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The Poisson ratio v of a polycrystalline aggregate was calculated for both the face-centered 
cubic and the body-centered cubic cases. A general two-body central-force interatomatic potential 
was used. Deviations of v from 0.25 were verified. A lower value of v is predicted for the f.c.c. case 
than for the b.c.c. case. Observed values of v for twenty-three cubic elements are discussed in terms 
of the predicted values. Effects of including volume-dependent electron-energy terms in the inter-
atomic potential are discussed. 

Introduction Two-Body Central-Force Calculations 

The Poisson ratio v of polycrystalline aggregates 
is of considerable interest both practically and theo-
retically. Poisson's ratio is used frequently in engi-
neering design, and it relates directly to the nature 
of interatomic forces in solids. 

Many authors (see Refs. 2 - 5 in Ref. have cited 
the deviation of v from 1/4 as proof that the inter-
atomic potential has a non-central component. Re-
cently this view was disputed 1. It was shown that 
1/4 is the lower limit of v for an aggregate of cen-
tral-force crystals and that the upper limit is : 

where 

1 (2A~2 + A~i + 2) 

"m a x~ 4 (A-^ + S A ^ + l ) ' 

A = 2 C44/ ( C n — C12) 

(1) 

(2) 

is the Zener elastic anisotropy factor, where Cn , 
C12, and Cu are the three independent Voigt elastic 
constants for the cubic-symmetry case. That a range 
of v values is possible in a central-force model of 
polycrystals was pointed out also by Anderson and 
Demarest2. 

In this note, the problem of v is reconsidered 
from the viewpoint of a general two-body central-
force interatomic potential. For the two common 
cubic crystal structures, body-centered cubic and 
face-centered cubic, unique central-force values of v 
are given. And it is suggested that these values relate 
to the problem of the occurrence of non-central 
interatomic forces in polycrystalline aggregates. 
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Most materials have non-central components in 
their interatomic forces. This is especially true in 
metals where the free electrons contribute some 
purely volume-dependent energy terms. However, 
because they are simple in both form and inter-
pretation, two-body central-force interatomic poten-
tials have been used to calculate a variety of prop-
erties of metals. Such calculations include: second-
order elastic constants3; third-order elastic con-
stants 4 ; fourth-order elastic constants5; pressure 
dependence of the elastic constants6; composition 
dependence of the elastic constants7; Debye tem-
perature 8 ; mechanical stabilities9 ; theoretical 
strengths10; atomic vibrations and melting11 ; an-
harmonic properties 12 ; equations of state1 3 ; dif-
fusion1 4 ; properties of amorphous metals15 ; lattice 
parameters of intermetallic phases16; and properties 
of point defects such as vacancies and interstitials17. 
Thus, a basis for the general type of calculation 
described here is well established. 

Theoretical Approach 

If the interatomic potential is denoted (r) , then 
the Brugger elastic constants, which are fourth-rank 
tensors, are given at T = 0 K by: 

r 3 2U 
L ijkl = 

drjij drjhi 

[ ^ ^ ( D r ^ r / r / r i » ] . , , 

(3) 

where D${r) denotes ( l /r) [33>(r )/3r ] . The 
energy density U of the crystal is obtained by a sum 
over two-body atom-atom interaction energies: 

U=( l / 2 V ) 2 * ( r ) . (4) 
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where V° is the undeformed atomic volume. The 
1]H are components of the Lagrangean elastic strain 
matrix 

J t J - I ) , (5) 

where I is the 3 x 3 identity matrix, t denotes trans-
position, and the deformation matrix J is defined by 

r = Jr°, (6) 

where r° and r are the interatomic spacings in the 
initial state and in the deformed state, respectively. 
Details concerning this approach to elastic constants 
can be found elsewhere 18. 

(a) Face-Centered Cubic Case 

Face-centered cubic crystals have twelve nearest 
neighbors at ( ± , 1 i l , 0 ) a/2, where a is the 
unit-cell dimension. In this case one obtains from 
Eq. ( 3 ) : 

C n ( — £1111) — 

and 

2 V° r D 2 0 ( w 

+ 2aiD2 0(a) + 

C12 ( — C1122) — C44 ( — C2323) 

(7) 

(8) 

2 V° 4 ' f fl,*(wl+0+" 

where . . . indicates contributions from pairs farther 
than second-nearest neighbors. 

