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A coupled system of balance equations is derived for the coefficients of orthogonal expansions of
the velocity distribution functions. The orthogonal functions are not specified, but the initial func-
tions must be local Maxwellians with different temperatures for different species of particles. Closed
expressions for the matrix elements of the non-linearized Boltzmann operator are given, whose

dominant terms are determined and compared.

1. Introduction

Tensorial velocity moments, i.e. polyadic pro-
ducts of the velocity vector averaged with the veloc-
ity distribution function as weight function, are
meaningful physical quantities. Those up to the
second order, viz. density, flow, and pressure, are
directly measurable as well as energy flow, the trace
of the third order moment. Therefore Maxwell !
derived a coupled system of balance equations for
these moments from the Boltzmann equation. With
these balance equations transport coefficients and
relaxation times could be calculated.

The balance equation for the n-th order moment
contains the divergence of the n + 1st order moment,
contributing to the coupling among the balance
equations. The closure of the system regarding this
particular coupling is usually done by an approxi-
mative expression for a certain moment, which con-
tains no higher order moments.

To calculate the collision integral of a balance
equation the velocity distribution functions for the
species of colliding particles must be known in gen-
eral. Maxwell overcame this difficulty using the so
called Maxwell interaction between the particles, the
only type of interaction where the knowledge of the
distribution functions is not required for the cal-
culation of the collision moments. To avoid this re-
striction for the particle interaction Grad? expanded
the velocity distribution function in an orthogonal
series of tensorial Hermite functions. The coeffi-
cients are averages of tensorial Hermite polynomials
and therefore linear combinations of the velocity
moments. Thus the collision moments become in-
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finite series of moments with calculable coefficients,
causing complicated coupling between the balance
equations for non-Maxwellian interactions.

To close the system of balance equations with
regard to this coupling Grad? proposed an a priori
cutoff of the orthogonal expansion. This heuristic
procedure has to be justified ad hoc. In the present
paper we avoid this cutoff. Instead of this we de-
velop a method to compare the order of magnitude
of the infinite sequence of coupling coefficients
(Chapter 4). This allows their neglection according
to a prescribed accuracy.

Instead of Grad’s tensorial Hermite functions
other systems of orthogonal functions have been
used: products of three ordinary Hermite functions
with the cartesian velocity components as argu-
ments ® and Burnett functions, viz. products of
spherical harmonics with generalized Laguerre func-
tions %, In Chapter 2 of the present paper we de-
velop a general formalism without specification of
the orthogonal system used for the expansion of the
distribution functions. In contrast to previous treat-
ments we assume different kinetic temperatures for
the different species of particles. This is particularly
important for plasmas. Due to the large mass ratio
between electrons and heavy particles (ions and neu-
trals) their energy exchange is much slower than
the mutual exchange between the electrons them-
selves and between the heavier particles. Therefore
very often different temperatures are maintained for
the different species of particles and must be taken
into account in all expressions describing the be-
haviour of these plasmas.

The collision operator is not linearized. For all of
its elements closed expressions are calculated using
transformation theory (Chapter 2 and 3). Trans-
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formation coefficients depending on the choice of
orthogonal functions are given in the appendix. In-
stead of the (-integrals introduced by Chapman
and Cowling ® and extensively used by Hirschfelder,
Curtiss and Bird %, we prefer linear combinations of
them, the transport collision frequencies introduced
by Suchy and Rawer’. Their advantages are dis-
cussed in Chapter 4.

2. General Formalism

2.1. Derivation of a System of Balance Equations

The kinetic equation for the velocity distribution
function f(i) =f(x;, €;;t) for particles of species ¢
can be written as

D) [f()] =§B(i,j) (@, /(1. (2.1)

The operator

d :
D) = 3 TC ai + ¢ é%_

acts as total derivation. B(i,j) describes binary
interactions between particles of species i and j. The
particular Boltzmann form

B, ) [/(@), ()]
=f & [dQ 09 [f() () =D ()]

is bilinear in the two functions f(i) and f(j);
primed and unprimed arguments distinguish vari-
ables before and after the collision, the differential
cross section 0;; depends on the relative velocity

(2.3)

(2.2)

g:=Cj—c;.

