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A coupled system of balance equations is derived for the coefficients of orthogonal expansions of 
the velocity distribution functions. The orthogonal functions are not specified, but the initial func­
tions must be local Maxwellians with different temperatures for different species of particles. Closed 
expressions for the matrix elements of the non-linearized Boltzmann operator are given, whose 
dominant terms are determined and compared.

G e n e ra liz a tio n  o f th e  M o m e n t M e th o d  o f M ax w ell-G rad
fo r  M u lt i -T e m p e ra tu re  G as M ix tu re s  a n d  Plasm as

1. Introduction

Tensorial velocity moments, i. e. polyadic pro­
ducts of the velocity vector averaged with the veloc­
ity distribution function as weight function, are 
meaningful physical quantities. Those up to the 
second order, viz. density, flow, and pressure, are 
directly measurable as well as energy flow, the trace 
of the third order moment. Therefore Maxwell1 
derived a coupled system of balance equations for 
these moments from the Boltzmann equation. With 
these balance equations transport coefficients and 
relaxation times could be calculated.

The balance equation for the rc-th order moment 
contains the divergence of the n + 1st order moment, 
contributing to the coupling among the balance 
equations. The closure of the system regarding this 
particular coupling is usually done by an approxi­
mative expression for a certain moment, which con­
tains no higher order moments.

To calculate the collision integral of a balance 
equation the velocity distribution functions for the 
species of colliding particles must be known in gen­
eral. Maxwell overcame this difficulty using the so 
called Maxwell interaction between the particles, the 
only type of interaction where the knowledge of the 
distribution functions is not required for the cal­
culation of the collision moments. To avoid this re­
striction for the particle interaction Grad2 expanded 
the velocity distribution function in an orthogonal 
series of tensorial Hermite functions. The coeffi­
cients are averages of tensorial Hermite polynomials 
and therefore linear combinations of the velocity 
moments. Thus the collision moments become in­
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finite series of moments with calculable coefficients, 
causing complicated coupling between the balance 
equations for non-Maxwellian interactions.

To close the system of balance equations with 
regard to this coupling Grad 2 proposed an a priori 
cutoff of the orthogonal expansion. This heuristic 
procedure has to be justified ad hoc. In the present 
paper we avoid this cutoff. Instead of this we de­
velop a method to compare the order of magnitude 
of the infinite sequence of coupling coefficients 
(Chapter 4). This allows their neglection according 
to a prescribed accuracy.

Instead of Grad's tensorial Hermite functions 
other systems of orthogonal functions have been 
used: products of three ordinary Hermite functions 
with the cartesian velocity components as argu­
ments 3 and Burnett functions, viz. products of 
spherical harmonics with generalized Laguerre func­
tions 4. In Chapter 2 of the present paper we de­
velop a general formalism without specification of 
the orthogonal system used for the expansion of the 
distribution functions. In contrast to previous treat­
ments we assume different kinetic temperatures for 
the different species of particles. This is particularly 
important for plasmas. Due to the large mass ratio 
between electrons and heavy particles (ions and neu­
trals) their energy exchange is much slower than 
the mutual exchange between the electrons them­
selves and between the heavier particles. Therefore 
very often different temperatures are maintained for 
the different species of particles and must be taken 
into account in all expressions describing the be­
haviour of these plasmas.

The collision operator is not linearized. For all of 
its elements closed expressions are calculated using 
transformation theory (Chapter 2 and 3). Trans­
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formation coefficients depending on the choice of 
orthogonal functions are given in the appendix. In­
stead of the ^-integrals introduced by Chapman 
and Cowling 5 and extensively used by Hirschfelder, 
Curtiss and Bird 6, we prefer linear combinations of 
them, the transport collision frequencies introduced 
by Suchy and Rawer Their advantages are dis­
cussed in Chapter 4.

2. General Formalism

2.1. Derivation of a System of Balance Equations
The kinetic equation for the velocity distribution 

function f(i) =f(X t, C,; f) for particles of species i 
can be written as

D(i) [/OO] = ! B ( i , j ) [ f ( i ) , / ( / ) ] .  (2.1)
i

The operator
3 3 . 3  

D { i)^ d t +Ci'd x i + C r W i

acts as total derivation. B(i,j) describes binary 
interactions between particles of species i and j. The 
particular Boltzmann form

B (i,j) [ /(» ),/( /)]
= /  d3c, /  dQ' au g [f (i') / ( / ) - / (i) /  (j) ] (2.2)

is bilinear in the two functions f{i) and f(j) ; 
primed and unprimed arguments distinguish vari­
ables before and after the collision, the differential 
cross section Ojj depends on the relative velocity

g : = Cj -  Ci. (2.3)

To introduce a generalized moment-method we rep­
resent the distribution functions / as elements of a 
linear space spanned by a basis system {9?/}:

f(Xi,Cr,t) = a1 (X;, t) (px{Xh C;; t) , (2.4 a)

abbreviated as

f{i) <Px(i) • (2.4 b)

