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It is possible to reproduce the entire results of Pekeris et al. of different atomic parameters for 
the He atom by introducing (11) type correlation in a self consistent variation perturbation 
procedure using the Hartree-Fock (HF) wavefunction as the zero-order wavefunction.

C o rre la tio n  in  th e  G ro u n d  S ta te  o f  H e  A to m

1. Introduction

Electron correlation has been recognised as a 
major problem in the theory of atomic structure 
for a long time. The definition of the correlation 
energy as

Ecorr =  -^Exact — ^HF (1)

was first given by Löwdin [1]. Since then several 
different approaches to the correlation problem have 
been studied [2—7]. These approaches, like the Hyl- 
leraas type expansion using inter-particle coordi­
nates explicitly in the wavefunction [3], configura­
tion interaction (CI) [4], many body perturbation 
theory (MBPT) [5], multiconfiguration HF theory 
(MCHF) [6], and numerical methods [7] are much 
more laborious and computationally difficult than 
the conventional HF calculation. The present meth­
od introduces correlation through a correction of 
the unperturbed HF wavefunction. It thus differs 
from the above methods and is similar to the many 
electron theory (MET) [8]. This similarity is only 
superficial because the procedure of arriving at the 
correlation function is altogether different.

Wavefunctions obtained by the HF approxima­
tion enjoy immense popularity for their applica­
bility in many cases. In this approximation each 
electron moves within the average field of the other 
electrons. This effectively means more freedom for 
the electrons to come near to each other than they 
actually possess, because within that field the 
motion is independent of the motions of the other 
electrons. In a number of communications [9—10]
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the present authors developed a selfconsistent varia­
tion perturbation procedure to take into account 
the correlation in the He atom starting with the 
HF wavefunction as the zero-order wavefunction. 
There the effect of correlation is introduced through 
a correction of the unperturbed HF orbitals. In the 
present paper we make ourearlier method more 
compact and general by introducing the (11) type 
of correlation for different values of I in successive 
stages.

2. Theory

For a two particle system the Hamiltonian in 
a.u. may be written as

H =  _1[V!2 +  V22 ] - Z
1 1

— +  —n  r2 + r i2 (2)

The expansion for l/r i2, where r i2 is the inter elec­
tronic distance, gives rise to a combination of spher­
ical harmonics L(l), where

m— +1
L(i) =  2 ( ~ 1)mY™(1) Yilw (3)

m— —I
L(l) projects the required angular symmetry out of 
the doubly excited configuration for different values 
of I and thus ensures the appropriate angular sym­
metry of the correction. 'Fo and Eq are the ground 
state HF determinantal wavefunction and the en­
ergy, respectively. In Wq each of the spin-orbitals 
is assumed to be the product of a function of co­
ordinates \po and a function of a or ß of spin. The 
HF determinantal wavefunction for the He atom 
may be written as

1
|/2!

yo(i)«(i) 
V>o(l)0(l)

yo(2)a(2)
Vo (2)0(2) (4)
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On simplification Wq reduces to

^o  =  - p "  2) Ca(l)/5(2) -  <x(2)0(l)], (5)

where
Z(1,2) =  VH)(1)VO(2), (6)

ipo is represented by
W0(k )= 2 a i(k ) rnk'e -^ Y ° 0(k). (7)

i
Therefore

*(!, 2) =  2 F°(l) rg (2), (8)

where
=  ai(l)a ; (2) (9)

are the coefficients of the zero-order correlated 
wavefunction Wq. The corrected wavefunction, con­
sidering the correlation due to the l/ri2 term, may 
be written as

0  =  N[Wo +  W ], (10)

where N is the normalization constant. Keeping 
terms up to second order N is given by

N =  1 -  (11)

and ZW may be written as

d W = f  dWi. 
1 = 0

(12)

dWo, S f i , ... are the corrections due to correlation 
of specific configurations to the zero-order correlat­
ed wavefunction ^o for Z =  0, 1, ... of (3), respec­
tively. The orthogonahty condition is

2 < ^ o |e ^ >  =  o, (i3)
i

which reduces to
<¥oldVo> =  0 (14)

as in the present case the rest of the terms in (13) 
vanishes through the angular symmetry. This or­
thogonality condition is inserted in to the energy 
expression only in case 1 =  0. Now the total energy 
of the system, keeping terms up to second order, 
is given by

E =  ( 0 l E j 0 )  =  [ l - ( d W \ 0*F>] Eq
-f 2<¥/o| H18W) +  <0^| H \ 0¥/>. (15)

The contribution of the effects of correlation to the 
energy is given by

AE =  -  E0(W \ 8W} +  2<¥/o | H | 0V>
+  (8W \H \8xF y . (16)

In the present method a systematic procedure for 
computing an accurate approximation of & is fol­
lowed. Starting with 1 =  0 of (3), for each I the 
number of specific configurations in the sum in­
creases until the change in energy AE is sufficiently 
small. Thus AE may be denoted as