To introduce a generalized moment-method we rep-
resent the distribution functions f as elements of a
linear space spanned by a basis system {¢;}:

f(xi, €558) =a* (x5, 1) @3(%;,€:58) , (2.4a)

abbreviated as

@) =at @:1(3) .
The basis functions ¢;(x;,t;€;) are to be con-
sidered as functions of the variable €; with X;, ¢ as
parameters which only appear in a normalization
speed and a reference velocity, e.g. VKyT;(x;,t) /m;
and €;(x;,t), cf. Equation (2.8a). The conven-
tion is used to sum over all indices appearing once
and only once as a superscript and a subscript. As

we restrict ourselves in the explicit calculations to
elastic collisions, we let 4 denote a triple of indices

(2.4Db)

and define an inner product by
(ply) = [dep(e)y(e).
This enables the construction of a dual basis system
requiring
(" () | (i) ) = [ dei ¥ () i (i) = 0. (2.6)
Hence the expansion coefficients in (2.4), the “gen-
eralized moments™, are inner products:

al = (P (@) |f(@)) = [ Pei ¢ (i) f(2) -
To treat deviations from thermodynamic equilib-

rium the basis system {¢; (i)} is chosen such that
@o(2) is proportional to the local Maxwellian:

A K]; T,' )g3"/2 . 717 - {nl . 2.
Py (i) : = (2 7 m, exp { KoT, (€i—cqp)
(2.8 a)

(2.5)

(2.7)

with an arbitrary reference velocity €. Condition
(2.6) for the dual basis then yields
¢ =1.

Starting with ¢, (i) as a “weight function” we
have two possibilities to construct the basis system:
threedimensional Hermite-functions 3 and Burnett-
functions 8. Both systems can be represented in ten-
sorial or scalar notation; a special choice, used in
the following calculations, is discussed in the Ap-
pendix A1 together with some of the related gener-
alized moments a/. In both cases the order of a?,
@, (i) and ¢*(i) is given by the highest power of
le;— ¢y in the polynomial ¢*(i). For simplicity
the following convention shall be used: a small
greek letter denotes a triple of indices if used as an
index but it is the order of the moment if used in
algebraic expressions, e.g. inequalities or powers.
Thus all such expressions are valid for both types
of basis systems according to the transformation
matrices, given in the Appendix A2.

Inserting the expansion (2.4) into the kinetic

Eq. (2.1) yields (2.9)
D) [pi(i)af] = ,]Z B(, j) [9:(@) af, pu(j)a] .

(2.8b)

If we assume the operator B(7, j) to be bilinear —
as in the Boltzmann form (2.2) —, multiplication
with ¢* (i) and integration over d3c; yields a system
of coupled equations:

D} (i)a} =3 By (i, j)ataf.  (2.10)

i

This is a system of “balance-equations” for the gen-
eralized moments. The choice (2.8) of the basis
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functions yields for /"= 0 the mass balance or con-
tinuity equation, for A'=1 the momentum balance
or equation of motion, etc. The coefficients

D (i) : = (" () D@ [@:(d)])  (2.11)

and
Bi(iyj) 1 = (9" (D) B, j) [9:(0), @ (j)]) (2.12)

themselves are in general operators acting on the
moments a/, a;". Expression (2.12), however, be-
comes multiplicative if the variation of the moments
can be neglected in the temporal and spatial scale of
the molecular interaction. Therefore in the case of
the Boltzmann integral (2.2) the generalized mo-
ments may be drawn out of the integrations over
d3¢;, d3¢; yielding the collision elements
B(i,j) = 3¢, [ d3¢; [dQ2 0,9

x @ @) e @) () —p2@ @u ()} (2.13)

2.2. Representation of the Collision Elements B

The first step in the evaluation of (2.13) is the
expansion of the product of two one-particle basis
functions:

'pA(l) Pu (]) == %Z Xu(G) (I)z (g) ) (214‘ a)
¥ (@) o' (j) =T 1 (G) D7 (g) , (2.14Db)

where in addition to the relative velocity g =c¢; — ¢;,
Eq. (2.3), the center-of-mass velocity
m; m;

G:= — C;+ — C;
m;+m; m; +m;

(2:15)

is introduced. The functions @ and y are dual in the
sense of the definitions (2.5) and (2.6) :

J &6 77 (G) 7.(G) =0, (2.16 a)
as well as
[ &g D¥(g) D, (g) = (2.16 b)

Because of the definitions (2.3) for g and (2.15)
for G we have

d3c; d3c; = d3g G . (2.17)

Thus we may uniquely define an inner product for
two-particle functions &(i,j) and #(7, j):

(Eln) i=[de;dBc;En =[BCABg &Y.

Hence the transformation coefficients of the expan-
sions (2.14 a, b) are

(G)DP*(9) i) p.(j)) (2.19a)

(2.18)

l#“(
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and
T = (7 () 9 () |72 (G) B, () . (2.19D)
Using ¢° =1, Eq. (2.8b), we insert the expansions
(2.14 a,b) into the collision elements (2.13) and

obtain
BY. Gy J) =

WY TE (2.20a)

with
P = [d3g [ 3G [dQ 059 (2.20b)
% 27 (G) D% (g) {2 (G') D..(g") — 2.(G) D, (g) } .

