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A new approach to the calculation of a teratomic recombination rate constant k(T) has been dem-
onstrated. An expression for k(T) has been obtained in the eikonal approximation. The numerical 
calculation has been carried out for the Rb*-Xe system. Good agreement in the order of magnitude 
between the present results and the experimental data of Carrington et al. has been obtained. 

1. Introduction 

The present work is devoted to the calculation of 
the quantum teratomic recombination rate constant 
for diatomic molecules in the framework of the 
eikonal approximation. If any two atoms are able to 
form a diatomic molecule at all, then both the 
energy and angular momentum of such a molecule 
are quantized. But two free atoms, approaching each 
other during a collision, have non quantized relative 
energy and angular momentum. Therefore, two col-
liding atoms can form a bound state only if some 
part of their total energy and angular momentum is 
taken away by a third particle in the course of the 
collision (see Born 1 ) . For these reasons, the role of 
teratomic collisions in the formation of gaseous 
diatomic molecules is quite evident. 

All such recombination rate constants were cal-
culated so far classically (cp. 2 and 3 ) . The basis of 
those calculations are the classical Hamilton equa-
tions of motion of the corresponding systems. In the 
case of three particles, by eliminating the center of 
mass motion of the system, the motion of the system 
is described classically in the 12-dimensional phase 
space of positions and momenta divided into re-
actant and product regions by an 11-dimensional 
surface. The division of the phase space into reac-
tant and product regions is made on the basis of the 
internuclear distances such that for the reactants 
(three free atoms) each internuclear distance R is 
greater than a specified distance Rm (equilibrium 
distance of the molecule). On the other hand for the 
products (one molecule and one free atom) one of 
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the R's is smaller than Rm . At complete chemical 
and thermal equilibrium, the density of points in 
phase space may be specified, and the flux of points 
across the dividing surface can be calculated to ob-
tain the equilibrium reaction rate. Since multiple 
crossings of the surface may occur, it is necessary 
to examine individual trajectories to determine the 
true reaction rate. In contrast to this purely classical 
treatment, the present calculations are based on a 
quantum approach. 

We begin our considerations by giving a brief 
description of the three-body scattering formalism 
(Section 2 ) . Further, starting from the quantum ex-
pression for the recombination rate constant (Sect. 3) 
to transform it in the framework of the eikonal ap-
proximation to a form appropriate for numerical 
calculations (Sect. 4 and 5 ) . The details of the cal-
culations and the results are presented in Section 6. 

2. Three-body Scattering Problem 

In this section we shall give a brief review of the 
S-matrix formalism for the three-body scattering 
problem. Let the considered atomic system be com-
posed of one Rb atom and two Xe atoms. Following 
Schmid and Ziegelmann 4 we denote the Rb atom by 
1 and the two Xe atoms by 2 and 3. When neglect-
ing three-particle potentials, the Hamiltonian for the 
considered svstem has the form 

H' J V L + P," + - + V l + V2 + V3, (1) 
Z f f l j 2 m2 2 m3 

where the potentials Vi describe the two-particlc 
interactions according to: 

V\ = V(2, 3 ) , V2= V{\, 3 ) , V3 = V( 1 , 2 ) . (2 ) 

To separate out the center-of-mass motion of the 
system it is useful to introduce Jacobi coordinates. 
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The cartesian space coordinates are , F2 and f*3 . 
The Jacobi coordinates for which particles 1 and 2 
appear as a subsystem are denoted by r] and R. 
The transformation reads 

m l r i + m2 ®*2 

R 

mj + m2 

m l Tj + m2 r 2 + m3 r 3 

mj + m2 + m3 

(3) 

The corresponding transformation for the momen-
tum coordinates becomes 

ra, p., — m., p< 
P = -

mj + ra2 

(m1 + m 2 ) p 3 - m 3 ( p 1 + p 2 ) mj + m2 + ra3 

P = Pl+P2 + Ps 

(3 a) 

The coordinate p , which is the canonical conjugate 
to is the momentum of particle 2 in the center-
of-mass system of particles 1 and 2, and Cf, which is 
canonical conjugate to is the momentum of par-
ticle 3 in the center-of-mass system of all three par-
ticles. The Hamiltonian (1) has in Jacobi coordi-
nates the form 

H 
P-

2 (rax + m2 + m3) 

with the reduced masses 

m, ra2 

+ 

/'i = ml -f m2 
and 

2 Mi 
(4 ) 

2 u2 

m3 ( m l + m » ) 
mt + ra2 + m3 

On neglecting in (4) the term corresponding to the 
translational motion of the center-of-mass of the 
system we get 

H = + 9 — + i K = V,,. (5) 2 jli2 

P 
2 > i r = l r = l 

In general the Hamiltonian H is denoted by 

Pa" TI _ R" I 

" 2,u n 2 M„ +ivr, y = 1 
(6) 

where the index a stands for the free particle of the 
system. In our case a = 3, p„ = p, qn = q, uu = //j 
and M„ = //2 . Usually one designates the breakup 
of a three-particle system (all particles free) with 
the index 0 and, according to the definition (2 ) , 
V9 = 0. 

