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Recent results concerning the structure of microparacrystals established in different melts are 
reported. In spite of structural differences among the investigated samples the reduced density is 
always the same. This approach is possibly a first step towards a correlation between the hard 
sphere concept of statistical mechanics and our refined structural analysis. 

The diffraction pattern of molten metals shows 
several intensity-maxima, which can be interpreted 
in a similar way as the Debye-Scherrer pattern of 
crystalline powders. For this purpose, however, it 
is necessary to introduce liquid-like distortions. Such 
an approach has been given by the concept of para-
crystallinity [1] , which contains the well known 
equations of crystallography [2] as limiting case. 
Kratky [3, 4] was the first who tried to construct 
the pair correlation function by randomly oriented 
distorted mierodomains. Satisfying results have 
recently been obtained in the case of fee- and bcc-
molten metals by means of convolution polynomials 
[5, 6 ] . In a paracrystal, the positions of atoms are 
labeled by integers i, k, I and p, q, r, corresponding 
to positions on lines, rows, and columns. The p, q, 
r are the relative coordinates of an ideal lattice site. 
However, contrary to the crystalline state, the 
distance statistics of pairs (i, k, I) and (i + p, k + q, 
l + r), averaged over all i, k, I, become broader with 
increasing ( | p j , j ^ j , | r | ) . The average over many 
paracrystals with arbitrary orientations results in 
spherical shells. Apart from some well known factors 
and additive terms these result in the pair correla-
tion function. 

Instead of simply averaging over all i, k, I, one 
can first rotate the different paracrystals until they 
are aligned in parallel to each other and then average 
over all these oriented (i, k, I) environments. 

The resulting correlation function is no longer 
spherically symmetric, but is splitted into individual 
density humps Wpqr{x) whose centers form a three-
dimensional lattice. In some (i, k, I) environments a 
site (p, q, r) may be vacant, in others doubly oc-
cupied. Thus J WPQr Or) &x_ is not necessarily unity. 
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The average distance of nearest neighbours is given 
by 

J 2 ] XI WP Q r {x) dx = r i . 

The summation is performed over all p, q, r with 

p~ + q- + r- = min > 0 . 

For the same p, q, r, the coordination number K t , 
i. e. the average number of nearest neighbours is 
defined by 

Kx = S ^ W p q r { x ) d*; p2 + <72 + / - 2 = m i n > 0 . 

If Schottky and Frenkel defects are created on melt-
ing, K t is found to be smaller than the correspond-
ing number for the crystalline state. K t may be 
larger, however, if interstitials are created. 

The paraerystalline model uses only the nearest 
neighbour statistics to calculate approximately the 
whole three-dimensional correlation function by a 
three-dimensional polynominal. The rotational aver-
age of this function can be compared with ex-
perimental pair correlation functions. If the agree-
ment is good, one can conclude that the paraerys-
talline nearest neighbour distribution is a good ap-
proximation for the real one, so that the para-
crystalline coordination number K^c a n d the cor-
responding distance rpc should also be good ap-
proximations. 

The validity of this conclusion is confirmed by the 
agreement of the other features of the paraerystal-
line nearest neighbours distributions with data from 
molecular dynamics calculations of molten salts [7] . 
There the preferential structure of the melt has been 
directly calculated. It might be identified with a 
paraerystalline distorted surrounding. 

The aim of this paper is to present new results 
concerning the reduced densities of several molten 
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metals and compare them with conventional theories 
of liquids. Detailed informations regarding the 
fundamental ideas of the model of paracrystals are 
reported elsewhere [7 — 10]. It was found that 
molten Pb has a paracrystalline fee short range 
order [5] , while melts of Li, Na, K and Rb have bcc 
short range order [6] . Therefore, in the following 
we will talk of "fee melts" and "bcc melts". The 
fcc-melts have a coordination number £pc « 1 1 . 5 
and a mean distance rpc between neighbouring atoms 
equal to the one below the melting point, i. e. tq, . 
bcc-melts have Kpc ~ 8-3 and an rpc value which is 
a few percent larger than rc (Table 1). The reduced 
density of the PC-lattice is defined as 

*?PC = eorPC (1) 

with o0 the number density of atoms. For crystals, 
?7c equals 1, 1.41 and 1.30 for primitive cubic, fcc-
and bcc-lattice cells, respectively. The jypc-data of 
melts with the corresponding ^c-data are shown in 
Table 1. 

Interestingly all the melts under investigation 
have almost the same r\[»c value, irrespective of the 
type of the paracrystalline lattice. Within the ex-
perimental errors a constant value yj^q « 1.35 was 
found. This is almost the average of the f]c values 
of the crystalline fee- and bcc-lattices and can be 
explained by vacancies in fcc-melts and interstitials 
in bcc-melts. 

Without considering the structure, Ruppersberg 
[11] found a striking difference between the reduced 
densities of fee- and bcc-melts (cf. Table 1). Since 
he could not obtain information regarding the mean 

Table 1. Coordination numbers Ki, mean interatomic 
distances r and reduced densities rj and rf at the melting 
point. The subscripts C and PC refer to the solid and 
liquid state, respectively. The data in brackets are derived 
from analogy with respect to Pb. 