Thus we obtain a representation for the collision
elements with the following features:

a) The transformation coefficients 7, Eq. (2.19),
merely depend on the choice of the base functions
@, 7 and @. Their calculation is a purely mathe-
matical problem.

b) The “collision matrices” ¥, Eq. (2.20), de-
pend on the properties of the particle interactions.
Their calculation can be facilitated by simplifying
assumptions about these interactions.

2.3. Calculation of the Collision Matrices V'

In this section we make the following assump-
tions regarding the interactions between the col-
liding particles: 1) conservation of total momen-
tum, 2) isotropic intermolecular potential, 3) elastic
collisions.

2.3.1. Conservation of Total
Momentum

If the sum of the masses of the colliding particles
is conserved, the center of mass velocity G is con-
served, i. e. G = G, yielding

V25 (2.21a)
with the “reduced collision matrix”
Vi~ [ g [ a2 0 (2, g)g
x D7 (g) {D.(g) - D.(g)}, (221b)

where the particle species indices i and j are omit-
ted. The Kronecker-0 represents the completeness of
the basis functions x,(G), Equation (2.14).

2.3.2 Isotropic Intermolecular
Potential

In this case the differential cross section ¢ merely
depends on the relative speed g and the angle of
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deflection z = arc cos §-§’. Thus the orthogonal ex-
pansion of ¢ with respect to 2’ is

o(z, g) =0o"(g) Pp.(cosz) , (2.22)

where Py (cos ) are Legendre polynomials, hence

ol(g) =3(2L+1) jld cos x 6 (z, g) P1,(cos x) .(2.23)
i

Factorising the functions #* and P, as
¢z (g) = (pqlm (g) == d)ql (!}) Ylm (g) (224 a)
and

D7 (g) = DI (g) = DY (9) Y (§) (2.24Db)

with the spherical harmonics Y., (g) and their com-
plex conjugates

PG) =Y (@), (2.24¢)
we have instead of Eq. (2.21b) :
vy —fg3dgfd [dQ o(z,9)

X gpl' (9) Yl' (g) {(pql(g,) Ylm (g,)
—~ Dy (9) Y1 (§) ) - (2.25)
We insert the expansion ¢ =o" Py, Eq. (2.22), into

(2.25) and replace the Legendre Polynomials P,
by the addition theorem for spherical harmonics:
1]/:] Vo’

o 3 0 T,
qlm 22L+1f.9 d!]fd fon(g)

xYin(@) YT (§) Y (9) Y (§) (2.26)
X{Pu(9) Yin(§) — Pu(g) Yin(§) } -
Because of the orthogonality of the spherical har-

monics, the integrations over the solid angles dQ
and dQ’ then yield

prim _ o oF Wy (2.27 a)
with the “isotropic collision matrix”
V8= —4 .'tofg3 dg D7 (g) (2.27Db)

F 1
X{“"(g) D,(g9") —d(g)- 2041 D, (g) },

which has only three significant indices ¢, ¢" and L.

2.3.3. Elastic Collisions

As shown in Chaplter 3, the functions D, (g),
Eq. (2.24a), and Df(g), Eq. (2.24b), explicitly
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depend on the normalized relative kinetic energy

ORI S (.KBT L KTy 1 mimy g
T 2 g/ m; m; ) 2 m;+m; KBT”
with (2.28 a)
Pas———0 . B g 15 50%)
m;+m; m; +m;
in the following way:
,KBATE, M e (1+1)/2. 1,,,,_
qu[(g) B ( m; + m,- ) 2 V2 JT
e-t el [0+12)
X (q+7l‘-§— ]_)T 81'7L(q—l)/:2 (8) (229 a)
and
i Ky T; K T;\v2
DY (9) = (—B . ) (2.29b)
m; m;

X 2¢+DR (g —U) 11 R LED, (o) .
The polynomials L33
polynomials with half integer superscripts, so called
Sonine polynomials. With

are generalized Laguerre

g2 dg= 1/7( 4 KT, ) Vede  (2.30)
m;

the expression (2.27b) for the isotropic collision

matrix becomes in the case of elastic collisions

vy = — (K}LT_I oL ,KB,.TL')(q'_q)/g fszn/z de-21+32
m; m; 0

1 (g=D! e-c LI (¢)
V2a (q+l+1)" (@-ne

X L"”P) (e) v®@ (e) =4
0j

(2.31)

For the “transfer collision frequencies” »® (¢) we

have [cf. (2.23)]
1
0@ 1= gt ((g) - 57 o))

:;no,, ‘g2 fdcosza(z,g){1—P;(cosz)} (2.32)

7

with o; as the mass density of the j-th species.