Let us introduce so-called channel Hamiltonian 
ha given by 

h = —— + + V 
2 LL, 2 M „ a' (7) 

Then the full Hamiltonian H can be written 

H = K + V„ (8) 

W i t h K = (9) 
r -1 

The scattering of a three-particle system is com-
pletely described by the time-dependent Schrödinger 
equation g 

H l P ( S 2 ( t ) = i f t l l / ( ^ ( t ) (10) 

with the proper boundary conditions. The super-
script ( -f ) indicates that the system is in an ex-
perimentally prepared state before scattering and is 
gradually scattered with increasing time. The index 
a denotes the definite channel and ra stands for the 
rath bound state of a two-particle subsystem. Ana-
logically, as in the two-particle scattering problem, 
the time development of a three-particle wave packet 
is given by 

n , l { t ) = e - u u x m , (11) 

while the reference wave packets develop according 
to 

<Kn(t)=e-ih«f<Pum. (12) 

The wave packet (Pam describes the free motion of 
particle a (a = 1, 2, 3) relative to the other two par-
ticles being in their rath bound state. Starting from 
the well-known boundary condition 

lim |j e~'nt Wall— e~i,lat (Pam ||=0, (13) 

t-+-oo 

we arrive at 

= s — lim e'nt e~<PM = Qa
(±) <I>am , (14) 

CX) 

where, according to the definition, 

Km em e-ih*'. (15) t-*+ oo 
The operators are called Moller operators. 
A superscript ( — ) was introduced with respect to 
the further construction of the S-matrix. In the con-
sidered case the corresponding «-channel state reads 

\<hl„) = \q,1l\n) = \q)\ (16) 

where h3\<P3m) = E3m\&3m) (17) 

with E:]m = q2/2//, + f m , 
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and respectively for three free particles, neglecting 
their internal motion, the channel state is 

* o ) = I P . < l } - | P > ' 

where 

(18) 

(19) 

(20) 

(21) 

(22) 

v2 tu2 2 //j 

If we now introduce the full resolvent 

G(z) = (z-H)^ 

and correspondingly the channel resolvent 

a , (*) = ( * - A « ) - 1 . 
then we get 

I ^own) =l im +1 eG(Eam +ie) | &am) 
£->-0 

or, making use of the equation 

G{z)=gu{z)+g<l(z)VuG{z) , 
we have 

I = I &am) +9a(Eam±i0) K I . (23) 

We now want to define the S-matrix for the problem 
considered. If we let a free state e~',ICLt\ 0am) de-
velop into a scattering state e~lHt\ ^«tn) and anal-
yse the scattering state for free states e~ ,hß' \ 0 ß n ) 
in the limit t—>+ oo, we get 

Sfln,,m(q/,qu) - l i m (e"i7'/J< | e~,Ht »*+>) , (24) 

where the index ß denotes some other channel of 
the system and n stands for a bound state of the 
corresponding two particles. According to (15 ) , the 
last expression goes over into 

Sßn.om (q/, q j — hm (e'm e-*ßf $ßn\»*+>) (25) 
<—>•00 

= (<Pßn i o / - ) f 1 0 a m ) = ( i . 

It is seen that in the three-particle case the 5-opera-
tor is a 4 times 4 matrix of operators, i. e. 

^ = 0 / - ) f 0 ( + ) , (26) 

since in general a, ß = 1 , 2 , 3 , 0 . The matrix ele-
ments of this set of operators, taken with channel 
states \0 u m ) , form the S-matrix. Recall that the 
resolvent G(z) satisfies the resolvent equation 

G(z)=gß(z)+G(z)Vßgß(z) . (27) 

If we now insert (27) into (22) and substitute 
there the index a for ß we obtain 

I Vti) = \$ßn)+G (Eßn - i 0)Vß \<Pßn) _ (28) 

= I + IG (Eßn — iO) — G (Eßn + i 0) ] Vß | 0ßn) . 

Since 

G (Eßn -iO) -G (Eßn + i 0) = 2 rr i <5 (.Eßn - H) 

then, according to (25) and (28 ) , we have 

Sßn.am (Q/> g«) 
— 2jii( 0ßn | Vß b (Eßn-H) 

= ö ( q / - q a ) S ß ^ d M n _ (29) 

- 2 xiö(Eßn-Eutn)(<Pßn\Vß\Vti). 
The quantity 

RjsUiq/, q j = {®ßn\ v ß \ ( 3 0 ) 

is usually called a transition matrix for a definite 
reaction. One can show that the transition matrix 
(30) is equivalent to 

R(ßnU(q/, q«) = ( l J V i Va \ <K,n) . (31 ) 

Substituting now (27) into (22) we can express the 
transition matrix (30) in terms of channel states 

R ( ß + n U ( q / , q J (32) 

= {0ßn\{Vß + VßG (Ea m + i 0) Va) I 0am) . 

The last expression gives us the transition matrix 
for the three-particle system which in the course of 
collision goes over from a (a, m) -state into a (ß,n)-
state. Such a transition connected with rearrange-
ment or break up of the system is called a reaction. 
The indices a and ß denote correspondingly the 
initial and final channels of the reaction. 

