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We propose a new set of field equations within the frame-
work of a Poincare gauge theory of gravitation. These equa-
tions couple momentum to the torsion and spin to the cur-
vature of spacetime and encompass an Einstein-like limit. 

The Poincare gauge theory of gravitation (Ein-
stein-Cartan-Sciama-Kibble theory, U4 theory) is 
based on the following two assumptions: 

A . l : The special relativistic description of material 
systems, in particular their Poincare invari-
ance with 4 translational and 6 rotational 
degrees of freedom, is valid within any suf-
ficiently small region of spacetime. 

A.2: The relative distances and orientations of the 
local Minkowski bases are governed by field 
equations. 

In this way the theory tries to derive the gravita-
tional interaction of elementary fields from the fun-
damentals of field theory rather than from the be-
havior of macroscopic bodies. 

The assumptions uniquely identify a Riemann-
Cartan spacetime as the kinematical arena of the 
theory. The geometry is described by the constant 
Minkowski metric g aß, the 4 translational gauge 
potentials e? (tetrad coefficients) and the 6 rotatio-
nal gauge potentials r ^ = (connection coef-
ficients) *. The corresponding 4-plus-6 gauge fields 
are the torsion F'if and the curvature F'(f ̂. 

The material Lagrangian density 

is locally identical to the special relativistic density 
that is £ = e L (ip, ea

l Dt ip). Provided 
d£fdip = 0 , the 4 translational currents = 
dC/def and the 6 rotational currents er^ß : = 
dC/dr^P are identical to the canonical energy-
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* The quantities and symbols employed in this note are 
taken from von der Heyde1. For more details and 
literature we refer to the review article by Hehl, von der 
Heyde, Kerlick, and Nester2. Latin indices refer to the 
coordinate basis and greek indices ß, . . . = 0 , 1, 2, 3 
number the tetrads. We defined e : = det (eia) and e e a l : = 
3e/3 eia. Di is the operator of parallel translation with 
respect to Z\ The matter field components ip are always 
referred to the tetrads. 

momentum and spin angular momentum tensors, 
respectively, knowrn from special relativity. 

As a first step towards a dynamics for the gravi-
tational fields we add a third assumption. 

A.3: The 4-plus-6 field equations for e? and T f ' 
can be derived from a total Lagrangian den-
sity L + 'V with a first order field Lagrangian 
density 3;-e,% 3 , / ^ ) . 

The general structure of the field equations is then 
uniquely determined: 

DjU? +££ = eZi, (1) 

D ^ + J I - ^ E T J & . ( 2 ) 

Here, we have defined the tensor densities H^1 ' = 
d V / d i d j e ? ) and JK^ : = 3T/3 ( 3 , - T ^ ) . The ten-
sor density - £ * :=ea

[V- F£ - F£ö is 
the covariant part of the energy-momentum supplied 
by ei3 and T'fP, whereas the tetrad coefficients e ? 
alone contribute via — W^ß] to the spin current. 

To complete the theory the 4-plus-6 densities !H 
have to be specified. The rest of the note is devoted 
to this problem. The usual choice is 

Choice 1: Hi1 = 0 ; = (e/l2) e l[a jß], 

or equivalently V = (e/2 Z2) ey
l F'ii6 where I ^ 

1 0 - 3 2 cm is the Planck length. The advantages of 
this choice are maximal simplicity of the field equa-
tions 

-el F$6/2 = l2 — i , (3) 

F$I2 +ei« F$v = Z2 räß (4) 

and their similarity to Einstein's theory. Like Ein-
stein's theory this theory is consistent with present 
day experiments. 

