Structure and Packing Density of Liquid Metals
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Recent results concerning the structure of microparacrystals established in different melts are
reported. In spite of structural differences among the investigated samples the reduced density is
always the same. This approach is possibly a first step towards a correlation between the hard
sphere concept of statistical mechanics and our refined structural analysis.

The diffraction pattern of molten metals shows
several intensity-maxima, which can be interpreted
in a similar way as the Debye-Scherrer pattern of
crystalline powders. For this purpose, however, it
is necessary to introduce liquid-like distortions. Such
an approach has been given by the concept of para-
crystallinity [1], which contains the well known
equations of crystallography [2] as limiting case.
Kratky [3, 4] was the first who tried to construct
the pair correlation function by randomly oriented
distorted microdomains. Satisfying results have
recently been obtained in the case of fcc- and bec-
molten metals by means of convolution polynomials
[5, 6]. In a paracrystal, the positions of atoms are
labeled by integers i, £, ! and p, g, r, corresponding
to positions on lines, rows, and columns. The p, ¢,
r are the relative coordinates of an ideal lattice site.
However, contrary to the crystalline state, the
distance statistics of pairs (i, k,1) and (i +p, k+q,
l+r), averaged over all i, k, [, become broader with
increasing (|p|,|q!,|r]). The average over many
paracrystals with arbitrary orientations results in
spherical shells. Apart from some well known factors
and additive terms these result in the pair correla-
tion function.

Instead of simply averaging over all i, k, I, one
can first rotate the different paracrystals until they
are aligned in parallel to each other and then average
over all these oriented (i, k, I) environments.

The resulting correlation function is no longer
spherically symmetric, but is splitted into individual
density humps W,,,(2) whose centers form a three-
dimensional lattice. In some (i, k, ) environments a
site (p, ¢, r) may be vacant, in others doubly oc-
cupied. Thus [ W4 (z)dz is not necessarily unity.
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The average distance of nearest neighbours is given

by
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The summation is performed over all p, g, r with
PP+¢*+r*=min>0.

For the same p, ¢, r, the coordination number K, ,
i.e. the average number of nearest neighbours is

defined by
Ki=JZWpu(x)dz; p>+¢*+r2=min>0.

If Schottky and Frenkel defects are created on melt-
ing, K is found to be smaller than the correspond-
ing number for the crystalline state. K; may be
larger, however, if interstitials are created.

The paracrystalline model uses only the nearest
neighbour statistics to calculate approximately the
whole three-dimensional correlation function by a
three-dimensional polynominal. The rotational aver-
age of this function can be compared with ex-
perimental pair correlation functions. If the agree-
ment is good, one can conclude that the paracrys-
talline nearest neighbour distribution is a good ap-
proximation for the real one, so that the para-
crystalline coordination number Kpc and the cor-
responding distance rpc should also be good ap-
proximations.

The validity of this conclusion is confirmed by the
agreement of the other features of the paracrystal-
line nearest neighbours distributions with data from
molecular dynamics calculations of molten salts [7].
There the preferential structure of the melt has been
directly calculated. It might be identified with a
paracrystalline distorted surrounding.

The aim of this paper is to present new results
concerning the reduced densities of several molten
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metals and compare them with conventional theories
of liquids. Detailed informations regarding the
fundamental ideas of the model of paracrystals are
reported elsewhere [7—10]. It was found that
molten Pb has a paracrystalline fcc short range
order [5], while melts of Li, Na, K and Rb have bce
short range order [6]. Therefore, in the following
we will talk of “fcc melts” and ‘“bec melts”. The
fcc-melts have a coordination number Kpg =~ 11.5
and a mean distance rpc between neighbouring atoms
equal to the one below the melting point, i.e. r¢.
bee-melts have Kpc =~ 8.3 and an rp¢ value which is
a few percent larger than r¢ (Table 1). The reduced
density of the PC-lattice is defined as

NpC= Qo THC (1)

with 0, the number density of atoms. For crystals,
nc equals 1, 1.41 and 1.30 for primitive cubic, fcc-
and bcc-lattice cells, respectively. The #npc-data of
melts with the corresponding #c-data are shown in
Table 1.

Interestingly all the melts under investigation
have almost the same #7p¢ value, irrespective of the
type of the paracrystalline lattice. Within the ex-
perimental errors a constant value npc =~ 1.35 was
found. This is almost the average of the ¢ values
of the crystalline fcc- and bec-lattices and can be
explained by vacancies in fcc-melts and interstitials
in bee-melts.