(b) Body-Centered Cubic Case 

Body-centered cubic crystals have eight nearest 
neighbors at ( i 1, ± 1, i 1) a /2 and six second-
nearest neighbors at ( ± 1, 0, 0 ) a. In this case one 
obtains from Eq. (3) : 

C n = 
2 V° 

8 D20^~a ) + 2 a*D20(a) 

+ 8 a*D2$(V2a) +... 

and 

C12 = Cu = 
2 V° 

(9) 

(10) 

+ 0 + 4 a 4 D 2 ^ ( l / 2 a ) + . . . 

Thus, the elastic constants Cy can be determined 
simply through 2 nn interactions for a general cen-
tral-force interatomic potential for both f.c.c. and 

b.c.c. crystal structures. The quantities D2 0 (r{) 
are unspecified here since they vary with the inter-
atomic potential. In considering v, which is a ratio 
of elastic constants, the D2 0 (r,) are unnecessary, 
as shown below. 

From the , r is calculated by first averaging 
the Cij to obtain the macroscopic polycrystalline 
shear modulus G and then using the standard rela-
tionship : 

1 3B-2G 

v - Y ~ 3 b T G < < U ) 

where the bulk modulus B, which is a rotational 
invariant of the Cij matrix, is given by 

B = %(Cn + 2C12) . ( 1 2 ) 

If the strain tensor is uniform in the polycrystal, 
then from Voigt 1 9 : 

Gy = l(Cn-C12 + SCu) . (13) 

However, if stress is uniform throughout the poly-
crystal, then from Reuss 2 0 : 

5 C C44 
Gn = (14) 

3 C ' + 2C4 4 ' 

Since, in reality, neither strain nor stress are uni-
form in an aggregate, Hil l2 1 suggested that G 
should be determined from an arithmetic average of 
Gy and GR . Thus, 

CH = : i (C v + CR ) • (15) 

While many more sophisticated elastic-constant av-
eraging methods have been proposed 22, Hill's aver-
age corresponds reasonably well with observation; 
and, for simplicity, it will be used here. 

Results 

Results of these calculations for v, together with 
intermediate results for B and G are shown in 
Table 1. In the Table, f t is a short-hand notation 
for D2 0(1 nn) for the f.c.c. case; b± and b2 denote 
D2 0 (1 nn) and D2&(2nn) for the b.c.c. case. 
The value of Gr(1 n n + 2 n n) for the b.c.c. case 
is not exactly zero. However, for any reasonable 
values of &2 and b< it follows that G R / ß ^ 0 . 0 2 for 
the b.c.c. ( l n n + 2 n n ) case. Results are given 
through I n n for the f.c.c. case and through 2 nn 
for the b.c.c. since these sets of nearest-neighbor 
interactions usually account reasonably well for 
most properties of these two types of crystals. 
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Table 1. Elastic constants of a polycrystalline aggregate cal-
culated from a general central-force two-body interatomic 
potential using a Voigt-Reuss-Hill arithmetic average of the 

Ca (subscripts V = Voigt, R = Reuss, H = V-R-H). 

Elastic Face-centered cubic Body-centered cubic 
constant 1 nn 1 nn 1 nn + 2 nn 

B u £ (3 b. + b^ 
GV f/L F&I i ( 3 b. + b,) 
GR 1 4 /L 0 0 (SEE TEXT) 

TT5 (3 &X + 6 2 ) Gr 5» / 1TTT ll 
0 (SEE TEXT) 

TT5 (3 &X + 6 2 ) 
RV 0.250 0.250 0.250 
VR 0.273 0.500 0.500 
VH 0.261 0.364 0.364 

v (obs.) 0.353 0.328 
(avg. of 10) (avg. of 12) 

Discussion 

Single-crystal elastic data ( C n , C 1 2 , and C4 4) 
are available for eleven f.c.c. elements and for 
twelve b.c.c. elements. The deviation of the ratio 
C12/C44 from unity can be taken as an index (nec-
essary but not sufficient) for the existence of non-
central forces. The ratio of the observed value of v 
to the central-force value of v calculated here is 
plotted versus C12/C44 in Figure 1. Both and 
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Fig. 1. Reduced elastic constant C12/C44 versus ratio of ob-
served and calculated Poisson ratios for cubic metals. For 
central interatomic forces, C12 = C44 is a necessary condition 

called the Cauchy relationship. 

