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We propose a new set of field equations within the frame-
work of a Poincaré gauge theory of gravitation. These equa-
tions couple momentum to the torsion and spin to the cur-
vature of spacetime and encompass an Einstein-like limit.

The Poincaré gauge theory of gravitation (Ein-
stein-Cartan-Sciama-Kibble theory, U, theory) is
based on the following two assumptions:

A.1: The special relativistic description of material
systems, in particular their Poincaré invari-
ance with 4 translational and 6 rotational
degrees of freedom, is valid within any suf-
ficiently small region of spacetime.

The relative distances and orientations of the
local Minkowski bases are governed by field

equations.

A2:

In this way the theory tries to derive the gravita-
tional interaction of elementary fields from the fun-
damentals of field theory rather than from the be-
havior of macroscopic bodies.

The assumptions uniquely identify a Riemann-
Cartan spacetime as the kinematical arena of the
theory. The geometry is described by the constant
Minkowski metric g,5, the 4 translational gauge
potentials e (tetrad coefficients) and the 6 rotatio-
nal gauge potentials I';%# = I";l*f (connection coef-
ficients) *. The correspondmg 4-plus-6 gauge fields
are the torsion Fi* and the curvature F;**

The material Lagrangian density

Ly, iy, e, I'?F)

is locally identical to the special relativistic density
L(y,d,v), that is L=eL(y,e,D;y). Provided
0L/dw =0, the 4 translational currents e3} : =
dL/de# and the 6 rotational currents et;h :

0L/8I'¢## are identical to the canonical energy-
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* The quantities and symbols employed in this note are
taken from von der Heyde!. For more details and
literature we refer to the review article by Hehl, von der
Heyde, Kerlick, and Nester 2. Latin indices refer to the
coordinate basis and greek indices «, 8, ...=0, 1, 2, 3
number the tetrads. We defined e:=det(e;?) and e esi:=
Jde/3eja. D; is the operator of parallel translation with
respect to I'. The matter field components 3 are always
referred to the tetrads.
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momentum and spin angular momentum tensors,
respectively, known from special relativity.

As a first step towards a dynamics for the gravi-
tational fields we add a third assumption.

A.3: The 4-plus-6 field equations for e and I
can be derived from a total Lagrangian den-
sity L+V with a first order field Lagrangian
density V(e?, e, I'#f, O;I' 7).

The general structure of the field equations is then
uniquely determined:

D,HY +Ei=e 3, (1)
D;H: + Hilg=esh. (2)

Here, we have defined the tensor densities H;!
3V/3(3jes) and Hids: = 3V/3 (3; I'i##). The ten-
sor density —&l:=e iV —F HS —F 2 H;¥
the covariant part of the energy-momentum supphed
by e and I, whereas the tetrad coefficients e;
alone contribute via —Hjap) to the spin current.
To complete the theory the 4-plus-6 densities H
have to be specified. The rest of the note is devoted
to this problem. The usual choice is

Choice1: Hii=0; aﬁ = (e/l?) e[a e’ﬁ] ’

or equivalently V= (e/212) es<e,! Fi}® where | ~
10732 cm is the Planck length. The advantages of
this choice are maximal simplicity of the field equa-
tions

Fl —el Fi’[2=P 5}, (3)

Fsb/2 +efa Fif, =P (4)

and their similarity to Einstein’s theory. Like Ein-
stein’s theory this theory is consistent with present
day experiments.

In our opinion, however, the following consider-
ations suggest to look for an alternative choice:

a) The choice 1 introduces an asymmetry between
translations and rotations in that 7 does not depend
on the translational gauge fields, but only on the
potentials ez

b) The kinematics of this theory closely resembles
that of gauge theories of internal symmetry groups.
Choice 1 violates this analogy as far as possible. The
field Eqs. (3), (4) are algebraic in the gauge fields
and couple these fields to the wrong sources. As a
consequence the translational gauge potentials e
get coupled to their sources '3 only after substitu-
tion of (4) into (3).

c) The gauge kinematics suggests that the orbital
angular momentum of matter or rather its general
relativistic relic, the spin of the tetrad fields, should
enter the source in addition to material spin. With
choice 1 the tetrad coefficients carry no spin.
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d) Momentum and spin are coupled to geometry
with the same strength. From the dimensional dif-
ference between translations and rotations one might
rather expect a length associated with the trans-
lational part and a dimensionless coupling constant
for the rotational part.

e) It is impossible to retain choice 1 if one wishes
to generalize the Poincaré group to the general af-
fine group GA(4,R) including nonmetricity and
proper hypermomentum as proposed by Hehl, Ker-
lick, and von der Heyde?®. In this case additional
terms must enter the Lagrangian 7 and the sim-
plicity is lost.

f) Choice 1 does not allow for the usual quantiza-
tion methods and retains the difficulties known from
general relativity in this context.

We propose to examine as an alternative the field
equations resulting from the following choice:

Choice 2:  HJ = (e/I2) (Fi,+2 €l FiTY) ,
Haﬂ = e/A) F.?a

Here [ is the Planck length and x is a dimensionless
constant to be determined by observation. The cor-
responding Lagrangian density is

= (e/4 1) (Fi FY% + 2 Fil FX3) + (e[4 ») Fif® F5s
The field energy-momentum E; turns out to be
asymmetric and traceless.

If the coupling constant x is sufficiently small,
the geometry becomes a teleparallelism to a first
approximation. Then, in an appropriate gauge, the
connection coefficients I approximatelv vanish and
the torsion Fi7=2 (e} + 1'%, €lj7) is essentially
given by the first Riemannian term. The densny
H:i of choice 2 is the simplest one which gives New-
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ton’s law in this limit. A more detailed calculation
reveals that in the limit of teleparallelism the exact
static, spherical symmetric solution of the non-linear
Eq. (1) is the Schwarzschild solution. As prelimi-
nary computations indicate, deviations from this
solution induced by the second field Eq. (2) can be
adjusted by the choice of x in order to check with
the classical tests.

The choice of 7‘115 is stnctly analogous to other
gauge theories. Furthermore, since D; D; (e F',5) =
in a Riemann-Cartan spacetime, curvature does not
enter the angular momentum theorem D;(et;p
—j"l[ap]) =0 as should be expected from the non-
covariance of the spin of the connection field.

There is additional support for choice 2. Take
the special relativistic Dirac theory for the electron
and perform Gordon decompositions of the currents
2 and 7. These exactly reflect the structure of the
field Eqgs. (1), (2) with non- vanlshmg HY . They
lead to choice 2 if one substitutes — in analogy to
the electromagnetic case — the moments of the mo-
mentum and the spin current by the corresponding
gauge fields.

We would like to point out that irrespective of the
magnitude of x the energy-momentum theorem for
spinless matter reduces to the one of standard gen-
eral relativity. This guarantees geodesic motion for
macroscopic matter.

Finally we note that the vacuum field equation for
gravitation proposed by Yang* is contained in (2)
in the case of vanishing torsion. In the context of
our interpretation, however, there seems to be no
good place for this limit as torsion mediates gravity.
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