The basis functions cp^(Xi,t;Cj) are to be con­
sidered as functions of the variable C; with Xf 9 t HS 
parameters which only appear in a normalization 
speed and a reference velocity, e.g. VK  ̂Tt (Xi, t) /m; 
and Cio(X-,,t), cf. Equation (2.8 a). The conven­
tion is used to sum over all indices appearing once 
and only once as a superscript and a subscript. As 
we restrict ourselves in the explicit calculations to 
elastic collisions, we let 1 denote a triple of indices

and define an inner product by
(<P\V>) '• = f  d3ccp{c)y{c) . (2.5)

This enables the construction of a dual basis system 
requiring

(<P*'(i) I <Pxd)) = / d W ( 0  <Pxd) = <V'. (2.6)
Hence the expansion coefficients in (2.4), the "gen­
eralized moments", are inner products:

a /  = | / ( 0  ) = / d 3c,V  (0 /(0  • (2.7)
To treat deviations from thermodynamic equilib­
rium the basis system {(px (i)} is chosen such that 
9?0(i) is proportional to the local Maxwellian:

<Po(i) '■= 2 ti
KvTiYW

exp 1
Ci0) ;m-i / I 2 KB Tt

(2.8 a)

with an arbitrary reference velocity . Condition 
(2.6) for the dual basis then yields

<p°{i)= 1. (2.8 b)

Starting with cpQ(i) as a "weight function" we 
have two possibilities to construct the basis system: 
threedimensional Hermite-functions 2' 3 and Burnett- 
functions 8. Both systems can be represented in ten­
sorial or scalar notation; a special choice, used in 
the following calculations, is discussed in the Ap­
pendix A l together with some of the related gener­
alized moments a /. In both cases the order of a /, 
(pi (i) and (px{i) is given by the highest power of 
j'Cj--'Cjo| in the polynomial cp^ii). For simplicity 
the following convention shall be used: a small 
greek letter denotes a triple of indices if used as an 
index but it is the order of the moment if used in 
algebraic expressions, e. g. inequalities or powers. 
Thus all such expressions are valid for both types 
of basis systems according to the transformation 
matrices, given in the Appendix A2.

Inserting the expansion (2.4) into the kinetic 
Eq. (2.1) yields ^ .9 )

D (i) [cpx (i) a/] = 2  B (i, j) [cpx (i) a /, cp, (j) a /]  . 
i

If we assume the operator B (i, j) to be bilinear — 
as in the Boltzmann form (2.2) —, multiplication 
with cp̂ ' (i) and integration over d3c4- yields a system 
of coupled equations:

D\' (i) a* = 2  Bi'ß (i, j) a x a f  . (2.10) 
i

This is a system of "balance-equations" for the gen­
eralized moments. The choice (2.8) of the basis
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functions yields for // = 0 the mass balance or con­
tinuity equation, for // = 1 the momentum balance 
or equation of motion, etc. The coefficients

f l / ( 0  : = < ^ '( 0 |£ ( i )  (2.11)
and

B&(i,j) : = («^'(0| B(i,j)[cpx(i),cpß(j)])  (2.12)

themselves are in general operators acting on the 
moments a*, a f . Expression (2.12), however, be­
comes multiplicative if the variation of the moments 
can be neglected in the temporal and spatial scale of 
the molecular interaction. Therefore in the case of 
the Boltzmann integral (2.2) the generalized mo­
ments may be drawn out of the integrations over 
d3cj,d3c;- yielding the collision elements

Bi'n (i, j) = /  d3C; /  d3C; /  dQ' oirg
x q /'(i)  {cpx(i)cpß(f) -c p i( i) (p M } . (2.13)

2.2. Representation of the Collision Elements B

The first step in the evaluation of (2.13) is the 
expansion of the product of two one-particle basis 
functions:

<Pi(i)<PAi)=T^Xa(G)0H(g) , (2.14a) 
^ ' ( i ) r ' ( / )  =Ttt>Xa'(G)<P*'(g) , (2.14 b)

where in addition to the relative velocity g = Cj — C, , 
Eq. (2.3), the center-of-mass velocity

G : = Cj + ------Cj (2.15)
mt + mj mi + mj

is introduced. The functions and i  are dual in the 
sense of the definitions (2.5) and (2.6) :

/ d 3C r'(G )z« (G )= < S / (2.16 a)

as well as
fd*g ig) $ A g) (2.16 b)

Because of the definitions (2.3) for g and (2.15) 
for G we have

d3C; d3c;- = d*g d3C . (2.17)

Thus we may uniquely define an inner product for 
two-particle functions £ (i, j) and fj (i, j) :

( ? ! » ;> := /d 'c d ^ f i f  = /  d3G d3# £ rj. (2.18)

Hence the transformation coefficients of the expan­
sions (2.14 a, b) are

T % = (lf{G )0* ig ) W A D vA l)) (2.19a)

and
Ä  = k A G ) $ A g ) ) .  (2 .i9b)

Using 9?° = 1, Eq. (2.8 b), we insert the expansions 
(2.14 a, b) into the collision elements (2.13) and 
obtain

B l  (i, j) = Ta'x' (2.20 a)

with
n ' t  : = fd * g f  dK  f  d ü ' au g (2.20 b)
x (G) <£*' (g) {xa (G') $ x (g )  - z a(G)<Z>x( g ) } .

