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By considering three successive approximations to the conduction-electron wavefunction of 
metallic lithium, it is shown that the X-ray scattering factor at small wavevectors is very sensitive 
to the model chosen for describing the electron density. It is demonstrated that, when screened 
pseudopotentials are used, the "solid state effect" is almost negligible in this region of wave-
vectors. 

I. Introduction 

Considerable interest attaches to the long-wave-
length limit of the structure factor of liquid metals 
and alloys as it is directly related to thermodynamic 
properties, such as the activity of the components in 
a binary liquid alloy (see for example Thompson 
et al. [ 1 ] ) . Because of the presence of a central, 
non-diffracted beam this limit has to be obtained by 
extrapolation starting from, say, <7 = 0.1 A" 1 ; q rep-
resents the scattering vector. 

Bhatia and Thornton [2] have shown that, for 
vanishing q, the X-ray intensity diffracted by a 
binary system contains an important term 
( ö - i F ^ O ) - F 2 ( 0 ) } / ( F , ( 0 ) ) ) 2 5 C C ( 0 ) which rep-
resents the contribution from the composition fluc-
tuations Scc(0)- Here, <5 = V~x dF/dc, where V is 
the volume, the Fj(q) are the scattering factors 
of the constituent atoms ( ^ ( 0 ) ) = c (0) + 
(1) — c ) / r 2 (0 ) and c is the atomic fraction of com-
ponent 1. It is not difficult to see that in many cases 
Ö and (FJO) - F o ( 0 ) } / ( F ( 0 ) ) are of the same 
order of magnitude so that the difference can be 
quite sensitive to small variations in Ö as well as the 
Fdq). 
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For this reason, accurate knowledge of the scat-
tering factors Fi(q) near q = 0 is required. F(q) is 
defined as the Fourier transform of the electronic 
density centered at an atomic nucleus in the in-
vestigated solid or liquid. In the case of a metal one 
usually assumes that the F(q) of the free atom can 
be considered as a good approximation to the real 
scattering factor. However, as in a metal the conduc-
tion electrons are essentially delocalized ("solid 
state effect"), it is not a priori evident that the free 
atom scattering factor is appropriate in the limit 

0. 
Greenfield e.a. [3] considered this problem more 

in general and concluded that there is no reason for 
concern. They state that the solid state effect on the 
F{q) of copper is of order of F{q), and that 
at q = 0, the solid state effect is identically zero. 
Measurements of F (q) on a beryllium crystal by 
Brown [4] indicate a relatively larger, negative, 
solid state effect of about 10% at ^ = 3.5 A - 1 . But 
we want to emphasize that the experimental F(q) 
can only be obtained for q > 0.5 A - 1 by measuring 
the Bragg reflections of a crystal. Generally, this is 
outside the region of interest for determining the 
long-wavelength limit. 

In order to get some semi-quantitative insight in 
the behaviour of F(q) in this particular range of 
wavevectors, we have carried out some elementary 
calculations for lithium which, of all metals, should 
be most prone to the solid state effect. 
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We have examined in a rigid core approximation 
the contribution of the conduction electrons to the 
scattering factor of metallic lithium, using various 
models for the wavefunctions of these electrons. It 
will be shown that Greenfield et al. [3] were correct 
in their general conclusion, but that specifically near 
tj = 0 the calculated F (q) are extremely sensitive to 
the theoretical model used. Our aim is to illustrate 
this situation rather than to provide new, accurate 
numerical results. Therefore we will consider, in this 
order, plane waves, orthogonalized plane waves and 
wavefunctions derived from screened pseudopoten-
tials. Finally, we will compare the resulting contribu-
tion of the conduction electrons to F{q) with that 
of the 2 s-state of the free lithium atom. 