3. Definition of the Teratomic Recombination 
Rate Constant 

In this section we want to define the teratomic 
recombination rate constant for the Rb*-Xe system 
being in the gas phase. Let the considered system of 
volume V be composed of a mixture of excited 
rubidium atoms and Nxe xenon atoms so that n^t,* 
= NRh*/N and n\e = NxJV are the densities of Rb* 
and Xe, respectively. If the recombination of di-
atomic molecules proceeds via the teratomic reaction 

Rb* + Xe + Xe Rb Xe* + Xe (33) 

then we have the corresponding rate equation 

d (nRb*) 

d* 
= k(T)nRh* nxe (34) 

(see Eliason 5 and Snider 6 ) . 
The proportionality factor k{T) is called the 

teratomic recombination rate constant and depends 
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in general on the temperature T of the system. The 
calculation of k{T) may be done quantum mechani-
cally or classically. For chemical reactions, a quan-
tum treatment will usually be preferable or perhaps 
necessary, but the classical approach may be useful 
in some cases. The quantum approach consists in 
finding a solution of the corresponding Schrödinger 
equation for the internal degrees of freedom of the 
individual atoms and the relative motion of the 
proper pairs. The number of collisions in unit vol-
ume and unit time which lead to the formation of 
diatomic molecules is given, in our notation, by 

N = nRb*n2
Xe (P3,o(p,q))p,q, (35) 

where P-i.n(p,q) denotes the 0 — 3 channels reac-
tion probability per unit time with the initial mo-
menta p and q. The parenthesis stands for the aver-
age over the initial momenta p and q. For many 
chemically reacting systems it is a very good ap-
proximation to assume a Maxwell-Boltzmann dis-
tribution for the translational motion of the reacting 
atoms. In the quantum approach the recombination 
rate constant k(T) takes, according to (34 ) , (35) 
and (32) , the following form 

• d(E0- E3vJ)\p>q , 

where ( | 0 0) denotes commonly the 52Pi o slate of 
Rb and the ground state of both Xe atoms, but 
(2.T1/2r/, 0) stands for the A2 aj/o state of the 
quasimolecule RbXe* (life-time of the order 
3 x 1 0 - 8 sec) and the ground state of one of the 
xenon atoms. The eigenfunctions of a free motion 
are given by 

' P } = v V e " ' "% l f l ) = y f ' ' * , \ (37) 

where prime means that the corresponding momen-
tum refers to the final state and p = fcJc1, q = h k 2 

and q' = h k./. The energies E0 and E3vJ are given 
b y 

E0 = p2/2 f t x + q2l2 tt2 + £1/2,0,0 5 

E?>VJ = q'2!2 f t 2 + £II2VJ.Q • (38) 

The energy £1/2,0.0 and f 1/2r./.n refer to the internal 
degrees of freedom of the particles; fy2,fl.o is the 

sum of the energies of an excited Rb atom being in 
the 5 2 P] 9 state and two ground state Xe atoms and 
EV2VJ,O is the sum of the energies of the RbXe* 
molecule in a (v J) vibrational-rotational state and 
a free Xe atom in the ground state. The interaclion 
operators V3 and V0 are given by 

V0 = V(\,2)+V(\,3) + V(2,S), 

V3 = V (1,3) + V(2, 3) . 

Since, according to (38) 
00 

fd*q' = f&Qfq'*dq' 
0 

= / d-Q f*2 V2 ft2(E3vJ-Em,vJ,o) dESvJ, 

the integration over moduli of the momentum </' in 
(36) can be easily performed and we get 

k { T ) Y - - d f l ,< <,.,,„ „ o) . , 

with 

q = h kvJ = ]/2 fi2 (p2/2 fit + q2/2 fto + IvJ) 
and Irj = £1/2,0,0 — £i/2r/,o the dissociation energy 

of the RbXe* molecule from the \v, J) state. 

4. Recombination Rate Constant in the Eikonal 

Approximation 

We want now to express the matrix element 
5U=F( ( 2 . i „o t>/ ,0 ) ; q'\ (40) 

• I ' - 1 ' / : , , // • , ( . ' » ' • ± ""'••»•<> 

in the eikonal approximation. In a first approxima-
tion we assume that the electronic wave function of 
the molecule considered is a product of the cor-
responding wave functions of the isolated atoms *. 
As will be seen in Sect. 6 our assumption seems to 
be well justified, since in the present calculation the 
long-range forces between the interacting atoms 
prove to play the decisive role. In the following we 

* Usually, to calculate the interaction energy between an 
alkali atom and one of the nobel gas atoms one takes a 
linear combination of some of atomic states of the alkali 
atom with different quantum numbers /. This is done so 
since only the projection of the orbital momentum of a 
molecule on the interatomic axis is well defined (see 
Baylis 7). 
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assume the interaction between two atoms to be of 
the dipole-dipole type, i. e. 