Thus we obtain a representation for the collision 
elements with the following features:

a) The transformation coefficients T, Eq. (2.19), 
merely depend on the choice of the base functions 
cp, x and 0 . Their calculation is a purely mathe­
matical problem.

b) The "collision matrices" F , Eq. (2.20), de­
pend on the properties of the particle interactions. 
Their calculation can be facilitated by simplifying 
assumptions about these interactions.

2.3. Calculation of the Collision Matrices F
In this section we make the following assump­

tions regarding the interactions between the col­
liding particles: 1) conservation of total momen­
tum, 2) isotropic intermolecular potential, 3) elastic 
collisions.

2.3.1. C o n s e r v a t io n  of T o ta l  
M o m e n tu m

If the sum of the masses of the colliding particles 
is conserved, the center of mass velocity G is con­
served, i. e. G = G', yielding

TZ (2.21a)

with the "reduced collision matrix" 
Fx = f  d3g f  d ü ' o (Q', g)g

x &*'{g) {<i>Ag') - (̂ A g )} , (2.21b)
where the particle species indices i and j are omit­
ted. The Kronecker-(3 represents the completeness of 
the basis functions x„(G), Equation (2.14).

2.3.2 I s o t r o p i c  I n t e r m o l e c u l a r  
P o t e n t i a l

In this case the differential cross section o merely 
depends on the relative speed g and the angle of



deflection x = arc cos g -g . Thus the orthogonal ex- depend on the normalized relative kinetic energy
pansion of o with respect to Q' is , i v r  v t  \ -1 <>1 g / / KBl j  KB1 j \  _  1 g-

° (x>g) = ° L(g) Pl(^osx) , (2.22) e : - 2 r / \ m i  m j )  2 m i + mj KBTij 

where PL (cos x) are Legendre polynomials, hence (2.28 a)

o^{g) = (2 L + 1) /  d cos x o (x, g) P^ (cos x) .(2.23) r  mi T.+ mi T (2.28b)
- 1 ' mt + mj 1 mi +

Factorising the functions and as in the following way:
&Ag) =  ®qim{g) = & qi(g) Ylm(g) (2.24a) K T  ts rp \ - ( ? + 3)/2 ,

0 ql(g) = .2(Z + l)/2. _ L _
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and qlKi)' \ mi mj j ]/2 ji
V ' W ^ W W - V f W J T ' t f )  (2.24b) 1 m

(Q + l + 1)!!with the spherical harmonics Yi,n(g) and their com- H
plex conjugates an(]

Y f  (g) := Y ? m>(g) , (2.24c) fK ~ K n T -V 2
0  (g) = ( +  (2.29 b)

we have instead of Eq. (2.21 b) :
,„ , 00 V 9(I' + l)/2^ ' 7'W f pl'ß T y + 1/2)

STfiS = /<7* %  fd O fd .Q 'o (x ,g )  X 2 (9 - ' )  ■ ■ e -n/2 (e) •

X (g) F r ' (<l) iW) Yhn( a ') The Polynomials ^(«-lifll are generalized Laguerre 
1 1 ql lm polynomials with half integer superscripts, so called

-  (g) Yim (g) } • (2.25) Sonine polynomials. With

We insert the expansion a = aLP L, Eq. (2.22), into / £ ß T. KBT}\*I2
(2.25) and replace the Legendre Polynomials PL 9 g = V \ m r  ~m^~) V> * ( '
by the addition theorem for spherical harmonics:

^ oo the expression (2.27 b) for the isotropic collision
n 'lm  =  2  o T - T  /  9* d9 f  d"Q /  °L (9) matrix becomes in the case of elastic collisionsL 2 L + 1 o

xY LM(g) Yf ( g ') 0 f  (g) Y f  (g) (2.26) ^  = _  (K bK  +  J  ̂  ^ ^
x {<MsO Ylm(g') -  $ ql(g) Ylm(g )} . " / °

Because of the orthogonality of the spherical har- (g + Z+1)!! 6 (0

monies, the integrations over the solid angles dß
and dQ' then yield x Lfqt% ( e )  v® (e) ^ . (2.31)

n 'lm  d\' (2.27 a) ^
■,i,i , • ii- . . . ,, For the "transfer collision frequencies" v® (e) wewith the isotropic collision matrix n v 7

^ have [cf. (2.23)]oo
T i i ^ - A n f f d e W i g )  (2.27b) 0 / 1 , \

C -j my \ Z / + 1 /

I 2 l + l J ■ g -2 jz fd c o sx o (x ,g ){ l-P l (cosx)} (2.32)
which has only three significant indices q, and /.