The product of the two Sonine polynomials in
(2.31) can be replaced by the expansion

(l-rl/?) , (&) L(l+1 ))(6 Zaz(I'(l) Ls(l+1/?) (¢), (2.33)
s

<q =02
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which determines the coupling coefficients ?:

aqu(l) _ (_ 1)(q+q’),/'2—l?s
[+1 -1 .y
kst s+1+1/2 L
2 = 2
q-1 s mlavd g
2 2
g +1+1 q+q
3 5 [-K
X . x . (2.34)
e s—K

Because of Eq. (2 33) they should be symmetric
with respect to ¢ and ¢’ and this can indeed be
shown by re-organizing the factorials contained in
the binomial coefficients of Equation (2.34). We
insert the expansion (2.33) into the expression
(2.31) for the isotropic collision matrix and obtain
o™ L(KB IR ALS
i V2a \ my m;

(¢ —l)” E (s+1+1/2)!
(g+l1+1)! s!

2l+1

)$ sq () p(s) |

(2.35)
The “transport collision frequencies” ?
s!
(s+1+1/2)!
X [deet+12e-¢ [ C+12) (£)pD (¢) (2.36 a)
are the coefficients in the orthogonal expansion

y® () = Z(—l)sr‘")L” 12 (e)  (2.36D)

of the transfer collision frequencies »(¢), Eq.
(2.32), and thus form a null sequence with increas-
ing s. For Maxwell interactions they are indepen-
dent of ¢; hence all transport collision frequencies
»?) Eq. (2.36), vanish in this particular case for
e

() = (—1)°

2.4. Discussion of the Transformation Coefficients

In the case of momentum conservation we have
Ver =0% V%, (2.21a), and the product (2.20 a)
for the collision elements B becomes
B (6, ) =TX% 0¥ T8 WY = : ALy WY .
The combined transformation coefficients 1 incor-
porate the

(2.37)

“summation operator” 0,*, the expres-
sion for the completeness of the basis functions
7.(G). Because of the completeness of the P,(g)

we can write

A = [ &g [ &3g D*(g) 15 (g, 9" ) D, (g) (2.38)
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with the functions

15(9.9) : = [ EC " () pu () . (2.39)
For 1sotr0p1c interaction potentials we have V24
= oY lP,Il, (2.27a), and therefore in this case we
merely need the trace of the coefficients with respect
tom and m” for I’ =1[.

2.5. Summary of the General Formalism

In Section 2.2 the collision elements B}, (i, j)
have been represented as a linear combination
(2.20a) of collision matrices W%, Eq. (2.20b),
and transformation coefficients T%,;, Eq. (2.19a),
and T2, Equation (2.19b). While the transfor-
mation coefficients are purely mathematical expres-
sions depending on the choice of the basis system
{@;(i) }, see Section 2.4, the collision matrices de-
pend on the physical properties of the interaction of
the colliding particles (Section 2.3).

The mass conservation allowed the introduction
of combined transformation coefficients 43,%/, Eq.
(2.38), instead of the T coefficients and of reduced
collision matrices 'I’,’Z/, . (2.21b), instead of the
collision matrices %% Equatlon (2.20b).

In the following chapter the combined transfor-
mation coefficients 4 are evaluated with the aim to
represent the collision elements B}, (i,j) by the
transport frequencies »"), Equation
(2.36 a). The adventage of this representation is
used in Chapter 4.

collision

3. Calculation of the Collision Elements B

3.1. Evaluation of the Combined Transformation
Coefficients

The first step is the calculation of the J-functions
in the expression (2.38) for the combined transfor-
mation coefficients 4. This will be done in the fol-
lowing way:

a) J0o(g,g’) is obtained simply by integration.

b) Ji.(g,g’) is expanded by means of basis
functions ¢,(g"), ¢ (g), whose arguments g, §
are reduced relative velocities, Equation (3.4 b).

