Correlation in the Ground State of He Atom
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It is possible to reproduce the entire results of Pekeris et al. of different atomic parameters for
the He atom by introducing (Il) type correlation in a self consistent variation perturbation
procedure using the Hartree-Fock (HF) wavefunction as the zero-order wavefunction.

1. Introduction

Electron correlation has been recognised as a
major problem in the theory of atomic structure
for a long time. The definition of the correlation
energy as

ECorr = EExact - EHF (1)

was first given by Loéwdin [1]. Since then several
different approaches to the correlation problem have
been studied [2—7]. These approaches, like the Hyl-
leraas type expansion using inter-particle coordi-
nates explicitly in the wavefunction [3], configura-
tion interaction (CI) [4], manybody perturbation
theory (MBPT) [5], multiconfiguration HF theory
(MCHF) [6], and numerical methods [7] are much
more laborious and computationally difficult than
the conventional HF calculation. The present meth-
od introduces correlation through a correction of
the unperturbed HF wavefunction. It thus differs
from the above methods and is similar to the many
electron theory (MET) [8]. This similarity is only
superficial because the procedure of arriving at the
correlation function is altogether different.
Wavefunctions obtained by the HF approxima-
tion enjoy immense popularity for their applica-
bility in many cases. In this approximation each
electron moves within the average field of the other
electrons. This effectively means more freedom for
the electrons to come near to each other than they
actually possess, because within that field the
motion is independent of the motions of the other
electrons. In a number of communications [9—10]
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the present authors developed a selfconsistent varia-
tion perturbation procedure to take into account
the correlation in the He atom starting with the
HF wavefunction as the zero-order wavefunction.
There the effect of correlation is introduced through
a correction of the unperturbed HF orbitals. In the
present paper we make ourearlier method more
compact and general by introducing the (ll) type
of correlation for different values of I in successive
stages.

2. Theory

For a two particle system the Hamiltonian in
a.u. may be written as
1 1 1
H=—}[V2+ V2 —Z|—+—|+—. (@
1 r2 712
The expansion for 1/r1s, where rys is the inter elec-
tronic distance, gives rise to a combination of spher-
ical harmonics L(l), where

m=+1
L) =2 (=" Y1) Y7 (). (3)
m=—1
L(l) projects the required angular symmetry out of
the doubly excited configuration for different values
of I and thus ensures the appropriate angular sym-
metry of the correction. ¥y and Eg are the ground
state HF determinantal wavefunction and the en-
ergy, respectively. In ¥, each of the spin-orbitals
is assumed to be the product of a function of co-
ordinates 9y and a function of « or f of spin. The
HF determinantal wavefunction for the He atom
may be written as

1 |ypo(1)ec(l) wo(2)x(2)

Po=Tar lwms) wese| @

0340-4811 / 81 / 0300-0272 $ 01.00/0. — Please order a reprint rather than making your own copy.



S. C. Saha et al. - Correlation in the Ground State of He Atom

On simplification ¥ reduces to

1
Vo= 57 2L D DFE — @B, ©)
where
2(1,2) = po(1) yo(2),

yo is represented by
po(k) =2 as (k) ri‘e™ = Y (k).
1

(6)

(M

Therefore

2(1,2) =3 Ayrirye #n—4m¥0(1) Y3(2), (8)
2V

where

Ay = ai(1)a;(2) 9)

are the coefficients of the zero-order correlated
wavefunction ¥y. The corrected wavefunction, con-
sidering the correlation due to the 1/r;2 term, may
be written as

@ = N[¥, + %], (10)

where N is the normalization constant. Keeping
terms up to second order N is given by

N =1—1¥|0¥) (11)
and 0¥ may be written as
Y => Y. (12)
=0
0¥y, 0¥, ... are the corrections due to correlation

of specific configurations to the zero-order correlat-
ed wavefunction ¥y for I =0, 1, ... of (3), respec-
tively. The orthogonality condition is

> (ol oWy =0, (13)
7

which reduces to
(Po|d¥o) =0 (14)

as in the present case the rest of the terms in (13)
vanishes through the angular symmetry. This or-
thogonality condition is inserted in to the energy
expression only in case /=0. Now the total energy
of the system, keeping terms up to second order,
is given by

E=(D|H|D>=[1 — (¥|3¥)] Eo
+ 2¢W,| H|3W) + (¥| H|3¥). (15)

273

The contribution of the effects of correlation to the
energy is given by

AE = — Eo(3%| 0¥ + 2(W,| H| W)

+ (QP|H|P). (16)

In the present method a systematic procedure for
computing an accurate approximation of @ is fol-
lowed. Starting with /=0 of (3), for each ! the
number of specific configurations in the sum in-
creases until the change in energy AE is sufficiently
small. Thus 4E may be denoted as

AE =3 AE, (17)
=0
where AE; is the improvement in the energy for
a given value of I. The value of [ is increased until
AE; is sufficiently small. At each stage a new con-
figuration is added to the approximation in an ac-
cumulative manner. AE; is given by

1
AE; = — [Eo + D AE; — AE) W | W)
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1
=0

+ (¥, l H I o). (18)

By taking proper care of the orthogonality condi-
tion (14) AE; is optimized variationally. For this
purpose, the analytic expressions chosen to repre-
sent 0¥ are of the form

P, = Z Cij(l) r;turgue—étn—éﬂzL(l')
Y
oe(1) B(2) — a(2) B(1)].