v (obs.) data were taken mainly from Simmons and 
Wang 23. Very rough correspondences exist between 
these two parameters; there is a suggestion (indi-
cated by the straight lines) that the f.c.c. and b.c.c. 
cases may behave differently. It is interesting that 
with one exception v (obs.)/v (calc.) exceeds unity 
for the f.c.c. elements; the exception is iridium, the 
only element considered for which low-temperature 
elastic constants were unavailable; normally v de-
creases with lower temperatures and this would 
make iridium even more exceptional. Similarly, 
with one exception (niobium) all the ratios of 
v (obs.)/v (calc.) for the b.c.c. case are smaller than 
unity. In other words, it is suggested that 0 .261 and 
0.364 may be effective lower and upper bounds for 
the f.c.c. and the b.c.c. cases, respectively. The ob-
served fluctuations from these bounds are much 
larger in the f.c.c. case. Anderson24 showed that 
) '(obs.)/v (calc.) is smaller than unity for alkali 
halides. 

Some speculative remarks are appropriate con-
cerning why the present calculations are reasonably 
successful in predicting Poisson's ratio for metals, 
which are known to have strong non-central forces 
due to their free electrons. (The upper and lower 
theoretical limits on Poisson's ratio are 0.5 and 
— 1.0.) First, a large part of the contributions to 
the C,/s comes from nearest-neighbor interactions 
alone. Second, v is a ratio of polycrystalline-aver-
aged Cj/s; thus, scaling errors are canceled and small 
incremental errors tend to be canceled. 

An attempt was made to improve the present cal-
culations by introducing volume-dependent terms 
into the interatomic potential. Thus: 

= (16) 

where Aa and na are constants for various types of 
contributions denoted by a, and v is the reduced 
volume V/V°. Three such structure-independent en-
ergies were considered: kinetic, exchange, and cor-
relation energies of the electron gas. General ex-
pressions for the contributions of these energies to 
the C,-/s were given by Cousins 25. In most cases, 
agreement between observed and calculated values 
of v was unaffected or worsened by including the 
effects of these electron-electron interactions. It was 
concluded that the model described by Eq. (16) , 
although used frequently, is incorrect, at least for 
some of the elastic constants. 
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In both the f.c.c. and b.c.c. cases, the effect of a 
real (non-central-force) interatomic potential is to 
shift v closer to a value of 1/3, a value often as-
sumed to be typical for metals. Reasons for these 
shifts are unclear, and further study on this problem 
may be appropriate. It is also unclear why C12/Cu 

tends to be increased by non-central forces. Finally, 
it is pointed out that the present results are contrary 
to MacDonald's 26 contention that "general proper-
ties of a crystal may not necessarily be realized on 
a nearest-neighbor model". 

Conclusions 

Conclusions of the present study are : 

(1) It is confirmed that the lower limit of v for 
central-force polycrystals is 0.25. This value cor-
responds to uniform strain, the case where the Voigt 
average of the Cy's is appropriate. 

(2) If non-central forces are absent, then v(f.c.c.) 
= 0 .261 and v (b.c.c.) =0 .364 . 

(3) The choice of method (Voigt, Reuss, Hill, 
etc.) for averaging the C,-/s to obtain G and v is 
much more important in the b.c.c. case than in the 
f.c.c. case. 

(4) Including volume-dependent energy terms 
of the form Avn in the interatomic potential does 
not improve agreement between calculated and ob-
served v values. 

(5) A nearest-neighbor model can predict the 
Poisson's ratio of cubic solids reasonably well. 

(6) For the elements considered, agreement with 
a central-force value of v is much better in the 
b.c.c. case than the f.c.c. case. (While not considered 
here, second-neighbor interactions in the f.c.c. case 
tend to increase v and reduce the disagreement.) 

(7) In the b.c.c. case, calculated values of v are 
lower than observed values; this is reversed in the 
f.c.c. case. 
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