With local Maxwellians for ¢, Eq. (2.8 a), and

=1, Eq. (2.8b), we have

Vo) = L)
s y _ Vi idsr: [
P (7) 990(1 ) (Po(] ) ] I&;;T I&BT
] B 1 ] i ] ’9 _4]{54 .'2>} (3.1)
ol Lo 2
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with the intrinsic velocities
C,'Z:cihc,'(). (32)

These are related with the center of mass velocity
G, Eq. (2.15), and the relative velocity g, Eq. (2.3),

by - .
=il — g (3.3 a)
m;+m;
and
- mi
Ci=G+ ";ﬁm] g, (3.3b)

where the reduced velocities

é::G_(

m;
Cp+ —— c]'0> (3.4a)
m;+m; m;+m;

and

g:=9g— (cjo—¢y) (3.4b)

are introduced with arbitrary reference velocities
¢ and ¢€j). Substitution of the expressions (3.3 a, b)
and (3.4a,b) into the relation (3.1) and integra-
tion over d3G = d3G” yields with (2.39)

! \)-3/2
X R |
X exp {— % g}'z/(% + IS::;T]—)} «  (3.5)
2 : :

m; m;
This function has the mathematical form of a local
Maxwellian ¢,(i), Eq. (2.8a), if we replace
KB T;/mi and Ci' by KB Ti/mi+KB T,-/mj and g,
resp. Therefore it is useful to introduce basis func-
tions ¢,(g’) and ¢°(g) in the same way as the
one-particle basis functions ¢;(i") and ¢* (i), be-
sides of the substitution just mentioned. Thus we
expand the J-functions as follows:

159,90 =T5% ¢ (@ 9§ -
The calculation of the expansion coefficients I" has
been done using algebraic relations of the basis

functions to derive recurrence relations for the J-
functions with the following result 10:

F).yg —{KB(T T)F(l “A-pro- U)l’ ( m; )

m;+m; L m;+m; ‘

(3.7)

It should be recalled that small greek letters as

indices represent index triples, but denote the order

of a (generalized) moment or basis function if used

in algebraic expressions like powers, inequalities
etc. (cf. Section 2.1).

m; >
m;+m; q—

(3.6)

F’// (l7 T,S; z qumT ’llﬂ ‘}}l# U (

g=2r m;+

Generalized Moment Method for Multitemperature Gas-Mixtures

m]- sa’
m}_)%“ m( 2)

395

The coefficients y, depending merely on the mass
ratio m;/(m;+m;) and not on the temperatures
T;,T;, are given in the Appendix (A 3). Their al-
gebraic form depends on the special choice of the
basis functions ¢. Inserting the expansion (3.6) for
J}. into the expression (2.38) for the combined
transformation coefficients 4 we can write

Apn =T2 % TS (3.8)
with the “transformation matrices”
Ty = &G @) g.(§)  (39a)
and
TZ = &Pgor (@ P.(g),  (3.9b)

which are given in the Appendix (A 2) in connec-
tion with the discussion of special basis systems.

3.2. Final Expression for the Collision Elements B

Combining the expression (3.8) for the com-
bined transformation coefficients 4 with the expres-
sion (2.35) for the isotropic collision matrices ¥
and requiring the same reference velocity for all
species of particles [cf. (3.4)] we obtain in the case
of elastic collisions from Eq. (2.37)

, K K - G+w)
B£y<z,;)=( o s | K )

mi
X Z A -+ +r Z

(3.10)

m;
V(Ls) leu(l s ) )

s Qj m;+m;

The ranges of r, I, s are !
1<I<min[{,3(2+u+1)] (3.11)
L04+u-2)Sr<50+u+4) -1 (3.12)
lr|£s<3(A+pu+1") 1. (3.13)

The parameter
_ Ks(T;-T) /(KBTi " KBTj) (3.14)
m;+m; m; m;

is a measure for the difference of the temperatures
of different particle species ¢ and j. It was inten-
tionally normalized to

J‘ T <1
Thus increasing powers of 7 form a null sequence,

a property used in Chapter 4. For the mass depen-
dent coefficients F in the expression (3.10) we have

(¢ -DU2+D+111

(g+I+1)1!s! 167
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where the two sums over ¢ and ¢’ are to be taken
over all values of ¢ and ¢’ with ¢ — ¢ =2r. More
detailed expressions for T and y require the choice of
the basis functions. They are given in the Appendix

Al,A2.

4. Discussion of the Order of Magnitude
of the Collision Elements B

To compare different collision elements we em-
ploy the two null sequences introduced in (2.36)
and (3.14), (3.15) resp.

KnTi .

lu(l j)= ("' KBT

m; m;

4= @ +p)] m; o, m;
T s e S g (1, ||
r 10 i

- Generalized Moment Method for Multitemperature Gas-Mixtures

a) The null sequence of the transport collision
frequencies »™, Eq. (2.36), with increasing s. As
an example: In the case of Maxwell interaction all
y1) vanish for s > 1.

b) The null sequence of increasing powers of the
normalized temperature difference 7, Equation
(3.14). For equal temperatures of all particle spe-
cies we have 7=0, so only the terms with 7° do not
vanish.

