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The Poisson ratio » of a polycrystalline aggregate was calculated for both the face-centered
cubic and the body-centered cubic cases. A general two-body central-force interatomatic potential
was used. Deviations of ¥ from 0.25 were verified. A lower value of » is predicted for the f.c.c. case
than for the b.c.c. case. Observed values of » for twenty-three cubic elements are discussed in terms
of the predicted values. Effects of including volume-dependent electron-energy terms in the inter-

atomic potential are discussed.

Introduction

The Poisson ratio ¥ of polycrystalline aggregates
is of considerable interest both practically and theo-
retically. Poisson’s ratio is used frequently in engi-
neering design, and it relates directly to the nature
of interatomic forces in solids.

Many authors (see Refs. 2-3 in Ref. 1) have cited
the deviation of » from 1/4 as proof that the inter-
atomic potential has a non-central component. Re-
cently this view was disputed !. It was shown that
1/4 is the lower limit of » for an aggregate of cen-
tral-force crystals and that the upper limit is:
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where

A=2 C44/(Cll - Cl2) (2)

is the Zener elastic anisotropy factor, where Cyy,
Cis, and Cyy are the three independent Voigt elastic
constants for the cubic-symmetry case. That a range
of » values is possible in a central-force model of
polycrystals was pointed out also by Anderson and
Demarest 2.

In this note, the problem of ¥ is reconsidered
from the viewpoint of a general two-body central-
force interatomic potential. For the two common
cubic crystal structures, body-centered cubic and
face-centered cubic, unique central-force values of »
are given. And it is suggested that these values relate
to the problem of the occurrence of non-central
interatomic forces in polycrystalline aggregates.
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Two-Body Central-Force Calculations

Most materials have non-central components in
their interatomic forces. This is especially true in
metals where the free electrons contribute some
purely volume-dependent energy terms. However,
because they are simple in both form and inter-
pretation, two-body central-force interatomic poten-
tials have been used to calculate a variety of prop-
erties of metals. Such calculations include: second-
order elastic constants3; third-order elastic con-
stants 4; fourth-order elastic constants®; pressure
dependence of the elastic constants ®; composition
dependence of the elastic constants?; Debye tem-
perature ®; mechanical stabilities ?; theoretical
strengths 1%; atomic vibrations and melting 1!; an-
harmonic properties !2; equations of state!3; dif-
fusion 1*; properties of amorphous metals 1%; lattice
parameters of intermetallic phases!®; and properties
of point defects such as vacancies and interstitials 7.
Thus, a basis for the general type of calculation
described here is well established.

Theoretical Approach

If the interatomic potential is denoted D (T), then
the Brugger elastic constants, which are fourth-rank
tensors, are given at T = 0K by:

o
a’?ii a’?kl

= 53 (D20 00 0 0 rms,

Ciim=

(3)

where D @ (r) denotes (1/r)[3D(x)/3r]. The
energy density U of the crystal is obtained by a sum
over two-body atom-atom interaction energies:

U=(1/27")22(), (4)
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where V0 is the undeformed atomic volume. The
7;; are components of the Lagrangean elastic strain
matrix

n=3JJ-1I), (5)

where I is the 3 x 3 identity matrix, t denotes trans-
position, and the deformation matrix J is defined by

r=Jre, (6)

where T and T are the interatomic spacings in the
initial state and in the deformed state, respectively.
Details concerning this approach to elastic constants
can be found elsewhere 8.

(a) Face-Centered Cubic Case

Face-centered cubic crystals have twelve nearest
neighbors at (%,1 =1,0)a/2, where a is the
unit-cell dimension. In this case one obtains from

Eq. (3):
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where . . . indicates contributions from pairs farther

than second-nearest neighbors.

(b) Body-Centered Cubic Case

Body-centered cubic crystals have eight nearest
neighbors at (*1, 1, £1)¢a/2 and six second-
nearest neighbors at (£1,0,0) a. In this case one
obtains from Eq. (3) :
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Thus, the elastic constants C;; can be determined
simply through 2 nn interactions for a general cen-
tral-force interatomic potential for both f.c.c. and
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b.c.c. crystal structures. The quantities D* D (r;)
are unspecified here since they vary with the inter-
atomic potential. In considering », which is a ratio
of elastic constants, the D? @ (r;) are unnecessary,
as shown below.

From the C;;, v is calculated by first averaging
the C;; to obtain the macroscopic polycrystalline
shear modulus G and then using the standard rela-
tionship:

11)

where the bulk modulus B, which is a rotational
invariant of the C;; matrix, is given by

B=3(Cyy+2Cy,) . (12)

If the strain tensor is uniform in the polycrystal,
then from Voigt 1%:

Gy=3%(Cy1—Ci12+3Cyy) . (13)

However, if stress is uniform throughout the poly-
crystal, then from Reuss 2:

5C Cyy

Cr= 3C+2Cy "

(14)
Since, in reality, neither strain nor stress are uni-
form in an aggregate, Hill?! suggested that G
should be determined from an arithmetic average of

Gy and Gg. Thus,
Gu=3%(Gy+Gr) . (15)

While many more sophisticated elastic-constant av-
eraging methods have been proposed 22, Hill’s aver-
age corresponds reasonably well with observation;
and, for simplicity, it will be used here.