2.3.3. E l a s t i c  C o l l i s i o n s

with as the mass density of the /'-th species.
The product of the two Sonine polynomials in 

(2.31) can be replaced by the expansion
As shown in Chapter 3, the functions &qi(g), rU + i/2) , ,  T (z + i/2) , ,  v X r/U (/+ i/2 )M  (0 

Eq. (2.24a), and ^ ( g ) ,  Eq. (2.24b), explicitly (f) = (/) j (^),(2.33)
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which determines the coupling coefficients9: 
a ?  (I) = (_ l) (?  + 9')/2-i + .

1/2

-z -A :

K

- K - l

(2.34)

Because of Eq. (2.33) they should be symmetric 
with respect to q and q and this can indeed be 
shown by re-organizing the factorials contained in 
the binomial coefficients of Equation (2.34). We 
insert the expansion (2.33) into the expression 
(2.31) for the isotropic collision matrix and obtain 

1 (K n T: K» T :\ (?'-f)/2
n  = -

/ ^B Tj Kh Tj
Oj ]/2 \ mt rrij ■2l~

X
(q + l+  l ) ! ! t l j 9 W s\

(2.35)
The "transport collision frequencies" 7

ct
• = ( _  I)« -------_ --------
' 1 (s + Z + 1/2)!

X /  de el + i'2 (e) (e) (2.36 a)
are the coefficients in the orthogonal expansion

y(D(e) = 2  ( - l ) s ^ s)L /  + 1/2)(£) (2.36 b)s
of the transfer collision frequencies Eq.
(2.32), and thus form a null sequence with increas­
ing 5. For Maxwell interactions they are indepen­
dent of e; hence all transport collision frequencies 
y(ls\  Eq. (2.36), vanish in this particular case for

2.4. Discussion of the Transformation Coefficients

In the case of momentum conservation we have 
= (2.21a), and the product (2.20 a)

for the collision elements B becomes
(i, j) = &i TT, V f  = : w : '. (2.37)

The combined transformation coefficients A incor­
porate the "summation operator" d,a2', the expres­
sion for the completeness of the basis functions 
Za{G). Because of the completeness of the <£*((/) 
we can write

z i f c W d W d y  * * ( g V U g ,g ')& s (g )  (2.38)

with the functions
(2.39)

For isotropic interaction potentials we have F* 
^ d Z 't fV f i ,  (2.27a), and therefore in this case we 
merely need the trace of the coefficients with respect 
to m and m for l' = I.

2.5. Summary of the General Formalism

In Section 2.2 the collision elements Bi^(i,j) 
have been represented as a linear combination 
(2.20 a) of collision matrices F ^ ' , Eq. (2.20 b), 
and transformation coefficients Eq. (2.19 a), 
and Tati, Equation (2.19 b). While the transfor­
mation coefficients are purely mathematical expres­
sions depending on the choice of the basis system 
{^(i)}» see Section 2.4, the collision matrices de­
pend on the physical properties of the interaction of 
the colliding particles (Section 2.3).

The mass conservation allowed the introduction 
of combined transformation coefficients Aj^^', Eq. 
(2.38), instead of the T coefficients and of reduced 
collision matrices F„ , Eq. (2.21b), instead of the 
collision matrices F^* Equation (2.20 b).

In the following chapter the combined transfor­
mation coefficients A are evaluated with the aim to 
represent the collision elements B]  ̂(i, j) by the 
transport collision frequencies v{ls\  Equation 
(2.36 a). The adventage of this representation is 
used in Chapter 4.

3. Calculation of the Collision Elements B

3.1. Evaluation of the Combined Transformation 
Coefficients

The first step is the calculation of the /-functions 
in the expression (2.38) for the combined transfor­
mation coefficients A. This will be done in the fol­
lowing way:

a) -̂ 00 ({/,</') is obtained simply by integration.
b) Jin (g , g ) is expanded by means of basis 

functions <p0{g'), <p°'(g), whose arguments g ,  g 
are reduced relative velocities, Equation (3.4 b).