In the following we approximate a collision ele-
ment B, Eq. (3.10), by its dominant terms. Using a
we replace the summation over s in Eq. (3.10) by
taking only the lowest value |r| of s according to

Eq. (3.13):

» (4.1)

ml+m,-

The range of the r-summation is still given by Eq. (3.12). Now we replace the r-summation in Eq. (4.1)
by taking into account only the r-index with the lowest absolute value. To do this we have to distinguish

between two cases:

1) A+p=¥

: According to Eq. (3.12) we substitute the sum over r by taking the lowest r-value

r=|r|=3(+u-1%) (4.2)
in the expression (4.1) and obtain
¢ - (+w)] ' ) g 2 '
Bf,:(i,j)z(ABT KBT ) w TOZ'm] ylI3Gsn-2] i (17 Atpu—12 ',*Aj_'u_A 771@]7*)_ (4.3)
m; m; T 0j 2 2 m;+m;

2) A+ui:

According to Eq. (3.12) the summation over r begins at negative values and we have

r|z0. (4.4)
We insert r =0 in expression (4.1) and obtain
KgT; KgT;\tW-G+0] N
Bm~(”’+v“]> TM*PWZTJMFMOOO ). (4.5)
. m; m; U 9j 1+mJ

For equal temperatures 7;=7T;, i.e. 7=0, the sum over r in the expression (3.10) for B is restricted
to the minimum r-value 3 (4+ u—2"). In this case the dominant terms of B are

KpTi |

m; m;

B[V -+ )] ;
A *ahi) S My
T 0

for all combinations of 4, 2 and u.

The dominant terms (4.3), (4.5) and (4.6) of
the collision elements B, Eq. (3.10), are illustrated
in the Figs. 1 and 2. There all factors of the pro-
ducts of powers of 7 with transport collision fre-
quencies »" in the approximations (4.3), (4.5)
and (4.6) are omitted as well as the summation
over [. Figure 1 is taken from the expressions (4.3)
and (4.5) for multi temperature gas mixtures or
plasmas with T;+T;, i.e. 7+ 0. Figure 2 illustrates
the relation (4.6) for gas mixtures and plasmas

LG +u-2)] F;,, (l, L,

Avu—A | A+u=2 _om;
B Pl _

2 2 ) (4.6)

m,+m]

with equal temperatures for the species of particles
iand j, T;=T;,i.e. 1=0.

The transition from Fig. 1 to Fig. 2 is trivial for
the above-diagonal elements with 2+ u>4". For the
subdiagonal elements with /4 1< /Z’, however, we
have to apply two different procedures, selecting the
dominant terms in the exact expression (3.10) for
the collision elements B. So we obtain different
dominant terms in Eq. (3.10) for different (7+0)
and equal (r=0) temperatures respectively. If the
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absolute value of the temperature difference de-
creases continuously then other terms in Eq. (3.10)
raise to the same order of magnitude as those rep-
resented in the approximation (4.5). For vanishing
temperature differences only the terms given in the
expression (4.6) remain as the dominant ones. This
gives an explanation for the contrast between the
subdiagonal elements in Figures 1 and 2.

l4u| 0 1 2 3 4 5
ZI
0 0 0 0 0 0 0
1 0 »(10) z0 0 p(1) 720 0 p(2) 70
2 »(0) 71 0 »(0) 70 0 (1) 70 0
3 0 »(0) 71 0 »(0) 70 0 y(l1) 70
4 y(0) 72 0 y(0) 71 0 »(0) 70 0
5 0 »(0) 72 0 p(0) 71 0 »(10) 70

Fig. 1. Products of transport collision frequencies »(/s) (2.36)
with powers of normalized temperature differences 7 (3.14)
in the dominant terms of the collision elements B}, (3.10)
for plasmas with different temperatures for the species of

particles.

Atu| 0 1 2 3 4 5
ll
0 0 0 0 0 0 0
1 0 v (10) 0 (1) 0 v (12)
2 0 0 v (10) 0 p (1) 0
3 0 p (1) 0 »(10) 0 v (1)
4 0 0 p (1) 0 »(10) 0
5 0 v(2) 0 y(l1) 0 v (20)

Fig. 2. Transport collision frequencies »(s) (2.36) in the
dominant terms of the collision elements B}, (3.10) for
plasmas with equal temperatures for all species of particles.

