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A new approach to the calculation of a teratomic recombination rate constant k£ (T) has been dem-
onstrated. An expression for k£(7) has been obtained in the eikonal approximation. The numerical
calculation has been carried out for the Rb*-Xe system. Good agreement in the order of magnitude
between the present results and the experimental data of Carrington et al. has been obtained.

1. Introduction

The present work is devoted to the calculation of
the quantum teratomic recombination rate constant
for diatomic molecules in the framework of the
eikonal approximation. If any two atoms are able to
form a diatomic molecule at all, then both the
energy and angular momentum of such a molecule
are quantized. But two free atoms, approaching each
other during a collision, have non quantized relative
energy and angular momentum. Therefore, two col-
liding atoms can form a bound state only if some
part of their total energy and angular momentum is
taken away by a third particle in the course of the
collision (see Born!). For these reasons, the role of
teratomic collisions in the formation of gaseous
diatomic molecules is quite evident.

All such recombination rate constants were cal-
culated so far classically (cp.2 and ?). The basis of
those calculations are the classical Hamilton equa-
tions of motion of the corresponding systems. In the
case of three particles, by eliminating the center of
mass motion of the system, the motion of the system
is described classically in the 12-dimensional phase
space of positions and momenta divided into re-
actant and product regions by an 11-dimensional
surface. The division of the phase space into reac-
tant and product regions is made on the basis of the
internuclear distances such that for the reactants
(three free atoms) each internuclear distance R is
greater than a specified distance R,, (equilibrium
distance of the molecule). On the other hand for the
products (one molecule and one free atom) one of
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the R’s is smaller than R, . At complete chemical
and thermal equilibrium, the density of points in
phase space may be specified, and the flux of points
across the dividing surface can be calculated to ob-
tain the equilibrium reaction rate. Since multiple
crossings of the surface may occur, it is necessary
to examine individual trajectories to determine the
true reaction rate. In contrast to this purely classical
treatment, the present calculations are based on a
quantum approach.

We begin our considerations by giving a brief
description of the three-body scattering formalism
(Section 2). Further, starting from the quantum ex-
pression for the recombination rate constant (Sect. 3)
to transform it in the framework of the eikonal ap-
proximation to a form appropriate for numerical
calculations (Sect. 4 and 5). The details of the cal-
culations and the results are presented in Section 6.

2. Three-body Scattering Problem

In this section we shall give a brief review of the
S-matrix formalism for the three-body scattering
problem. Let the considered atomic system be com-
posed of one Rb atom and two Xe atoms. Following
Schmid and Ziegelmann * we denote the Rb atom by
1 and the two Xe atoms by 2 and 3. When neglect-
ing three-particle potentials, the Hamiltonian for the
considered system has the form

R R S

H=_ "+ + = 4V + V4 V,, 1
2my  2m, 2m3+ 1+ Vet Vs (1}
where the potentials V; describe the two-particle
interactions according to:
Vi=V(2,3), V,=V(1,3), V3=V(1,2). (2)

To separate out the center-of-mass motion of the
system it is useful to introduce Jacobi coordinates.



1490 E. Czuchaj

The cartesian space coordinates are 1y, T, and 7.
The Jacobi coordinates for which particles 1 and 2
appear as a subsystem are denoted by &, 7 and R.
The transformation reads
§ = rg gz 'rl )
myr +my,r,
nory TalitmT: (3)

my +m2

myTi+myTy+myTy
my +my+mg

R-

The corresponding transformation for the momen-
tum coordinates becomes

myPs—my Py

= my+my
_ (my +my) Ps —mg (P +P2) (3a)
m1+m2+m3
P=p;+p:+p;.

The coordinate P, which is the canonical conjugate
to &, is the momentum of particle 2 in the center-
of-mass system of particles 1 and 2, and q, which is
canonical conjugate to 7, is the momentum of par-
ticle 3 in the center-of-mass system of all three par-
ticles. The Hamiltonian (1) has in Jacobi coordi-
nates the form

- - ,,Pg p P
2wy

3
T +2V,, (4)
2y  y=1

7

2 (m1 +my + mg)
with the reduced masses
my (my + my)

Uy = .
T omy+my+mg

On neglecting in (4) the term corresponding to the
translational motion of the center-of-mass of the
system we get

T . 3

Sv,=m,+5v,. @
2 1y

20y T4 y=1
In general the Hamiltonian H is denoted by

2

21 T 2M +,>_;1V L
where the index a stands for the free particle of the
system. In our case a=3, p,=p, q.=q, /.=
and M,= ;. Usually one designates the breakup
of a three-particle system (all particles free) with
the index O and, according to the definition (2),
Ve=0.
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Let us introduce so-called channel Hamiltonian

h, given by

- P«x ‘Iu
h,= 21 + 2 M, +V,. (7)
Then the full Hamiltonian H can be written
H= ha + Va (8)
. _ 8
with VSV, V.. )
y=1

The scattering of a three-particle system is com-
pletely described by the time-dependent Schrodinger
equation 3
HPG)() = i sy () (10)
with the proper boundary conditions. The super-
script (4 ) indicates that the system is in an ex-
perimentally prepared state before scattering and is
gradually scattered with increasing time. The index
a denotes the definite channel and m stands for the
m'™ bound state of a two-particle subsystem. Ana-
logically, as in the two-particle scattering problem,
the time development of a three-particle wave packet
is given by