II. Calculation of F(q) 

The coherently scattered amplitude of an arbitrary 
collection of identical atoms can be written as 

A(q)=F(q)lexp(iq-Rj), (1) 
j 

where the sum represents the structure factor. For 
obvious reasons, in the following we will denote by 
A(q) the amplitude originating from the conduction 
electrons only. Denoting the wavefunctions by 
J t/'fc ( r ) ) , we have 

A(q) =l(V'k(r)\exp(iq-R)\V'k(r)). (2) 
|*|<*F 

Here the sum runs over the occupied conduction 
band states. The scattering factor F(q), which is 
only dependent on the magnitude of the scattering 
vector q, can be found from (1) and (2) once an 
expression for j ty-'*(r)) is given. We will now 
present expressions for F(q) derived from the three 
models for the conduction electron wavefunctions. 

a) Plane Waves 

This is a trivial case: 
I Wk(r)) = y-i exp( - i k • r) == | fc) . (3) 

The scattering factor of the conduction electrons, in 
this approximation denoted by F™ (q), is then 

Fpw(q)=Zd9, o (4) 

where Z is the number of valence electrons per atom 
and ^ o is the Kronecker ^-symbol. This <5-peak 
behaviour reflects the complete derealization of the 
conduction electrons in this primitive model. 

b) Orthogonal Plane Waves 

The OPW's are constructed from plane waves by 
orthogonalization to all the core states. 

\v'*(r)) (5) 
= (i-2:c){c\)\k)l{l-(k\c){c\k))i. 

e 

c labels the core states as well as the ions to which 
the core states belong. For lithium only the 1 s-or-
bital wavefunction has to be considered; we have 
chosen the form 

| c ) = (<X3/TI) ^exp ( — a | T — R ; - 1 ) . ( 6 ) 

The A(q) calculated from Eqs. (2), (5) and (6) 
contains the structure factor explicitly. We easily 
find for the scattering factor of the conduction 
electrons in the OPW approximation 

F°™(q)=Z{dq,o+(l-dq.Q)Bl(hHk)h(hq) 
1*1 <*F 

- Ä ( f c ) A ( k + q ) - A ( k ) A ( f c - q ) ) } (7) 

where B = 64 n Aion/a3 V and h (k) = (1 + k2/a2) ~2 

-Njon and Nt.\ are the number of ions and electrons 
in the metal, respectively, and Z = Ne\/N-l0n; a = 
2.55(a.u.) -1 is taken from Roothaan and Weiss [5]. 
As 0 = 0.061 for lithium and A ( k ) ~ 1 when k is 
inside the Fermi sphere (kf = 0.587 (a.u.)_1), it is 
clear that the second term at the right hand side of 
(7) contributes only a small negative part to the 
scattering factor at <7^0. This fact has already been 
established by Brown [4] for beryllium. We see 
that, just like the plane wave model, the OPW model 
generates a discontinuity in the conduction electron 
scattering factor at q = 0. Both models yield a 
homogeneous electron density outside the core, 
which is of great influence on the small-wavevector 
behaviour of the scattering factor, although: the 
OPW model is known to give a fairly correct con-
duction electron density within the core region. 

c) Screened Pseudopotentials 

As the (3-peak behaviour is related to the electronic 
density at large distance from the core, it is obvious 
to consider the effect of conduction electron screen-
ing. In order to retain the connection with the OPW 
method we have made use of the pseudopotential 
formalism. The effect of screening can easily be in-
corporated in the pseudopotential by introducing 
the static dielectric function e(q) [6]. In this way, 
self-consistency is preserved. 
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It is supposed that the pseudopotential W(r) can 
he written as a superposition of localized potentials: 

W(r) =Zw(r-Rj) (8) 
j 

where t v ( r - R j ) is the pseudopotential of an ion 
at position R j . If the pseudowavefunction is calcu-
lated in first order, the corresponding true wave-
function reads: 

v * ( r ) k' 
|*'|>*F 

k) 
(9) 

where E/: = h2lr/2m is the free electron energy of 
state k). Factorizing W,:(q) = (k + q W fc)into a 
structure factor and a matrix ele ment of the local-
ized potential w, we find, in first order, a scattering 
factor Fpseudo(q) of the conduction electrons: 

V F" s e i , a ° (q) = f 0 P W ( q ) + 2 2 
k 

!*|<*F 
k q 

\k-q\>kf 

(k - q\w\k) 
Ek - Ek-q (10) 

Here F°™ (q) is defined in (7) and the matrix 
element in (10) will be denoted by Wk(q). It is 
important to notice that Fovw (q) contains a 
Kronecker while the last term in (10) is identi-
cally zero for q = 0 because of the restrictions im-
posed on the summations. 