AE =  J^AEl , 
1 = 0

(17)

where AEi is the improvement in the energy for 
a given value of Z. The value of I is increased until 
AEi is sufficiently small. At each stage a new con­
figuration is added to the approximation in an ac­
cumulative manner. AEi is given by

AEt =  - [ E 0 +  Z A E i-A E { \ (W i | 
i=o

+  2<9 Wi +  W{)
1=0

+  <8!P,|J5T|6!P,>. (18)

By taking proper care of the orthogonality condi­
tion (14) AEi is optimized variationally. For this 
purpose, the analytic expressions chosen to repre­
sent are of the form

dWi =  2 t Cii(l)r?tf%*e-etri-*'n L(l')

[<x(l)/*(2)-  «(2)0(1)]. (19)

The C's are variation parameters and differ for dif­
ferent values of I. The angular functions L(l') are 
taken such that the symmetry required by (3) is 
always satisfied. Appropriate values of nu are pre- 
assigned for different values of I. We use the same 
values of as appearing in the zero-order correlated 
wavefunction. The energy optimization condition 
leads to a set of simultaneous linear equations in 
the C's which can be solved easily.

3. Results and Discussion

All the relevant results are condensed in Tables 1, 
2, 3, and 4. The values of different quantities are 
given along with the most accepted values for com­
parison. The results clearly bring out the effects of 
correlation in successive stages. I t  may be con-



274

Table 1. Parameters for the wavefunctions.
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V0 [15] (4-Parameter) (8-Parameter)

f n c |  n n n £ n n n

1.4532 0 2.90957 1.4532 0 1 2 1.4532 0 1 2
2.7709 0 1.65883 2.7709 0 1 2 2.7709 0 1 2
4.1000 0 0.18580 4.1000 0 1 2 4.1000 0 1 2
0.5948 0 0.00346 0.5948 0 1 2 0.5948 0 1 2

1.4532 1 2 3
2.7709 1 2 3
4.1000 1 2 3
0.5948 1 2 3

Table 2. Values of the matrix elements (1/M)(pi • po) and 
<ri • r2> for the ground state of He atom.

U x  (1/JTKpi -p2> in cm_1 -  <ri T2) in a.u.

4 pa­
rame­
ter

» pa­
rame­
ter

Pekeris 
[11]

4 pa­
rame­
ter

8 pa­
rame­
ter

Dal-
garno
[19]

0.0 0.0 
5.1404 5.1026 
4.9427 4.8990

0.0 0.0 
0.0695 0.0693 
0.0682 0.0680

4.785 0.0623

eluded that it is possible to attain the non-relativ- 
istic limit of the total energy by introducing a 
number of (11) type correlations and parameters 
starting -with the HF wavefunction.

It is evident from Table 2 that the values of 
(l/ilf)<pi • pz) (M denotes the nuclear mass) and 
<>i • r-2) are strongly dependent on the electron cor­
relation, as these values tend to become more ac­
curate [11] with higher values of I.

I t  is also very interesting to note that the values 
of the length and velocity form of the oscillator 
strength / for dipole transitions improve significant-

Table 3. Values of the correlation energy in a.u. for the 
ground state of He atom.

Method -  AEi=o -AE^x -AEi=2 -  2 dEi -  AE
1=0

Present 
4 Para 
8 para 

Weiss [16] 
Froese 
Fischer 
[7, 14, 17] 
Bunge [18] 
Sabelli [6] 
Exact [11]

0.01700 0.02136 0.00248 0.04048 
0.01739 0.02151 0.00261 0.04151 
0.01728 0.02143 0.00219 0.04090

0.01731 0.02140 0.00212 0.04083 
0.01735 0.02148 0.00224 0.04107 
0.01735

0.04205

ly from its initial values and attains a value rec­
ognised as the most accurate by Pekeris et al. [12]. 
I t  should be remembered that in calculating the 
oscillator strength we have neglected the correlation 
for the excited states [13].

The present method is quite general and can be 
extended to systems with a large number of elec­
trons without much difficulty because of the sim­
plicity of the approach as well as the availability 
of the unperturbed HF wavefunction.

Table 4. Values of matrix element <>ira +  r2n> and oscillator strength for different dipole transitions for He atom in a.u.
(with ?max =  2).

<jxn +  r2"> Oscillator strength

n =  — 2 n =  — 1 n — 0 7i = l n = 2

118-2^ 1 1s —3!p l 1s - 4 1p

/l fv /l /v /l /v

Present ^Para 8para
Accurate [12]
HF

12.0170 3.3685 
11.9990 3.3667

1.9999 1.8690 2.4222 
1.9999 1.8709 2.4257

11.9810 3.3731 2.0000 1.8554 2.3701

0.2917 0.2624 
0.2777 0.2629
0.2761 0.2761 
0.2596 0.2390

0.0706 0.0699
0.0743 0.0703
0.0740 0.0734
0.0696 0.0644

0.0290 0.0288
0.0306 0.0289
0.0300 0.0299
0.0289 0.0265
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