V[R] = R3 ^fl-2-3 G"i R) (t"2R) 
R2 (41) 

Since the average value of that operator in each of 
the electronic states of the system is equal to zero, 
the matrix element (40) goes over into 

'M=V{{2JimvJ 0 ) ; q'\ (42) 

r>E0-H0-V0 + i 0 * V l ( i 0 0 ) ; r , q ) , 
where 

H0 = hQP + hoQ + h1 + h2 + h3 = h0
Jrh. (43) 

Here h0 is the Hamiltonian of the free motion of the 
system and h refers to the internal degrees of free-
dom of the Rb atom and the two Xe atoms. Putting 
now the resolvent in (42) in the integral form we 
obtain 

tM= —iVf{ (2Jii/21> /, 0 ) ; q ' I V3 o 
(44) 

Let 
• e 1 ^ ~ E* - " V 0 | ( i 0 0 ) ; p, q) dt. 

e-i(ZVF.)* = s ( , ) 0 ) e - i f f . ' . (45) 

Differentiating the last equation with respect to time, 
we get 

idS(t,0)Jdt = S{t,0) V(t) , (46) 
where 

V(t) =e-in'tV0eiH't (47) 
and 

S {t, 0) = P exp { — ifV {{) dj'} (48) 
o 

with the initial condition 5 (0 ,0 ) = 1 and P de-
noting an antichronological operator. Substituting 
now (45) into (44) and making use of the equation 

eiE,t\ ( i 0 0 ) ; p, q) = eiE>< | ( | 0 0 ) ; p, q) , 

we can transform CM to the form 

o 
(49) 

• V3S(t, 0)e~iff>< V0 e^ld 0 0);p,q)dt. 

Expanding now S(t, 0) in a series 

S(t,0)=l-ife-iB't' Vq eiH,t' dt 

(50) 

.e-iH,t'yoeiH,t' 

t t' 
+ ( — i)2 / / e~iHit"V0 eiH>t" dt' 

o o 

we get a corresponding expansion of CM. If we insert 
unity in the form 

eiktr\ e-ik& e-iktr) 

between every two interaction operators in each 
of the expansion term we shall be able to transform 
each two-particle interaction operator V(R) into 
V(R — Vt)=V(t), where V is the corresponding 
relative velocity of two atoms. That transformation 
corresponds in quantum mechanics to the classical 
path approximation or to the eikonal approxima-
tion. Thus the matrix element CM transform to the 
form 

M = - -pj- (0, v J | e~ikvjT> eik* eik* (51) 

•/ ( I 0 0 I F3 5 (1 ,0)e~ i h t V0(t) eiht\ h 0 0 ) | 0 ) dt, 
o 

where ] 0 u / ) denotes commonly the eigenstate of 
the momentum operator of the system with the eigen-
value zero and the corresponding vibrational-rota-
tional state of the molecule. Inserting further the 
unit operator 2 I ni n 2 ^3) ( n i n2 n3 I s (the quan-

n,ntnt 

tum numbers n1, n2 and n3 refer respectively to 
internal states of the rubidium and two xenon 
atoms), between every two interaction operators in 
each of the terms of the 7A expansion and perform-
ing there the time integration according to the ap-
pendix we arrive at the following expression for CM 

CM=j^{0,vj\ e~ikvjT> eik* eik* [V13 (0) + V23 (0) 

- i j (V13(0) +V23(0))S«(t,0) 

° + (52) 

where Vik denotes now the van der Waals potential 
acting between particles i and k and 

Scl (t, 0) = exp { — if \V12(t') 

+ V13tf)+v23{t')]dt') (53) 

is a classical function satisfying the equation 

i 35c l (t, 0) /dt= [ V12 (t) + V13 ( 0+ V23 ( t ) ] Sc l (t , 0) . 
(54) 

In deriving (52) we neglected some terms of the 
interaction energy which add to the corresponding 
London forces and which describe so-called non-
additive forces acting in a three-particle system (see 
Acilrod and Teller 8 ) . Those forces contribute to the 
interaction energy only when all three particles are 
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in close proximity of each other. Since in the present 
calculation the long-range forces appears to be de-
cisive, neglecting those nonadditive energy terms 
seems to be sufficiently justified. Making use of Eq. 
(54) we can transform 7A to the form 

M = (0,v J \ e~ikvjT> eik* eikl7] (55) 

• [ F 1 3 ( 0 ) + F 2 3 ( 0 ) ] 5 c 1 ( O O , 0 ) | 0 ) . 

Note that the function eik^ eik* S c l (oo, 0) is an 
approximate scattering wave function of three col-
liding particles obtained in the eikonal approxima-
tion (see Goldberger et a l .9 , p. 620 ) . Finally, we 
arrive at the more explicit form of the recombina-
tion rate constant 

^ kVJ 
(56) 

t(T\ = I f L v 
K ' h t j (2JZh)3 fdQ 

' (I f&Vf d 3 £ e " e l k Z ( v j \ 
'[V13&V)+V23(t,ri)]S«(oc,0)\2)P,q. 

The numerical calculation of that expression is the 
subject of the next two sections. 