With local Maxwellians for (f0, Eq. (2.8 a), and 
cp°= 1, Eq. (2.8 b), we have

v l j ] / £ Tt K?T, 
f 1 ( m i  , mL _ ,2\1 (3.1) 

x exp I 2 U b  T\ ' " + k ^ F , '  j l
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with the intrinsic velocities
C; : = Cf — C;o . (3.2)

These are related with the center of mass velocity 
G, Eq. (2.15), and the relative velocity g, Eq. (2.3), 
by

c  G "' gmi + m-j
and

m

(3.3 a)

Cj = G +  gmi + m} 
where the reduced velocities

G : = G -

and
— ;— c ;0+ —- f —mi + mj mi + mj

g = g ~  (c ,o -  Cio)

'/o (3.4 a)

(3.4 b)

are introduced with arbitrary reference velocities 
C;o and C;0. Substitution of the expressions (3.3 a, b) 
and (3.4 a, b) into the relation (3.1) and integra­
tion over d3£  = d3G' yields with (2.39)

Joo{g,g')

X exp

2 n Kn Tj K b Tj
mi+

-3/2

- i r
^b Tj KB Tj (3.5)

This function has the mathematical form of a local 
Maxwellian cp0( i) , Eq. (2.8a), if we replace 
KBTi/mi and C{ by K}iTi/mi + KBTj/mj and g 
resp. Therefore it is useful to introduce basis func­
tions (Po(g') and cp0''(g) in the same way as the 
one-particle basis functions cpx (i)  and cp1'( i) , be­
sides of the substitution just mentioned. Thus we 
expand the /-functions as follows:

j U g ,g ')  = r '(g )< P o (g ') . (3.6)
The calculation of the expansion coefficients T  has 
been done using algebraic relations of the basis 
functions to derive recurrence relations for the /- 
functions with the following result10:

\KB(T j-T i) +r X', a _Xn, a' — mL -+- mj
*.x', a7Xn, a' \mi + mj, 

(3.7)
It should be recalled that small greek letters as 

indices represent index triples, but denote the order 
of a (generalized) moment or basis function if used 
in algebraic expressions like powers, inequalities 
etc. (cf. Section 2.1).

\u (u T-> s ; mi + mj
2 rpqlm rpa' , X', a -1 ct -1 q'lm /Xfi, a'q-q' = 2r

The coefficients y, depending merely on the mass 
ratio mj/(mi + mj) and not on the temperatures 
Tj,Tj, are given in the Appendix (A3). Their al­
gebraic form depends on the special choice of the 
basis functions cp. Inserting the expansion (3.6) for 
Ji'n into the expression (2.38) for the combined 
transformation coefficients A we can write

aX',X _ rpyi -pX',a rpa'Xfi, x' — * a -*- X/i, a' * x'
(3.3 b) with the 'transformation matrices"

7 V : = / d 3g <P"(g)cpa(g)

(3.8)

(3.9 a)

and
T $ := f d * g V '{ g ) 0 K'( g ) ,  (3.9 b)

which are given in the Appendix (A 2) in connec­
tion with the discussion of special basis systems.

3.2. Final Expression for the Collision Elements B

Combining the expression (3.8) for the com­
bined transformation coefficients A with the expres­
sion (2.35) for the isotropic collision matrices 
and requiring the same reference velocity for all 
species of particles [cf. (3.4) ] we obtain in the case 
of elastic collisions from Eq. (2.37)

T . \ 4W-(! + *)] 1 1Bx'n (i, j) =
^b Ti Ki (3.10)

x 2  2  —
r l,s Qj

yW Fi; l , r , s ; mi + mj

The ranges of r, I, s are 11
1 / ^  min [a , \ ( l  + ju + / ')  ] 

i ^  + ju -k ')  ^  + p  + - I

\r\ <L s < ,^ (a  + jii + a') - 1. 

The parameter
KB(T j-T i) / ( Kb Ti , KB Tj

x : =

(3.11)
(3.12)

(3.13)

^  , (3.14)mi + mj

is a measure for the difference of the temperatures 
of different particle species i and j. It was inten­
tionally normalized to

M < i .
Thus increasing powers of r form a null sequence, 
a property used in Chapter 4. For the mass depen­
dent coefficients F in the expression (3.10) we have

\ \ ' { q - l ) \ \  [2(5 + /) + i ]  !!
mi + mj <  (I) - (g + Z + l)Ü 5! (3.16)
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where the two sums over q and q are to be taken 
over all values of q and q with q — q = 2 r . More 
detailed expressions for T and y require the choice of 
the basis functions. They are given in the Appendix 
A I, A2.

4. Discussion of the Order of Magnitude 
of the Collision Elements B

To compare different collision elements we em­
ploy the two null sequences introduced in (2.36) 
and (3.14), (3.15) resp.

a) The null sequence of the transport collision 
frequencies v[,s\  Eq. (2.36), with increasing s. As 
an example: In the case of Maxwell interaction all 
>;<W vanish for s 1.

b) The null sequence of increasing powers of the 
normalized temperature difference r, Equation 
(3.14). For equal temperatures of all particle spe­
cies we have r = 0, so only the terms with r° do not 
vanish.

