi +  - ^ ( H , v,dx -  H ,xZw)(b,w -  a ,x)

d G c d G
+  (H,y,dx — H ,X8V) J do(viu2>a — uiv2,a) — (H>v,dx — H ,xdy,) Uz , (19)

where
a =  § Jdo-vi, ffwi2, b =  £ Jdawi.fft'i2. (20) 

Equation (19) is integrated with 

d G
9i =  [b,v — a ,x — u 3

+  j* der (»iM2,ff — «1172, (21)

which completes the first-order result for case (b). 
The solution for case (b) is thus represented by the 
formulae (16), (17), (11), (20), and (21).

Finally, we give an example. As zeroth-order 
field we choose the toroidal vacuum field, given by 
1 /r, where r, cp, z are cylindrical coordinates, and 
represent this field by

ip =-- — In r , y — z .

The third coordinate is given by

a =  cp\2n.

If a perturbing vacuum field 2?i with n periods 
around the torus (n =)=0) is given by its scalar poten­
tial &n , satisfying Laplace's equation,

&n =  Cn cos n (p +  Sn sin n cp, 

we find for the representation in terms of u, v 

U\n =  uc cos ncp us sin ncp, 
v\n =  vc cos n cp -J- vs sin n cp,

with
r2

uc — — Sn, z > n
r2

U8 — Gn z , n
r

vc — Sn r > n
r

t's — — Cn r , n

where use has been made of Laplace's equation for 
Cn , Sn . In the case n =  0, the perturbing potential 
C is related to u and v by

ui =  r2C,z<p, v i = —rC ,r <p,

so that
mi* =  2nr*C ,z, vi* =  - 2  n rC ,r ,

and

U =  — 2 n r  j  C,r dz' 
o

+  j2 n r 'C ,z(r',0 )d r'. (22)
ro

Thus, u and v can be explicitly determined if an 
arbitrary field is given by its Fourier-analyzed 
potential; the expansions eqs. (6), (7) are then 
trivial and the results Eqs. (10), (11), (14), (16), 
(17), (20) are explicit.
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The most interesting case for stellarator applica­
tions is a first-order perturbing field with vanishing 
mean value with respect to cp and a second-order 
perturbation independent of (p. If we consider a
single n, the explicit results are 

r3
H(r, z) =  —-7i{Cn, zSn<r— Sn, zCn,r) — Uz, n

where U2 is given by Eq. (22), and with G = H one 
has

/1 =  vinrH ,r — ulnH ,z, 0 1 = 0 . 

To summarize it is concluded that, with u and v
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