Results

Results of these calculations for v, together with
intermediate results for B and G are shown in
Table 1. In the Table, f; is a short-hand notation
for D2 ® (1 nn) for the f.c.c. case; by and b, denote
D>*®(1nn) and D®2® (2nn) for the b.c.c. case.
The value of Gg(1nn+2nn) for the b.c.c. case
is not exactly zero. However, for any reasonable
values of b, and b, it follows that Gg/B=20.02 for
the b.c.c. (1nn+2nn) case. Results are given
through 1nn for the f.c.c. case and through 2nn
for the b.c.c. since these sets of nearest-neighbor
interactions usually account reasonably well for
most properties of these two types of crystals.
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Table 1. Elastic constants of a polycrystalline aggregate cal-
culated from a general central-force two-body interatomic
potential using a Voigt-Reuss-Hill arithmetic average of the

Cij (subscripts V = Voigt, R = Reuss, H = V-R-H).

Elastic Face-centered cubic Body-centered cubic
constant 1nn 1nn 1nn+2nn
B ih by 5B by+by)
Gv %fl g’bl ‘}(3 by+bs)
Gr s h 0 (see text)
Gu o h 15 by 15 (3 by+by)
' 0.250 0.250 0.250
YR 0.273 0.500 0.500
YH 0.261 0.364 0.364
v (obs.) 0.353 0.328
(avg. of 10) (avg. of 12)
Discussion

Single-crystal elastic data (Cy;, Cy5, and Cyy)
are available for eleven f.c.c. elements and for
twelve b.c.c. elements. The deviation of the ratio
C,5/Cy4 from unity can be taken as an index (nec-
essary but not sufficient) for the existence of non-
central forces. The ratio of the observed value of »
to the central-force value of » calculated here is
plotted versus C;,/Cy4 in Figure 1. Both C;; and
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Fig. 1. Reduced elastic constant C,,/Cy4 versus ratio of ob-

served and calculated Poisson ratios for cubic metals. For

central interatomic forces, C;,=C,, is a necessary condition
called the Cauchy relationship.
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v (obs.) data were taken mainly from Simmons and
Wang 23. Very rough correspondences exist between
these two parameters; there is a suggestion (indi-
cated by the straight lines) that the f.c.c. and b.c.c.
cases may behave differently. It is interesting that
with one exception ¥ (obs.)/¥ (calc.) exceeds unity
for the f.c.c. elements; the exception is iridium, the
only element considered for which low-temperature
elastic constants were unavailable; normally » de-
creases with lower temperatures and this would
make iridium even more exceptional.. Similarly,
with one exception (niobium) all the ratios of
v(obs.) /v (calc.) for the b.c.c. case are smaller than
unity. In other words, it is suggested that 0.261 and
0.364 may be effective lower and upper bounds for
the f.c.c. and the b.c.c. cases, respectively. The ob-
served fluctuations from these bounds are much
larger in the f.c.c. case. Anderson?* showed that
» (obs.)/» (calc.) is smaller than unity for alkali
halides.

Some speculative remarks are appropriate con-
cerning why the present calculations are reasonably
successful in predicting Poisson’s ratio for metals,
which are known to have strong non-central forces
due to their free electrons. (The upper and lower
theoretical limits on Poisson’s ratio are 0.5 and
—1.0.) First, a large part of the contributions to
the C;;’s comes from nearest-neighbor interactions
alone. Second, ¥ is a ratio of polycrystalline-aver-
aged C;;’s; thus, scaling errors are canceled and small
incremental errors tend to be canceled.

An attempt was made to improve the present cal-
culations by introducing volume-dependent terms
into the interatomic potential. Thus:

O(,0) = 55 SO + S0 (16)

where A4, and n, are constants for various types of
contributions denoted by a, and v is the reduced
volume V/V°. Three such structure-independent en-
ergies were considered: kinetic, exchange, and cor-
relation energies of the electron gas. General ex-
pressions for the contributions of these energies to
the C;’s were given by Cousins?®. In most cases,
agreement between observed and calculated values
of » was unaffected or worsened by including the
effects of these electron-electron interactions. It was
concluded that the model described by Eq. (16),
although used frequently, is incorrect, at least for
some of the elastic constants.
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In both the f.c.c. and b.c.c. cases, the effect of a
real (non-central-force) interatomic potential is to
shift » closer to a value of 1/3, a value often as-
sumed to be typical for metals. Reasons for these
shifts are unclear, and further study on this problem
may be appropriate. It is also unclear why Cy,/Cyy
tends to be increased by non-central forces. Finally,
it is pointed out that the present results are contrary
to MacDonald’s 26 contention that “general proper-
ties of a crystal may not necessarily be realized on
a nearest-neighbor model”.

Conclusions

Conclusions of the present study are:

(1) It is confirmed that the lower limit of » for
central-force polycrystals is 0.25. This value cor-
responds to uniform strain, the case where the Voigt
average of the C;;’s is appropriate.

(2) If non-central forces are absent, then » (f.c.c.)
=0.261 and v (b.c.c.) =0.364.
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