Without considering the structure, Ruppersberg
[11] found a striking difference between the reduced
densities of fcc- and bec-melts (cf. Table 1). Since
he could not obtain information regarding the mean

Table 1. Coordination numbers K;, mean interatomic
distances r and reduced densities 7 and 1" at the melting
point. The subscripts C and PC refer to the solid and
liquid state, respectively. The data in brackets are derived
from analogy with respect to Pb.

Kc Kpc rc(Ad) rec(A) nc nmec 7

Ref.

[11]

Pb 11.6 3.54 3.55 1.37 1.20

Cu (11.5) 2.61 (2.61) (1.35) 1.20

fee Agt 12 (11.5) 2.98 (2.98) 1.41 (1.37) 1.21
Au (11.4) 2.95 (2.95) (1.33) 1.22

Al (11.3) 2.93 (2.93) (1.33) 1.21

Li 8.7 3.06 3.16 1.39 1.37
Na 8.2 3.73 3.79 1.33 1.35
bee K 8 8.4 4.56 4.72 1.30 1.35 1.28
Rb 83 495 5.08 1.35 1.28

Cs 8.0 5.31 5.43 1.37 1.25

distance rp; between the neighbours, he used the
most frequent distance d given by the position of
the maximum of the pair correlation function. His
reduced density

77l=90d3 (2)

turned out to be by 15% smaller than 1.41 for melts
of the fcc-metals Pb, Ag, Au, Au, etc. and surpris-
inly somewhat larger than 1.20 for the melts of the
bec-alkali metals. Thus, Ruppersberg was one of the
first to provide information regarding the existence
of structural differences of “‘simple” melts.
Sometimes crystallographers regard atoms as hard
spheres which are more or less closely packed. In
order to obtain the real packing density ¢ of hard
spheres, it is necessary to multiply the reduced den-

4 3
sity with the reduced volume 37 (*27) of a sphere

with the diameter 1 (0 = %— 17) y

In order to fit the experimentally observed X-ray-
and neutron diffraction data of liquids Ashcroft and
Lekner [12] neglected structural differences and
used the Percus-Yevick-equation for hard spheres.
With the help of the so called hard sphere diameters
they found a packing density of o~ 0.45, for all
liquid melts, i.e., a reduced density of 7 =0.86 in-
stead of the value 1.35 of Table 1. The definition
of o entails that the lower value demands hard
sphere diameters which are by

0.86 \13
1 (—1'35) _14%

smaller than the mean distance rp¢ between neigh-
bouring atoms.

The strong correlation between the PY-hard
sphere diameter rgg and rpc is to be noted. The fact
that rgg is smaller than rpc is to be expected sup-
posing that rpg really represents a hard sphere
diameter. The magnitude of the difference between
rgs and rpg, i.e., 14%, correlates with the relative
width of the nearest neighbours distance statistics
resulting from paracrystalline analysis, i.e., 12 to
15%. Obviously, the Percus-Yevick-equation leads to
conclusions which conform with the results of a
direct structural analysis although the validity of the
connection between the pair potential and the Orn-
stein-Zernike direct correlation function used in the
Percus-Yevick-theory is somewhat dubious [13].
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We recognize that the phenomenon of a constant
reduced density gives no evidence of the same
“amorphous-like” structure of all melts. Table 1
shows that rpc in the melt is the same as r¢ in the
crystal for fcc-lattices; rpc is larger than r¢ for bee-
melts. The coordination number K; on the other
hand slightly decreases for fcc in the melt but in-
creases remarkably for bce at the melting point. This
can be easily explained by the produced vacancies in
the fcc-case, which cannot affect the nearest neigh-
bour distance rpc because of the closest possible
packing. In bcc-lattices, on the other hand, which
have not the largest possible packing density, many
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atoms can migrate to interstitials thereby increasing
rpC .

It is somewhat astonishing that two theories with
so different starting points come to the same results
concerning the reduced density. This gives some
hope that it might be possible to combine the
advantages of the Percus-Yevick theory, i.e. easy
access to thermodynamical and other physical prop-
erties, with the advantages of the paracrystalline
theory, i.e. high perspicuity with regard to atomic
structures and applicability not only to melts but to
a variety of distorted structures like polymers [14]
and catalysts [15].
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