5. Some Further Approximations 

In the following we shall want to calculate the 
recombination rate constant for the quasimolecule 
RbXe* formed during a three-particle collision of 
one excited Rb atom with two ground state Xe 
atoms. Since the life-time of Rb* is of the order of 
3 X 10~8 sec 11 and the duration of the collison is 
of the order of 10" 1 3 sec one can, for an individual 
collision-act, treat the excited Rb atom as a stable 
one. In the present calculation we replace the van 
der Waals potentials in (56) by more realistic Len-
nard-Jones potentials of the form 

6 (Rja_\n___n (R n 

n — 6 n - 6 V R 
(57) 

with the corresponding parameters £m and Rm (see 
Mahan et a l . 1 0 ) . In particular, for the interaction 
between the Rb*-Xe atoms we utilize the Morse 
potential in the form 

V[R] =em{[e-^R-R^-l]2-l} (58) 

with £m = 740 c m - 1 , #m = 3 . 48Ä and a = 1 . 7 6 Ä _ 1 

(see Carrington et a l . 1 1 ) . For the xenon-xenon in-
teraction we take £m = 159.155 c m - 1 and Rm = 
4.55 Ä (see Trantz et a l . 1 2 ) . The three integrals 
occurring in S(t, 0 ) [cp. ( 5 3 ) ] can be easily cal-
culated if we take all the potentials to be of the form 

(57 ) . Putting for example n = 8, each of those inte-
grals is given in a cylindrical coordinate system 
connected with any (i, k) -pair of particles, the 
z-axis pointing in the direction of the relative ve-
locity of the particles, by the general expression 

1 8 b7 b5 
z/b 

t i + (z/b)2r 
+ z/b 

, 3 I z \ 3 n 
+ y arc tan i j + — 

2 1+(*/&)2 

v , (59) 

with Z = - Rik • Vikjvik = x • vik , 

and b = VR% —z2 a corresponding impact parame-
ter. The relative velocity of the two (i, k) -particles 
is denoted by Vik • The other two parameters t ( F ) 
and Vik a r e defined as follows 

Z(T) = e*R*/hvik(T) , 

vik =V2 k Tin-* v = vik {T)v, 

where Vik{T) is the mean velocity and denotes 
a reduced mass of the particles. According to Fig. 1 

Rb 

Fig. 1. 

we get 

R 1 2 = £ , R n = r ) + 1 £ and R 2 3 = V ~ X ^ 

with / = m2/(m1 -f m2) and % = m1/(m1 + m2). 
The average over all the possible initial positions 

of the interacting particles given by the position 
vectors R13 and R23 i . e. the integration over £ 
and 77 in (56) will be performed in a spherical co-
ordinate system. The coordinate system is chosen in 
such a way that its z-axis is pointing along the di-
rection of the initial momentum p . In the coordi-
nate system so chosen we put 

e 1), 
V = 07, <P2 , ©2) . 
q={q,<p3,03) , (60) 

(kvj,<p303). 

- Xe(2) 

t 
The system of three interacting particles. 
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For the present calculation we shall take the vibra-
tional eigenfunctions of the RbXe* molecule which 
satisfy the Schrödinger equation for a diatomic 
molecule with the Morse potential (58) (see Nor-
l i ng 1 3 ) . Putting W v (£) = (1/f)/?„(£), the function 
Rv(£) is found to be 

(61) 

where Nv is a normalizing factor 

a• (k-2v-l) 
Nv = 

v! (k — v — 1) r(k — v — 1) 
and L sv are so-called generalized Laguerre poly-
nomials given by 

v (v — 1) 
,(x)=xv- — (s + v)xv~1 + 

2! 

• (s + v) (s + v-l)xv~2 

+ . . . + ( - l ) « ( J + T,) (J + I ; - 1 ) . . . ( J + 1) 

with s = k — 2v — 1 and k=l/Xe as a characteristic 
parameter of a molecule. Recall that the vibrational 
energy levels (expressed in c m - 1 ) of a diatomic 
molecule treated as an anharmonic oscillator are 
given by 

G(v) =<oe(v + l ) — coe Xe (v + 1 ) 2 + . . . (62) 

(cf. e . g . Herzberg14 , p. 149) , where the parameter 
cOg-Xe can be determined from the relation coe-Xe 
= o_>e2/4 • De, De being the energy of dissociation 
of the molecule. Having coe and coe-Xe for the 
molecule we can readily find the parameter k. For 
the RbXe* molecular oje = 4 0 c m - 1 , coe'Xe = 0.54 
and k = 74. In the expression (61) im = Rm and all 
the other parameters have their usual meaning. On 
the other hand, the rotational wave functions for 
RbXe* will be taken to be those for a symmetric 
top given by so-called Jacoby (hypergeometric) 
polynomials (see also Herzberg14 , p. 118) : 

(<p1,&1\jMQ) = (cp, ,6lty>) ( 6 3 ) 

2/ + 1 
8 jt2 ~ 

eiM^dJ
MS}(01)ew^ 

where ip refers to the inner motion of a molecule 
(motion of electrons about the internuclear axis) 
and Q is the quantum number of the resultant 
electronic angular momentum about the internuclear 
axis. In the considered case Q — ̂  and J takes the 
successive values. 

J = Q, Q + 1, Q + 2, ... 