In the following it is shown that the jump at q = 0 
in f i , s e u d o (q ) disappears, provided a seljconsistently-
screened pseudopotential is used. 

Approximating w by a local pseudopotential (i .e. 
U k (q) independent of k), we write. 

ivk{q) = uw(<f)/«(q) • (11) 

Remembering that, for large r,whare{r) is Coulom-
bic, we find in the limit of vanishing q: 

uw(q)-^ — c2Zeff/F q2 £
0
 , (12) 

( 9 - 0 ) 

where Zef[==Z(l + ß ) is the effective valency of the 
lithium ion including the so-called orthogonalization 
hole and f 0 is the dielectric constant of vacuum. 

Next we notice that, if the Hartree dielectric 
function is chosen for e(q), we have, by definition: 

2 2 2 k k^q Ek — Ek-q 
1*1 <*F |*-9|>*F 

= (l-f(<7)K</2 Vie2. 
(13) 

Since e{q) exhibits the well-known l/q'2 behaviour 
for small q, the long-wavelength limit of Fi,seil,1° (q ) 

can be evaluated after substituting (11) , (12) and 
(13) in (10 ) : 

F P ^ . < i o ( q ) - > f O P W ( q ) + Z e f f ( l _ <$,.„). (14) 
( q - * 0 ) 

Since Fopw — BZ for small q (Eq. ( 7 ) ) - and Zef f 

= Z(I + B) it is obvious that in (14) the jump at 
q — 0 found earlier in the scattering factor is now 
reduced to almost zero. 

We have also numerically evaluated Eq. (10) for 
</> 0.005 Ap . The first term at the right hand side 
of (10) is given in (7) , the last term of (10) can 
be calculated by using a self-consistently screened 
pseudopotential. In the literature, the pseudopoten-
tials are usually presented by giving a matrix 
element wky(q) as a function of q, with kp + q 
= . The matrix elements ivk(q) for arbitrary k 
cannot directly be derieed from these listed matrix 
elements as a consequence of the nonlocality of the 
pseudopotential. 

The pseudopotential of lithium is known to contain 
a large non-local part but, as Shaw [7] shows, this 
non-local part is a slowly varying function of q. Ap-
proximating the non-local part it* L ( q ) of iVk (q) by: 

w?L{q)<x(k\E-H)P\k + q) (15) 
with /> = | l s ) ( l s | , we can evaluate w?L(q) for 
arbitrary k from the value a*FL(q) provided by 
Shaw [ 7 ] : 

witL(q)^wZL(q)h(k + q)h(k)/(h(kF))2. (16) 

( q / k F ) 

Fig. 1. The X-ray scattering factor F(q) of Li versus qjkF. 
Present calculation, Equation (10). Perrin, 

Taylor and March [9]. Atomic F(q). 
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Fig. 2. The two contributions of the X-ray scattering 
factor F(q) versus q/lcy of Eq. (10) for Li. 

F(q)-F°™. F?™. 

h(k) is already specified in (7) . The value of the 
matrix element wkf (q ) is obtained from Appapillai 
et al. [8 ] . 

The results obtained by evaluating (10) are 
shown in Fig. 1 and compared with those by Perrin, 
Taylor and March [9 ] . The contributions from the 
two terms at the right hand side of (10) are pres-
ented separately in Figure 2. 

III. Conclusion 

Evidently, in the screened pseudopotential ap-
proximation, the scattering factor approximates the 
atomic scattering factor very closely for vanishing 
q. In this limit, screening removes the unphysical 
discontinuity in the scattering factor found in the 
two simpler models. 