In the following we approximate a collision ele­
ment B, Eq. (3.10), by its dominant terms. Using a 
we replace the summation over s in Eq. (3.10) by 
taking only the lowest value | r | of s according to 
Eq. (3.13) :

TJ ^  K]> Tj
rri; TTlj 2  T* W - + +' 2  ^  V« M> / i ;  ( I, r, I r I ;

r I Qj nii + mjj (4.1)

The range of the /--summation is still given by Eq. (3.12). Now we replace the /--summation in Eq. (4.1) 
by taking into account only the /--index with the lowest absolute value. To do this we have to distinguish 
between two cases:

1) A-f ju^l A': According to Eq. (3.12) we substitute the sum over r by taking the lowest /--value
r = -|r|= i(A  + /*-A ') (4.2)

in the expression (4.1) and obtain

j)
^b Tj Kn Tj+

:[ l'-Ü + fi)] mi
T Qj

T0 2 ^ V[ZJ»+W)] / /j A + fjL — A' A4- fl — X' TTlj
2 ' 2 TTl i + mj .

(4.3)

2) A + // A': According to Eq. (3.12) the summation over r begins at negative values and we have
| r | ^ 0 .  (4.4)

We insert r = 0 in expression (4.1) and obtain

B Kn Tj_ ^  A'p, Tj Y
m; ni-.

+ vm  F ^ h  0,0;
i Q TTli + TTlj (4.5)

For equal temperatures T} = Tj, i.e. r = 0, the sum over r in the expression (3.10) for B is restricted 
to the minimum r-value |  (A + /u — A'). In this case the dominant terms of B are

k* IL  +  k« IL  f  - » » » 2 B L  vm  «+,->•)!, Fn i ,
TTli mj J 7  Qj

X + JU \ X + u — X'
TTlj + TTlj > (4.6)

for all combinations of A', A and ju.
The dominant terms (4.3), (4.5) and (4.6) of 

the collision elements B, Eq. (3.10), are illustrated 
in the Figs. 1 and 2. There all factors of the pro­
ducts of powers of r with transport collision fre­
quencies v i n  the approximations (4.3), (4.5) 
and (4.6) are omitted as well as the summation 
over /. Figure 1 is taken from the expressions (4.3) 
and (4.5) for multi temperature gas mixtures or 
plasmas with Tj T j, i.e. r =(= 0. Figure 2 illustrates 
the relation (4.6) for gas mixtures and plasmas

with equal temperatures for the species of particles
i and j, Ti = Tj, i. e. t  = 0.

The transition from Fig. 1 to Fig. 2 is trivial for 
the above-diagonal elements with A + jli >  A'. For the 
subdiagonal elements with A + // <  A', however, we 
have to apply two different procedures, selecting the 
dominant terms in the exact expression (3.10) for 
the collision elements B. So we obtain different 
dominant terms in Eq. (3.10) for different (r + 0) 
and equal (r = 0) temperatures respectively. If the
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absolute value of the temperature difference de­
creases continuously then other terms in Eq. (3.10) 
raise to the same order of magnitude as those rep­
resented in the approximation (4.5). For vanishing 
temperature differences only the terms given in the 
expression (4.6) remain as the dominant ones. This 
gives an explanation for the contrast between the 
subdiagonal elements in Figures 1 and 2.

X + jbl
/.'

0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 v(/0) To 0 v(ll) T0 0 V(Z2) T0
2 V(10) rl 0 r(«>) T0 0 „(Z1) T0 0
3 0 vim rl 0 vm r0 0 „(Z1) T0
4 vm  r2 0 vm r1 0 vm  to 0
5 0 vm  t2 0 vm rl 0 v(m r°

Fig. 1. Products of transport collision frequencies v(ls) (2.36) 
with powers of normalized temperature differences r (3.14) 
in the dominant terms of the collision elements B% (3.10) 
for plasmas with different temperatures for the species of 

particles.

X + /n
I'

0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 vm 0 v(ll) 0 V(12)
2 0 0 vm 0 v(ll) 0
3 0 v(l\) 0 r (fl)) 0 vim
4 0 0 v(li) 0 vm 0
5 0 vm 0 v(ll) 0 vm

Fig. 2. Transport collision frequencies v('s) (2.36) in the 
dominant terms of the collision elements Bx'u (3.10) for 
plasmas with equal temperatures for all species of particles.

Comparing for equal temperatures the absolute 
values of the dominant terms illustrated in Fig. 2 
we observe values of the same order in the diagonal 
and a symmetric decrease with increasing distance 
from the diagonal. This is caused by the decrease of 
the absolute value of the transport collision frequen­
cies v<ls>, Eq. (2.36), with increasing s. The shape 
of the (symmetric) decrease of the off-diagonal 
terms depends on the molecular interaction. For the 
Maxwell interaction the transfer collision frequen­
cies v®(e), Eq. (2.32), are independent of the en­
ergy, hence all transport collision frequencies v<h\  
Eq. (2.36), vanish for 1. Thus in this particu­

lar case only the diagonal terms in Fig. 2 remain, 
while all off-diagonal terms vanish. This statement 
is true not only approximately in the sense of the 
dominant terms but exactly [cf. Eqs. (3.10), (3.12), 
(3.13)]. The more the intermolecular force deviates 
from the Maxwell interaction the less steep becomes 
the shape of the decrease. For long range inter­
actions, e. g. (screened or cut off) Coulomb inter­
action, the descent is rather weak.