Comparing for equal temperatures the absolute
values of the dominant terms illustrated in Fig. 2
we observe values of the same order in the diagonal
and a symmetric decrease with increasing distance
from the diagonal. This is caused by the decrease of
the absolute value of the transport collision frequen-
cies v, Eq. (2.36), with increasing s. The shape
of the (symmetric) decrease of the off-diagonal
terms depends on the molecular interaction. For the
Maxwell interaction the transfer collision frequen-
cies »? (¢), Eq. (2.32), are independent of the en-
ergy, hence all transport collision frequencies »*,
Eq. (2.36), vanish for s = 1. Thus in this particu-

lar case only the diagonal terms in Fig. 2 remain,
while all off-diagonal terms vanish. This statement
is true not only approximately in the sense of the
dominant terms but exactly [cf. Egs. (3.10), (3.12),
(3.13)]. The more the intermolecular force deviates
from the Maxwell interaction the less steep becomes
the shape of the decrease. For long range inter-
actions, e.g. (screened or cut off) Coulomb inter-
action, the descent is rather weak.

Comparing the absolute values of the dominant
terms for different temperatures, illustrated in Fig. 1,
we observe a decreasing order of magnitude with
increasing distance from the diagonal, too, which is,
however, not symmetric. For the super-diagonal
terms the decrease is caused by the same reason as
in the case of equal temperatures, Figure 2. For the
subdiagonal terms the absolute value of the powers
of 7[|7| <1, cf. Eq. (3.15)] decreases with increas-
ing distance from the diagonal, as the exponent in-
creases. This descent is steep for small temperature
differences and becomes less pronounced for in-
creasing absolute value of 7. In contrast to the case
of equal temperatures, Fig. 1 shows that only the
descent of the super-diagonal terms depends on the
deviation of the intermolecular force from the Max-
well interaction as discussed above.

5. Concluding Remarks

For small deviations from thermodynamic equi-
librium the initial term a;° @, (i) in the orthogonal
expansion (2.4) of the velocity distribution function
f is the essential one if ¢ (z) is taken proportional
to the local Maxwellian (2.8). Therefore the con-
dition
for 1>1

lal;| < |ad;] (5.1)

is used to linearize the right-hand side of the system
(2.10), which is equivalent to the kinetic Equation
(2.1). Then the matrix elements of the linearized
collision operator consist of B;:(/)a]-0 and Bé;aio.
Therefore Figs. 1 and 2 directly illustrate these
matrix elements. For the calculation of transport
coefficients this infinite matrix must be inverted. In
general this can be done only approximately. For
the evaluation of an efficient approximation proce-
dure it is necessary to know the order of magnitude
of the different matrix elements. They have been
discussed at the end of Chapter 4.

Although expressions for the matrix elements of
the linearized collision operator can be taken from
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our general expression (3.10) for the non-linearized
collision elements it is more advantageous to calcu-
late them directly using Burnett functions as basis
system of orthogonal function. These are products
of spherical harmonics and generalized Laguerre
polynomials with half-integer superscripts (Sonine
polynomials). These Burnett functions allow certain
short cuts in the calculation of the transformation
coefficients corresponding to Equation (2.19). The
results will be presented in a forthcoming paper.

Appendix
A 1. Hermite Functions and Some Related Moments

The basis functions ¢, (C;) are determined to

p:(C) = (pi.,/'.g/'.g(ci)

- E‘i@l)Aw _1 z,,’ﬁe;}
: (2 7 m exp 2 C; KT,

where C;!, C32, C are the cartesian components of
the intrinsic velocity C;, Equation (3.2). Because
of the orthogonality relation for the Hermite-poly-
nomials, defined by
He, (z) : — ™' (— d—)”w‘%? (A2)
dx

we obtain
1

s} == 1he ks ) o= -
(C) = ¢h*5(C) : LT A,17,!

e/ ™ ge. (2 _’,’,‘iﬁ\
xHe, (CI VKB T,-)H"“ (C‘ VKB T,)

) !
/" m;
st/ ™
X He, (CI l/ Ky Ti>' (A3)
The order of the basis functions,
Ai=A+2+15, (A4)

denotes the tensorial order of the related generalized
moments (cf. Section 2.1). Some of the moments

a,»lzagzl"‘ﬂ"“=<q?':(i)“f(l‘)> (AS)

and their connection with physical properties are
given in the following equations. If we assume the
distribution function f(i) to be normalized to

(1)) =¢ (A 6)

Generalized Moment Method for Multitemperature Gas-Mixtures

where ¢; is the mass density, we immediately have
for 2=0

ai000 =0;. (A 7)
For 7=1 we obtain
a1 i
a |=|J? ) =di:=(Ci|f()) (A8)
a9 IE

with the diffusion flux J;. The tensorial pressure,

defined as

Pi:=(C:Cilf@i)), (A9)
becomes with Eq. (A3):
2a200 Efizi,aiooo, a0, g 1
i
Uk
pi=|al®, 2a920 4+ .!,{B_l a0, ¢ | (A10)
m;
@10l g0l 9,002 K_‘?,Tt @000
] 2 ] L] i mL 3 l
The scalar pressure is determined to
pi = % trace P; (A11)
— 2 (a0 + q920 1 g 002) | . BA i a .
i
Inserting the ideal gas equation
Ky T;
pi=9—— (A12)
ml
into Eq. (A11) yields
a0 +aq020 4,020, (A13)