For M = J and / = §, I and f we have respectively 

(<Pi , © i , V ) = | / J - e ^ (3 xt — 1) 

V2n 

(<P±, ©1, V) = l / - ^ e ^ (5x1
2-2x1-l) 

V 1 +XI 

1/2 JI 
(64) 

with x , = cos . The eigenenergy of the molecule 
being in a | v J) state is given by 

Evj = Eei + Ev + Ej, (65) 

where Ee\ is the electronic energy of the molecule, 
Ev is given by (61) and 

E j = f j [ J ( J + l ) - 0 2 ] . 

The quantity I is the moment of inertia of a mole-
cule. For the RbXe* molecule I is found to be 
1.04 x 10~37 gem2. 

Let us come back to the expression (56 ) . In order 
to calculate k ( T ) we replace, in a first approxima-
tion, the average over the momentum moduli p and 
q in (56) by taking k (T) with the mean values p 
and q. Thus we get 

-f dü -}~f dQkl\ fd*rjf d3£ b(T\ - 2 n T ^ ^ v J 

1 h t j (2nhy 4 j i ' 

- e - ^ e ^ i v j \[V13(^,v)+V23(lv)] 
* 5 c l (oo, 0) |2 , (66) 

with A k = kvj — k2 . Since the modulus of A k 
takes rather large values we conclude that the de-
pendence of the integrand in (66) on the direction 
of the vector r] is mainly given through the first 
exponential factor. The remaining part of the inte-
grand depends on the direction of t] rather slightly, 
and as a result we can in the following replace it by 
its average value over all the directions of Owing 
to that the integration over the directions of t] in 
(66) can be carried out at once. The integrand in 
(66) except for the first exponential factor changes 
with r\ also slowly and decreases steeply for 
as well as for rj —oo . Therefore, writing A k ' t ] 
= Akrj cos we infer that for any fixed direction 
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of the vectors k2 and kvj in integrating over cos# in (66) only those values of cost? contribute to (66) 
which satisfy the condition Ak'r]majX c o s $ 1. This enables us to integrate as goes 

2TI ti 1 lA4A>;max ci« (ni?, ) 
/ d < p / e - ' " ^ c o s * s i n # d # =2jife-iAk*>xdx^2n f e~iAkr>x d r = 4 n 5 H L M W L # 
o o - l Akrj 

Thus the expression (66) takes the form 

'(vJ\[V13(S,V) + V2S(S,v)]S*(ce,0)\z, (67) 

with Ak2 = k2
2- 2 k2 kvJ cos 0 + k2j 

and 0 being the polar angle between the vectors k2 a n d ^vJ • The integrand in (67) depends on the direc-
tion of the vector kvj through the modulus Ak only. This permits us to integrate (67) over the directions 
of h v j immediately. The result of the integration does not depend on the direction of k2 . 
Since 

2 f d f __ l i n 0 d6>
 = 2? t (k/ + 2k2 kvJ + kh\ 

ö o k2
2-2 k2 kvJ cos 6 + k%j 2 k2 kvJ \k2

2 - 2 k2 kvJ + kljJ ' 

we obtain for k(T) the expression 

2 n 

h t j (2 n h)3 k2 *" \k2
2 - 2 k2 kvJ + k%jJ 4 n J " " "a 1 J " J ~ " rj ~ (68) 

" [F 1 3 (£ , 77) + V23(£, tj) ]5 c l (00,0)| 2 . 

As is seen from (63) every rotational eigenfunction of the molecule contains the exponential factor elM(pi 

with M being a half-integer. The change of that factor with <p1 is much stronger than that of the remaining 
part of the integrand in (68 ) . If we then replace the latter by its average value over (p± we can perform the 
integration over <p± in (68) directly. 

We obtain 2fn . .2 

with M = i i f , i f , . . . . 
Thus 

h VJM=-JM2 4 Jt (27ih)*k2 \ k 2 — 2 k2 k v j + k2j J ^ n 2]J J rj 

• eik*dJMo (0,) Wv(£) [V13 ( f , v) + V23 (£, V) 1 Scl ( - , 0) |2 . (69) 

The other parameters needed for the present calculation have the values: m1 = 85.48 g/mol, m2 = m3 = 
131.30 g/mol so that ^ = 51.77 g/mol, f i2 = 81.77 g/mol as well as 2 = 0.606 and % = 0.394. Introducing 
now the dimensionless variables Q and u, so that £ = RmQ and r] = Rmu, and putting cos@ 1=a; 1 , cos &2 

= x2 and cos(93 = :r3 we can transform (69) as follows 

k(T) =C(T)-F{T) , (70) 

w h e r e r m - £m2J?m 6|- 6/sec1 [)~4>n2h*k2(T) ^ Lcm/secj 

with £m = 7 4 0 c m - 1 and Rm = 3A8 Ä, and F(T) is a dimensionless function of the recombination rate con-
stant given by 

VJ M=-J \k2 - 2 k2 kvJ + kVJ) 4 a 0 - l -1 emln 

- i G?(T, Q, xx) ] dU (* i ) Rv ({?) I2, (71) 
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where 
2 j i 2 tt 1 Umax 