Comparing the absolute values of the dominant 
terms for different temperatures, illustrated in Fig. 1, 
we observe a decreasing order of magnitude with 
increasing distance from the diagonal, too, which is, 
however, not symmetric. For the super-diagonal 
terms the decrease is caused by the same reason as 
in the case of equal temperatures, Figure 2. For the 
subdiagonal terms the absolute value of the powers 
of r [  r < 1 , cf. Eq. (3.15)] decreases with increas­
ing distance from the diagonal, as the exponent in­
creases. This descent is steep for small temperature 
differences and becomes less pronounced for in­
creasing absolute value of r. In contrast to the case 
of equal temperatures, Fig. 1 shows that only the 
descent of the super-diagonal terms depends on the 
deviation of the intermolecular force from the Max­
well interaction as discussed above.

5. Concluding Remarks

For small deviations from thermodynamic equi­
librium the initial term a ® <p0(i) in the orthogonal 
expansion (2.4) of the velocity distribution function 
/ is the essential one if (p0{i) is taken proportional 
to the local Maxwellian (2.8). Therefore the con­
dition

| alj | <  | üij | for A ^ l  (5.1)

is used to linearize the right-hand side of the system 
(2.10), which is equivalent to the kinetic Equation 
(2.1). Then the matrix elements of the linearized 
collision operator consist of Bi0aj0 and B^a®. 
Therefore Figs. 1 and 2 directly illustrate these 
matrix elements. For the calculation of transport 
coefficients this infinite matrix must be inverted. In 
general this can be done only approximately. For 
the evaluation of an efficient approximation proce­
dure it is necessary to know the order of magnitude 
of the different matrix elements. They have been 
discussed at the end of Chapter 4.

Although expressions for the matrix elements of 
the linearized collision operator can be taken from
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our general expression (3.10) for the non-linearized 
collision elements it is more advantageous to calcu­
late them directly using Burnett functions as basis 
system of orthogonal function. These are products 
of spherical harmonics and generalized Laguerre 
polynomials with half-integer superscripts (Sonine 
polynomials). These Burnett functions allow certain 
short cuts in the calculation of the transformation 
coefficients corresponding to Equation (2.19). The 
results will be presented in a forthcoming paper.

Appendix

A 1. Hermite Functions and Some Related Moments 

The basis functions cp (̂Ci) are determined to

<P;.(Ci) =  <Phh>JCi)
K vT ^-W2 71

X He;., I C/1

exp _  1 r  * m> 
2 1 Kv.T,

X He;. C

m\ 
Kb Tj

mj 
Ku Ti

He, I C?
m-i

Kb Ti 

(A l)

where C,1, Cj2, C 3 are the cartesian components of 
the intrinsic velocity C ;, Equation (3.2). Because 
of the orthogonality relation for the Hermite-poly- 
nomials, defined by

Hew(x) : = e3"8/2 (—d.r (A2)

we obtain
1

xH e2l [CI 

X H eJC i3

Ax! /,!  A3!

He;
m; 

KbT
mi 

Kb Ti
The order of the basis functions,

/  : = X1 + A2 + / 3 ,

Kb Ti) 

(A3)

(A4)

denotes the tensorial order of the related generalized 
moments (cf. Section 2.1). Some of the moments

=  <9^(01/(0 (A 5)

and their connection with physical properties are 
given in the following equations. If we assume the 
distribution function f (i) to be normalized to

(1| f(i))= Q i, (A 6)

where Qi is the mass density, we immediately have 
for A = 0

ai000 = Qi. (A 7)
For A = 1 we obtain

aitoo
010
001

= J f :  = (Ci !/(£)) (A 8)

with the diffusion flux J ; . The tensorial pressure, 
defined as

Pi ' = (Ci C i\f{i)} , (A 9)

becomes with Eq. (A3) :

2 a .200 Kb Ti+ ------- a-,m}

2 a,020

000 110

000

.101 a Oil

, KBT,+ ------- a,m,
2 a .002 + ^ B T \a 

m.