K c KPC rc{A) rpc(Ä) Vc rjpc v' 
Ref. 
[11] 

Pb 11.6 3.54 3.55 1.37 1.20 
Cu (11.5) 2.61 (2.61) (1.35) 1.20 

fee Ag 12 (11.5) 2.98 (2.98) 1.41 (1.37) 1.21 
Au (11.4) 2.95 (2.95) (1.33) 1.22 
Al (11.3) 2.93 (2.93) (1.33) 1.21 
Li 8.7 3.06 3.16 1.39 1.37 
Xa 8.2 3.73 3.79 1.33 1.35 

bcc K • 8 8.4 4.56 4.72 1.30 1.35 1.28 
Rb 8.3 4.95 5.08 1.35 1.28 
Cs 8.0 5.31 5.43 1.37 1.25 

distance rpc between the neighbours, he used the 
most frequent distance d given by the position of 
the maximum of the pair correlation function. His 
reduced density 

rf = Q o ds (2) 

turned out to be by 15% smaller than 1.41 for melts 
of the fcc-metals Pb, Ag, Au, Au, etc. and surpris-
ing somewhat larger than 1.20 for the melts of the 
bcc-alkali metals. Thus, Ruppersberg was one of the 
first to provide information regarding the existence 
of structural differences of "simple" melts. 

Sometimes crystallographers regard atoms as hard 
spheres which are more or less closely packed. In 
order to obtain the real packing density o of hard 
spheres, it is necessary to multiply the reduced den-

4 / 1 \3 
sity with the reduced volume-— n I-—I of a sphere 

with the diameter 1 ̂  o = — rj 

In order to fit the experimentally observed X-ray-
and neutron diffraction data of liquids Ashcroft and 
Lekner [12] neglected structural differences and 
used the Percus-Yevick-equation for hard spheres. 
With the help of the so called hard sphere diameters 
they found a packing density of o ~ 0 . 4 5 , for all 
liquid melts, i. e., a reduced density of rj = 0.86 in-
stead of the value 1.35 of Table 1. The definition 
of o entails that the lower value demands hard 
sphere diameters which are by 

0 . 8 6 \ 
1.35 ) 

1/3 
14% 

smaller than the mean distance rpc between neigh-
bouring atoms. 

The strong correlation between the PY-hard 
sphere diameter rgg and rpc is to be noted. The fact 
that rns is smaller than rpc is to be expected sup-
posing that rns really represents a hard sphere 
diameter. The magnitude of the difference between 
rns a n d rPC 5 i- e., 14%, correlates with the relative 
width of the nearest neighbours distance statistics 
resulting from paracrystalline analysis, i. e., 12 to 
15%. Obviously, the Percus-Yevick-equation leads to 
conclusions which conform with the results of a 
direct structural analysis although the validity of the 
connection between the pair potential and the Orn-
stein-Zernike direct correlation function used in the 
Percus-Yevick-theory is somewhat dubious [13] . 



987 B. Steffen et al. • Structure and Packing Density of Liquid Metals 

We recognize that the phenomenon of a constant 
reduced density gives no evidence of the same 
"amorphous-like" structure of all melts. Table 1 
shows that rpc in the melt is the same as tq in the 
crystal for fcc-lattices; rpc is larger than rc for bcc-
melts. The coordination number Kx on the other 
hand slightly decreases for fee in the melt but in-
creases remarkably for bcc at the melting point. This 
can be easily explained by the produced vacancies in 
the fcc-case, which cannot affect the nearest neigh-
bour distance rpc because of the closest possible 
packing. In bcc-lattices, on the other hand, which 
have not the largest possible packing density, many 
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atoms can migrate to interstitials thereby increasing 
rpc • 

It is somewhat astonishing that two theories with 
so different starting points come to the same results 
concerning the reduced density. This gives some 
hope that it might be possible to combine the 
advantages of the Percus-Yevick theory, i. e. easy 
access to thermodynamical and other physical prop-
erties, with the advantages of the paraerystalline 
theory, i. e. high perspicuity with regard to atomic 
structures and applicability not only to melts but to 
a variety of distorted structures like polymers [14] 
and catalysts [15] . 

[8] R. Hosemann and S. N. Bagclii, Direct Analysis of 
Diffraction by Matter, Nort-Holland-Publ. Comp., 
Amsterdam 1962. 

[9] M. Kakudo and N. Kasai, X-ray Diffraction by 
Polymers, Elseviere Publ. Comp., Amsterdam 1972. 

[10] B. Steffen, Progr. Coll. Polymer Sei. 65, 133 (1978). 
[11] H. Ruppersberg, Z. Naturforsch. 24 a, 1034 (1969). 
[12] N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 

(1966). 
[13] B. Steffen and R. Hosemann, Ber. Bunsenges. phys. 

Chem. 80, 712 (1976). 
[14] R. Hosemann, Makromol. Chem. 176, 559 (1975). 
[15] H. Ludwiczek, A. Preisinger, A. Fischer, R. Hose-

mann, A. Schönfeld, and W. Vogel, J. Catalysis, 51, 
326 (1978). 