As a consequence of the employment of first order 
perturbation theory and of the approximations made 
in the calculation of the non-local part of the pseudo-
potential, one can't expect accurate values of 
/rpseudo(q) for larger q. More particularly, the depth 
of the minimum near q = 2 /ty in our calculations 

[1] J. C. Thompson, K. Ichikawa, and S. M. Granstaff, 
Jr., Phys. Chem. Liq. 5, 167 (1976). 

[2] A. B. Bhatia and D. E. Thornton, Phys. Rev. B 2, 
3004 (1970). 

[3] A. J. Greenfield, J. Wellendorf, and N. Wiser, Phys. 
Rev. A 4, 1607 (1971). 

proves to be quite sensitive to the choice of the model 
potential. Taking this into account, the agreement 
with KKR calculations by Perrin et al. [9] is 
satisfactory. 

Obviously, whereas the dynamics of the conduc-
tion electrons in the alkali metals can be described 
well by a nearly free electron model, the density of 
the conduction electrons in the metallic phase has 
more or less retained the shape of the valence-elec-
tron density of a collection of free atoms. This result 
is in accordance with the concept of the pseudoatom 
introduced by Ziman [10 ] . It follows from our 
considerations that an accurate calculation of F(Q) 
near q = 0 is quite tricky and that great care should 
be exercised in the description of the long-distance 
behaviour of the conduction electrons. To check this 
point further, we have also calculated F(tf) using 
more sophisticated screening procedures, taking into 
account the effects of electron correlation and ex-
change (see e.g. Hubbard [11] , Singwi et al. [12] , 
Shaw [13, 14], Vashishta and Singwi [15 ] ) . These 
calculations were based on the Ashcroft-empty-core-
potential [16] . The results indicate that mutual 
discrepancies of the order of 0.15 may arise in the 
F(q) at larger values of q, whereas at smaller q the 
results agree significantly better. It appears that 
not only the choice of the screening affects the scat-
tering factor but that also the change from the bare 
ion potential used by Appapillai (a ShawT optimized 
potential) to the empty-core-potential has a signifi-
cant influence. For these reasons it seems not ap-
propriate to give a more detailed, quantitative ac-
count of these results. 

A cknowledgem ents 

The authors gratefully acknowledge some stimu-
lating discussions with Prof. D. Feil. 

This work is part of the research program of the 
Stichting voor Fundamenteel Onderzoek der Materie 
(Foundation for Fundamental Research on Matter — 
FOM), which is financially supported by the Neder-
landse organisatie voor Zuiver Wetenschappelijk 
Onderzoek (Netherlands Organization for the Ad-
vancement of Pure Research — ZWO). 

[4] P. J. Brown, Phil. Mag. 26. 1377 (1962). 
[5] C. C. J. Roothaan and A. W. Weiss, Rev. Mod. Phys. 

32, 194 (1960). 
[6] W. Harrison, Pseudopotentials in the Theory of 

Metals, Benjamin, New York 1966. 



377 E. G. Visser et al. • The X-ray Scattering Factor of Metallic Lithium 

[7] R. W. Shaw and N. V. Smith, Phys. Rev. 178, 985 
(1969). 

[8] M. Appapillai and A. R. Williams, J. Phvs. F (Met, 
Phys.) 3, 759 (1973). 

[9] R. C. Perrin, R. Taylor, and N. H. March, J. Phys. F 
(Met. Phys.) 5, 1490 (1975). 

[10] J. M. Ziman, Adv. Phys. (Phil. Mag. Suppl.) 13, 89 
(1964). 

[11] J. Hubbard, Proc. Roy. Soc. London A 243, 336 (1957). 

[12] K. S. Singwi, M. P. Tosi, R. M. Land, and A. Sjölan-
der, Phys. Rev. 176, 589 (1968). 

[13] R. W. Shaw, Jr. and R. Pynn, J. Phys. C (Sol. St. 
Phys.) 2, 2071 (1969). 

[14] R. W. Shaw, Jr., J. Phys. C (Sol. St. Phys.) 3, 1140 
(1970). 

[15] P. Vashishta and K. S. Singwi, Phys. Rev. B 6, 875 
(1972). 

[16] N. W. Ahscroft, J. Phys. C, Proc. Phys. Soc. London 
1, 232 (1968). 