101

on

ooo

(A 10)

Ku Tj
(A ll)  

,000

The scalar pressure is determined to
Pi = % trace p,

=  § (a;200 + a,020 + a,002) +

Inserting the ideal gas equation
^B Ti / A1 oxPi = Qi-------  (A 12)m,

into Eq. (A ll)  yields
Oj200 + «j020 + cj002 = 0 . (A 13)

So we obtain in the case 1 — 2 the traceless stress 
tensor:

.200 no'2 af™ a
j110 2«j020 a 
.101 „.oil 2 aa,

(A 14)

To close this discussion we shall give an expression 
for the heat flux vector, which belongs to the gener­
alized moments in the case A = 3. If we define

Q ;: = \  Cj Cf —
5 Kb Tj

we obtain

Qi
3 ai + a

+ 3 a-

.120
210
201

030

+ a .021

(A 15)

(A 16)

A 2. Transformation between cp and 0

At first we express a product of three Hermite- 
polynomials, as it appears in the basis functions cp,
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in terms of spherical harmonics Yjm (#, xp) 12. The The dual basis functions become 
argument is assumed to be a dimensionless vector X r^  j  K T *  1 
with the cartesian components x1 = r sin ■& cos xp, <p*ix'-x*(g) = 1/ -------- -f------ —-------j-----—
o • a • i i  a rr,i i i \ mi m, X,\ X.-,\ x ox- = r sin v sin ip and or = r cos if. I he result can be ' -

written down in the form 13
H e^rr1) He„(z») H e ^ z 3)

lm ] F j(r )Y l>n (dfV) (A 17)

^  f lm
x 2lm ^3

9 1/2
Yiln(g) Kb T; Kb Tj+

=  2  l,m
with x = xx+ x2 + xz and 0 ^  x — I even. 

I m

io
OOx

X V4.1 (21+ 1) ( - l ) ( x- 1̂ 2

9*

The coefficients can be normalized to 

= 1 .

X I H S  2 (K BTt , KBT,+

(x + l + l ) !!

(A 23)

This yields
F j(r )  = (/4 ti-(2 /+ 1 ) (_ l)("-0 /2 .

I j  (l' +1/2) (l  2)x r L(x-l)J2 \2 r )

x\
(x + l + l ) \ \  

(A 19)
with generalized Laguerre-polynomials with half- and 
integer superscript (Sonine-polynomials)

rff ♦ W V V  .)* (  (« + * + D /2 \
(* - 0/2 j ' o ! \ 2 / \ K + Z + J j

(A 20)
The bracket-coefficients are given by 14

lm , -. v ™ i  /  (Z + w*) ! ~ I \ ,

/ » no\ We compare these equations with the definitions 
(2.24 a, b) and (2.29 a, b) for the basis functions 
& and obtain for the transformation matrices, de­
fined by the Equation (3.9 a, b ) :

I mT9lm * q f1 Xl x2 X3 •

T'Xl *2 »3 _ A X

X

X! 2 /+ 1

(A 24)

x ^ .x jx s !  (x + l + l) !  ( g - l ) l !

(A 25)
I m

xx x2 x3

xx x2 x3
x (x + l + l )! !  ( x - ^  2 (A 2i)

x . fi \ ,Ll /

TXI I  + -  m) -  /< 2 ( - D ;

3. Results for the Coefficients y 
If we use the definitions (A l) and (A3) for the 

basis functions cp, we obtain 10 for the coefficients y, 
Eq. (3.10) :

|(jl' + X + n - O + o')jr / -■ \ i . i i
YK«.«

(x3 + 2 r) !
(z3 + 2 t  + l + m + l)! !  (z3 + 2 r - ?  + m )!! '

Inserting the expansion (A 17) and the functions 
(A 19) into the definition (A l) of the basis func­
tions cp we obtain:

(* + 3)
(9) =

3
x 77

7! = 1

mj + nij 

1
T I  "n̂ — — ,Un + On — On tn

(A 26)

m tyt-fl
m;

X
= i ^b Tj Tj

x 2l,m

mi m
I m 

xx x2 X3

1
] / 2 i 3

+ Mn ~ n̂ + °n — °n 
2

A-n + Mn + — On — On

KB Tj Kb Tj \ y/2 This can be expressed in terms of the Jacobi poly-
+ nomials

X V4n (2 l + l)  (_!)(«-0/2 xl

9~
x i H / M  2 ( KbT' i K* T>

mi mj
9~

(x + l+ 1 )! !  

(A 22)

P%'b)(x ) :=  2 - ^ 2  
t

N + a \ ( N  + b 
N - t

X exp t \Y lm(g ) .
\ mj m;- J J

X ( a r - l j^ - ^ x + l) *  (A27) 

- ^ - Y  (A 28)7ij + m;- /

X A  ----- 1------------ r  6n)f 1 -  2n = \An -  Kn — Mn + °n-On , \ mi + mjj

in the form

rfcV  - ( - 1)1' - 1
3



with on and on' must satisfy the following conditions:
Ntl: = l{K ' + h  + F n - ° n -o ,; )  , (A 29) 0 ^  o , ' ^  V  (A 32)
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an : = Xn- N n, (A 30) and
max (0, l n + fin -  In + °n ) ^  On (step 2) 

bn -. = on- l n. (A 31) V  + ^n + i" « -0»'- (A 33)
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