Gr
v(T, Q, xx) = / d<px f dq>2 f dar2 / u sin (u/umax) [F 1 3 (Ä 1 3 ) + V23(R23) ]cos[t(T) (a1 3 + a 2 3 ) ] , 

0 0 -1 i<min 
2 7t 2 7t 1 Umax GIV (T, Q, xx) =fd<pj d<p2 f d x j u sin (w/«max) [VX3 (Rx3) + V23 (Ä2 3) ] sin [C ( T ) (a 1 3 + a 2 3 ) ] (72) 
0 0 -1 Urnin 

and 

7 (T, Q, xx) =A(T)QX1 — f (7*) ALT (Q, XX) 

with A(T)= (V2kT ju2/h) Rm. The functions 

«12 ( ̂  ^l)» 

«13 = «13 (T> Q, <pltxlt u, <p2,x2,<p3, :r3) , 
and 

«23 = «23 Q> <PL > » »» ?>2 > ^ 2 » 9^3 » ^ s ) > 

are given according to (59) respectively for (1 ,2 ) - , 
( 1 , 3 ) - and (2, 3)-pairs of the interacting Rb and 
Xe atoms. The potential VX3 (RX3) is given by (58) 
and V23 (R23) is taken according to (57) with 
n = 12. The interatomic distances R13 and R23 are 

R13 - [u2 + 2 XQ U { V { L - x 2 ) { L - x 2 ) 

• cos (cp2 - 9ox) + xt + i 2 

Ä23 = W ~ 2 x Q » W { l - x x 2 ) { \ - x 2 2 ) 
• cos (9?2 - (px) + xx x2) + X2 e 2 ] 1 • 

It turns out that in general the function y(T, o, xx) 
oscillates strongly in Q and xx. But for xx in the 
range (0.74 — 0.94) y changes slightly with Q for 
Q>l.l. 

From those regions of £> and xx there comes the 
greatest contribution to the integral ( 69 ) . Besides, 
the functions GR

V and G? change with O slowly being 
nearly constant in the above mentioned xx region. 
This enables us to integrate (71) over £ and xx 

without taking into account the explicit dependence 
of GR

V and GJV on these variables. 

6. Details of the Calculation and Results 

The recombination rate constant &(!T) has been 
calculated for the quasimolecule RbXe* for T = 
300° . For this temperature C{T) is found to be 
7.542 x l 0 ~ 3 0 cm6 sec" 1 . The function F{T) has 
been calculated with the vibrational eigenfunctions 
of the molecule for v = \, 3, 6, 11, 14, 17, 20, 25, 
30. For each of these vibrational states the rotational 
eigenfunctions were taken with J = 1/2, 3/2 and 5/2 
only. The results of the calculation showed that the 
respective /-components of k(T) for a definite 

t;-state differ from one another slightly in taken J 
values. This could indicate the independence of 
k(T) from the rational quantum number J. 

Neglecting the dependence of k(T) on / we see 
that to get the total recombination rate constant 
k(T) we need only to calculate its respective t;-com-
ponents for any /-state and to know the number of 
rotational states for each of the vibrational state. 
This facilitates the calculation of k(T) considerably. 
The next step in our approximation procedure is to 
replace the average of F(T) over directions of the 
vector k 2 , which is expressed in (71) by the inte-
gration over <p3 and x3, by taking an arithmetical 
average of kv(T) calculated for 10 different values 
of cp3 and x3 chosen at random. Since the vibrational 
eigenstates of the molecule for large v are strongly 
oscillating our procedure was as follows: first the 
integrals GR

V and G? were calculated with the Monte 
Carlo method and second the corresponding inte-
grals with a proper vibrational eigenfunction [as is 
seen in ( 7 1 ) ] were calculated with the usual Gauss 
method. All the calculations were carried out on the 
CDC 6600 computer at the Computer Centre of the 
University Stuttgart. In calculating 4-fold integrals 
GR

V and G? there are points in the integration re-
gion for which the functions s i n f t ^ ) • (a 1 3 + a 2 3 ) ] 
and c o s [ C ( r ) - ( a 1 3 + a 2 3 ) ] oscillate rapidly and 
from which there comes the greatest error in the 
final results. Assuming that the total contribution 
from these points to the integrals equals zero, they 
could be removed from the integration range with 
some rejection method. The exact analysis of those 
points indicates that the main contribution to the 
integrals issues from the long-range forces acting 
among the interacting particles. The program for 
the integrals GR

V and v was written in Fortran IV. 
It gave us both the calculated values of GR

V and G{° 
and their statistical errors. At 50000 points chosen 
from the 4-dimensional (<px, u, <p2, x2) integration 
region at random the statistical error for each cal-
culation was below 10% of the calculated values of 
GR

V and G{V. The results of the present calculations 
are presented in Figure 2. 
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7<r33 

KT» 

Fig. 2. The teratomic recombination rate constant k as a 
function of vibrational energy of the molecule. The disso-
ciation limit is to the right and the potential minimum 

( f m = —740 cm"1) to the left. 