In our opinion, however, the following consider-
ations suggest to look for an alternative choice: 

a) The choice 1 introduces an asymmetry between 
translations and rotations in that V does not depend 
on the translational gauge fields, but only on the 
potentials e f . 

b) The kinematics of this theory closely resembles 
that of gauge theories of internal symmetry groups. 
Choice 1 violates this analogy as far as possible. The 
field Eqs. ( 3 ) , (4 ) are algebraic in the gauge fields 
and couple these fields to the wrong sources. As a 
consequence the translational gauge potentials e* 
get coupled to their sources ^Ti1 only after substitu-
tion of (4) into (3 ) . 

c) The gauge kinematics suggests that the orbital 
angular momentum of matter or rather its general 
relativistic relic, the spin of the tetrad fields, should 
enter the source in addition to material spin. With 
choice 1 the tetrad coefficients carry no spin. 
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d) Momentum and spin are coupled to geometry 
with the same strength. From the dimensional dif-
ference between translations and rotations one might 
rather expect a length associated with the trans-
lational part and a dimensionless coupling constant 
for the rotational part. 

e) It is impossible to retain choice 1 if one wishes 
to generalize the Poincare group to the general af-
fine group GA(4 ,R ) including nonmetricity and 
proper hypermomentum as proposed by Hehl, Ker-
lick, and von der Heyde 3 . In this case additional 
terms must enter the Lagrangian V and the sim-
plicity is lost. 

f ) Choice 1 does not allow for the usual quantiza-
tion methods and retains the difficulties known from 
general relativity in this context. 

We propose to examine as an alternative the field 
equations resulting from the following choice: 

Choice 2: = (e/l2) (F||a + 2 e" F%) , 

Hsj/ = (e/x) . 

Here / is the Planck length and ^ is a dimensionless 
constant to be determined by observation. The cor-
responding Lagrangian density is 

V = (e/4 F) {Ffi F% + 2 Ffy Fu
ö) + (e/4 * ) F$> F%d. 

The field energy-momentum ££ turns out to be 
asymmetric and traceless. 

If the coupling constant x is sufficiently small, 
the geometry becomes a teleparallelism to a first 
approximation. Then, in an appropriate gauge, the 
connection coefficients T approximately vanish and 
the torsion F}f= 2 (3[i ef] +r\f\v e v\ß) is essentially 
given by the first Riemannian term. The density 
JJ'a3 of choice 2 is the simplest one which gives New-

1 P. von der Heyde, The Field Equations of the Poincare 
Gauge Theory of Gravitation, Phys. Lett. A 58, 141 
[1976]. 

2 F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. 
Nester, General relativity with spin and torsion: Founda-
tions and prospects, Rev. Mod. Phys. 48, 393 [1976]. 

ton's law in this limit. A more detailed calculation 
reveals that in the limit of teleparallelism the exact 
static, spherical symmetric solution of the non-linear 
Eq. (1) is the Schwarzschild solution. As prelimi-
nary computations indicate, deviations from this 
solution induced by the second field Eq. (2) can be 
adjusted by the choice of x in order to check with 
the classical tests. 

The choice of Ti'aß is strictly analogous to other 
gauge theories. Furthermore, since Dt Dj (e F\]aß) = 0 
in a Riemann-Cartan spacetime, curvature does not 
enter the angular momentum theorem Dt (e r£ß 
— yi[aß]) = 0 as should be expected from the non-
covariance of the spin of the connection field. 

There is additional support for choice 2. Take 
the special relativistic Dirac theory for the electron 
and perform Gordon decompositions of the currents 
JT and r. These exactly reflect the structure of the 
field Eqs. (1 ) , (2) with non-vanishing 71« . They 
lead to choice 2 if one substitutes — in analogy to 
the electromagnetic case — the moments of the mo-
mentum and the spin current by the corresponding 
gauge fields. 

We would like to point out that irrespective of the 
magnitude of the energy-momentum theorem for 
spinless matter reduces to the one of standard gen-
eral relativity. This guarantees geodesic motion for 
macroscopic matter. 

Finally we note that the vacuum field equation for 
gravitation proposed by Yang 4 is contained in (2) 
in the case of vanishing torsion. In the context of 
our interpretation, however, there seems to be no 
good place for this limit as torsion mediates gravity. 
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