So we obtain in the case Z=2 the traceless stress
tensor:

2200 g0 101

P = a1 2920 g1t

05101 ail]ll 2 ai002

(A 14)

To close this discussion we shall give an expression
for the heat flux vector, which belongs to the gener-
alized moments in the case 4 =3. If we define

Q;:= <C,' (Ci2 2 KB )> (A 15)

we obtain
300 120 102
3a+ a0+ !0
a0 1300 L g2

a1+ g2 43 g8

Q= (A 16)

A 2. Transformation between ¢ and D

At first we express a product of three Hermite-
polynomials, as it appears in the basis functions ¢,
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in terms of spherical harmonics Y, (¢, ) 2. The The dual basis functions become
argument is assumed to be a dimensionless vector x KaT. I\ T 1
; . . R sTi B
with the cartesian components a!=rsin®cosy, @***(g) = 1/ s ’yj SRS
2?=rsin?siny and 2® =r cos . The result can be i '2'92'3' 2
written down inothe form 13 %S [ l‘mh ] YE () K 7? KB
He,, (2!) He,,(2%) He,,(2?) i [ %y %y %3
Im L !
= z A7 — e !
2, zng FLr) Y, (9,y)  (A17) XV4a(2l+1)(-1)* ”"@:mﬁ
with %= +%+x; and 0= —1 even. g> -
x LI+12) KsT, Kpls A 23
The coefficients [/ e ] can be normalized to =D\ 2 "’:‘l’* + :l ]> ( )
%y % %g i 5
o | 1 (A18) We compare these equations with the definitions
00x| (2.24 a,b) and (2.29 a,b) for the basis functions
This yields @ and obtain for the transformation matrices, de-
Flr)=Van (2141) (—1)#-DP ( l/' T fined by the Equation (3.9 a,b):
®+i+ Ilm
' L1/9 L -
x A LEYD (3 7 (A19) T =07 %! Ll oo xJ (A24)
with generalized Laguerre-polynomials with half- and
integer superscript (Sonine-polynomials) o =8, o7 o2k+1
L(Mm(l ) Fep ( 9>K((x+l+1)/2) " ' %1;%2!%;;! (e+1+1)! (g—D!!
pl=r: — :
=-D2\ 2 E=oK!\ 2 K+1+3 x[ m ] (A 25)
i Fs%ty

(A 20)
The bracket-coefficients are given by 4

lm m (l+m)‘ = (% + 25 ) %2
[z1x2x3}=(_1) ]/(l—m)!2 i

R TS (B

%! “

x(%(%1+%:1_m) ﬁ/()z (_1),<% (”1+:¢2—m)>

7(73-{—2!)' -
(/3+2r+l+m+1)” (#3+2Tt—14+m)!!’

Inserting the expansion (A 17) and the functions
(A 19) into the definition (A1) of the basis func-

tions ¢ we obtain:

ra ) 7 ‘—(.x+3>
Prurea(@) = 1/ K6 Tt KTy 777 1

m; m; V275'7[

I (g (o KT
2 zlz.,z3]<g /( m; + m;

lm

X]/4~7(2l+1)(_1)(/ /2

X

2!
erl+ 1)1

(A 22)

A (s

X exp 2(&37;

KBT]> Ylm(g) .

A 3. Results for the Coefficients y

If we use the definitions (A1) and (A 3) for the
basis functions ¢, we obtain 1° for the coefficients y,
Eq. (3.10):

X LA +d+u-o+0
pii% = (=1)4+ (_,’"1_,, : :
o m;+m; (A26)
><1§[ 1 Z(— mi)’”(h)
n=1 "‘:n,_}“n”““n'i“on_onl ) tn m; tn
2
; ’ L] : 4
A + iy — Ay + 04— 0
2
X a7 - ’
An +Up+4n—0p— 0y g
n
2

This can be expressed in terms of the Jacobi poly-
nomials

(a5} N+a N+b)
) = s AZ( )(N—t

X (z—1)¥- t(x+1)f (A 27)
in the form
V.o 2 m; o’
yii%, = (=1)% Al
O e e (A28)
]3' — 1 P(an;bn)<1_2 m; )
n=14y —}-n—/un+0n_on,| o m;+m;

2
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with

1

)

5

Nn E= %(/‘:n, -+ ;vz +/ln — Oy — On,) s (A 29)
an:=;'n"an (A 30)
byi=0,—A. (A31)
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