A rather pronounced dependence of k(T) on the 
vibrational quantum number of the molecule is seen. 
Such a behaviour of k(T) with v can readily be 
explained. As is seen from (71) every i;-contribu-
tion of k(T) consists of two factors: the first of 
them depends on the number of rotational states for 
a given f-state of the molecule, the other one de-
pends on the value of the integral over Q with an 
appropriate v-eigenfunction. The number of rota-
tional states for a given vibrational level decreases 
with increasing quantum number v. On the other 
hand the wave functions given by (61) are nearly 
symmetric for small v which implies rather small 
values of the corresponding integrals. But with in-
creasing v the proper vibrational wave functions 
become more and more asymmetric especially at the 
right-hand side end from where there comes the 
greatest contribution to the integral. Those two fac-
tors tend in opposite directions in their growths. 
This leads to some maximum of k(T) near the in-
termediate vibrational energies of the molecule. The 
total recombination rate constant k(T) is found to 
be 2.4 x 10~32 cm6 s e c - 1 with about 10% uncer-
tainty. The value of k determined by Carrington 
et a l . 1 1 is 8.2 x 1 0 - 3 2 cm6 sec with about 20% un-
certainly. The order of magnitude agreement of 
both the values k(T) indicates that the present ap-
proach is correct and can successfully be used for 
other concrete calculations. From the explicit form 
of the rate constant k(T) [cp. (70) and ( 7 1 ) ] we 
can deduce its dependence on temperature. We see 

that k(T) depends on T through the parameter 
C(T) and the function F (T). The parameter C(T) 
decreases with increasing T as whereas the 
function F (T) should rather increase slightly with 
T. This is so since with increasing T the parameter 
£(T) diminishes, which implies less oscillations of 
the corresponding sin and cos functions occurring 
in Giv and Gr

v. Thus we conclude that k(T) should 
depend on temperature about as T~K 

7. Conclusion 

In the present work a new approach to the cal-
culation of a teratomic recombination rate constant 
k has been demonstrated. It has been shown that 
starting from the corresponding quantum expres-
sion one can obtain an expression for k in the 
eikonal approximation which is useful for further 
numerical calculations. Such calculations have been 
carried out for the RbXe* quasimolecule. The re-
sults of the present calculations were compared with 
those obtained by Carrington et al. from molecular 
spectrum measurements of the gaseous Rb*-Xe sys-
tem. The good agreement of both results in the 
order of magnitude indicates that the present ap-
proach is correct and can successfully be used for 
other alkali-nobel gas systems. The investigation of 
the formation of quasimolecules from excited alkali 
atoms and ground state nobelgas atoms is of par-
ticular interest on account of the possibility of uti-
lizing such systems to the realization of tunable gas 
lasers working with van der Waals diatomic mole-
cules (see, e. g. Phelps 1 5 ) . It seems that the present 
approach can successfully be applied both to the 
recombination of gaseous molecules during teratomic 
collisions and to the recombination of ions and free 
electrons to give neutral atoms. The possibility to 
calculate k completely quantum-mechanically is in-
teresting in principle. If, for example, we expanded 
the free wave-packets occurring in (40) in terms of 
the spherical Bessel functions j/(kr) then k(T) 
could be expressed as a sum of probabilities of all 
the possible changes of the angular momenta of the 
colliding particles as a result of the interaction in 
the course of a collision. The quantum calculation 
of those probabilities seems to be possible. 
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Appendix 

Take the following expression 
oo 

i i (iOlFjad)!«! n2) l im f e~v* 

coordinates by 

(nx n2 | V12 [£(t) ] | 2 0) = 
const 

[b2 + v2(x + t)2]3/2 ' 

-o o 
( A I ) ( A 4 ) 

•exp{i(a>i/2Wl + N 2 I F 1 2 [£ (z ) ] | | 0 ) d f , 

where 

£(t) -v t with V=p/iu1. 

In the following we consider the integral 

I = lim / e * exp {i(oj1/2wi + a)0„2) t} 

* (ni n2 I F12 [£($)] | g 0) df 
Integrating by parts we get 

(A 2) 

/ = -
ni 

oo 

- lim / exp {i(co1/2„t + co0„, + i rj) t} 
o 

( A 3 ) 

iC^ißm + ^o«, ) 

According to (41) , the matrix element occurring in 
the last integrand can be expressed in cylindrical 

where the components x, y and z of the vector £ are 
x = b cos <p, y = b sin 99 and z = — £ v/v = r v. Since 

d_ 

dt 

= — const 
3 v 2 (r - t ) 

[b2 + v2(r-t)2]512 ' 
we find that 

d^ 3 [x-t) 
(b/v)2+(x-t)2 xc 

because the time t — t in the problem under con-
sideration must be of the order of the collision time 
xc with xc = b/v. For adiabatic collisions any tran-
sition frequency must be much greater than the 
inverse of the collision time, i. e. the condition 
rc'(Dik ^ 1 must be fulfilled. Therefore, the integral 
I can be approximated by the first term in ( A 3 ) 
and thus the expression ( A l ) gives us the cor-
responding van der Waals potential. 
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