The C’s are variation parameters and differ for dif-
ferent values of I. The angular functions L (l") are
taken such that the symmetry required by (3) is
always satisfied. Appropriate values of n;; are pre-
assigned for different values of I. We use the same
values of &; as appearing in the zero-order correlated
wavefunction. The energy optimization condition
leads to a set of simultaneous linear equations in
the C’s which can be solved easily.

(19)

3. Results and Discussion

All the relevant results are condensed in Tables 1,
2, 3, and 4. The values of different quantities are
given along with the most accepted values for com-
parison. The results clearly bring out the effects of
correlation in successive stages. It may be con-
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Table 1. Parameters for the wavefunctions.
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Y [15] (4-Parameter) (8-Parameter)
6?’[:0 6,Ij[==l 6?’[:2 (5'1’1:0 6?’[:1 6¥I[=2
& n c & n n n & n n n
14532 0 2.90957 14532 0 1 2 14532 0 1 2
2.7709 0 1.65883 27709 0 1 2 27709 0 1 2
4.1000 0 0.18580 4.1000 0 1 2 4.1000 0 1 2
0.5948 0 0.00346 0.5948 0 1 2 0.5948 0 1 2
1.4532 1 2 3
27709 1 2 3
4.1000 1 2 3
0.5948 1 2 3

Table 2. Values of the matrix elements (1/M){p; - p2> and
{ry - rg) for the ground state of He atom.

Table 3. Values of the correlation energy in a.u. for the
ground state of He atom.

—{ry+re) in a.u.

Imax (1/M)<{p1-p2) in cm~!

4 pa- 8pa- Pekeris 4pa- 8pa- Dal-
rame- rame- [11] rame- rame- garno
ter ter ter ter [19]
0 0.0 0.0 0.0 0.0
1 5.1404 5.1026 0.0695 0.0693
2 4.9427 4.8990 0.0682 0.0680
4.785 0.0623

cluded that it is possible to attain the non-relativ-
istic limit of the total energy by introducing a
number of (/) type correlations and parameters
starting with the HF wavefunction.

It is evident from Table 2 that the values of
(1/M)<{p1- p2y (M denotes the nuclear mass) and
{ry- ry) are strongly dependent on the electron cor-
relation, as these values tend to become more ac-
curate [11] with higher values of [.

It is also very interesting to note that the values
of the length and velocity form of the oscillator
strength f for dipole transitions improve significant-

Table 4. Values of matrix element (r1" +-rs™> and oscillator
(with Imax =2).

=2
Method =t AE1=0 —AE’1=1 —AE1=2 - z AE[ -AE
=0
Present
4 Para 0.01700 0.02136 0.00248 0.04048
8 para 0.01739 0.02151 0.00261 0.04151
Weiss [16] 0.01728 0.02143 0.00219 0.04090
Froese
Fischer
[7, 14, 17] 0.01731 0.02140 0.00212 0.04083

Bunge [18]
Sabelli [6]
Exact [11]

0.01735 0.02148 0.00224 0.04107
0.01735
0.04205

ly from its initial values and attains a value rec-
ognised as the most accurate by Pekeris et al. [12].
It should be remembered that in calculating the
oscillator strength we have neglected the correlation
for the excited states [13].

The present method is quite general and can be
extended to systems with a large number of elec-
trons without much difficulty because of the sim-
plicity of the approach as well as the availability
of the unperturbed HF wavefunction.

strength for different dipole transitions for He atom in a.u.

{rim + ro®y Oscillator strength
11s—21p 113—31p 11s—41p
n=—2n=—1 =0 n=1 n=2 fu fv fu v fu fv
Present 4para 12.0170 3.3685  1.9999 1.8690 2.4222  0.2917 0.2624  0.0706 0.0699  0.0290 0.0288
8para 11.9990 3.3667 1.9999 1.8709 2.4257  0.2777 0.2629  0.0743 0.0703  0.0306 0.0289
Accurate [12] 0.2761 0.2761  0.0740 0.0734  0.0300 0.0299
HF 11.9810 3.3731 2.0000 1.8554 2.3701 0.2596 0.2390  0.0696 0.0644  0.0289 0.0265
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