WE(e) =e~ W),

(11)
while the reference wave packets develop according
to

{l)u)ll (t) = e—ihzl (I)um . (12)

The wave packet @D, describes the free motion of
particle a (a=1,2,3) relative to the other two par-
ticles being in their m'™ bound state. Starting from
the well-known boundary condition

lim || e~ PG —e-ha? By, || =0,  (13)
t— -0
we arrive at
l]’%}% —lim et e~ihat P, = Q (pum , (14)

t—>Foo
where, according to the definition,

Q3 —5_lim et ¢-ihal

t—>Foo

(15)

The operators Q.,*) are called Meller operators.
A superscript (—) was introduced with respect to
the further construction of the S-matrix. In the con-
sidered case the corresponding a-channel state reads

I ([):}m> = |q7 ]11.‘}m> = :q) : '111‘,m> ) (16)
where h;} l ([)3m> = E.‘hn T (I);;,,,> (17)
Wlth E:Zm = 112/2 Mo +Ems
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and respectively for three free particles, neglecting  Since

their internal motion, the channel state is

|®2)=|p.q)=p)|q), (18)
where q° p?
h()i(p> (zu)_*—zl.ll)l@o)' (19)
If we now introduce the full resolvent
G(z)=(z—H) 1 (20)
and correspondingly the channel resolvent
9.(z)=(z—h) 1, (21)
then we get
!IIS:,:;Z) '_hm+lFG(Eam __lf,’) ! ¢um> (22)
e=>0
or, making use of the equation
G(2) =94(2) +9.(2) Vo G (2) ,
we have
| &) = | Pom) + 9u(Ean Ti0) V. | PE)) . (23)

We now want to define the S-matrix for the problem
considered. If we let a free state e i/t | D, ) de-
velop into a scattering state e~ i7¢| ()} and anal-
yse the scattering state for free states e~ /"8’ | dy,)
in the limit ¢— + oo, we get
Spn,am (qﬂ,, q.) :tlim <e_mﬂt Py ! = 'I’Srz) , (24)
where the index S denotes some other channel of
the system and n stands for a bound state of the
corresponding two particles. According to (15), the
last expression goes over into

Sen, am (qﬁ’, q.) =]im <eiIIt e-
(] 2,2, D) - (W W)

ihgt ¢ﬁn | ‘1127,3)

(25)

It is seen that in the three-particle case the S-opera-
tor is a 4 times 4 matrix of operators, i. e.

Sga= 2,4 2,9, (26)

since in general a,f=1,2,3,0. The matrix ele-
ments of this set of operators, taken with channel
states ]¢am), form the S-matrix. Recall that the
resolvent G (z) satisfies the resolvent equation

G(2) =gs(2) +G(2) V5 g5(2) . (27)

If we now insert (27) into (22) and substitute
there the index @ for f we obtain

WG = | Dpn) + G (Epn—i0) V| Dpy) (28)
= l T“) Y+ [G(Epn—i0)—G(Ep, +i0)1V;| D)

G(Ep,—i0) —G(Eg,+i0) =27id(Es,—H)
then, according to (25) and (28), we have

Sﬁn,um (qp’,, qu) s (’]/ﬁ") | y/g;g)
27 @g,,]Vﬂé(Eﬁ"—H)i T&:,Z)

=4 (qﬂ/ &= qa) 6[3(1 6mn _ (29)
— 2ﬂi-6(Eﬁ,,—Eum) (diﬂ" ! V'g! T&;,Z) N

The quantity
Riem (G5 q) = (Ppn | V5| PS)  (30)

is usually called a transition matrix for a definite
reaction. One can show that the transition matrix
(30) is equivalent to

RE&?am (qﬁ,, qu) = ( lllfﬂn) : Va i gpam) . (31)

Substituting now (27) into (22) we can express the
transition matrix (30) in terms of channel states

R (95, L) (32)
= <(pﬁn !(Vﬂ‘}' 17/9 G(Eam +i0) 1711) I qiam) .

The last expression gives us the transition matrix
for the three-particle system which in the course of
collision goes over from a (a, m)-state into a (f,n)-
state. Such a transition connected with rearrange-
ment or break up of the system is called a reaction.
The indices a and S denote correspondingly the
initial and final channels of the reaction.

3. Definition of the Teratomic Recombination
Rate Constant

In this section we want to define the teratomic
recombination rate constant for the Rb*-Xe system
being in the gas phase. Let the considered system of
volume V' be composed of a mixture of Ny« excited
rubidium atoms and Nx. xenon atoms so that nyy+
= Npy+/N and nx. = Nx./V are the densities of Rb*
and Xe, respectively. If the recombination of di-
atomic molecules proceeds via the teratomic reaction

Rb* + Xe + Xe— RbXe* + Xe (33)
then we have the corresponding rate equation
d R
— A0 Mnpenke (34)

(see Eliason ® and Snider 9).
The proportionality factor k(T) is called the
teratomic recombination rate constant and depends
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in general on the temperature T of the system. The
calculation of £(T) may be done quantum mechani-
cally or classically. For chemical reactions, a quan-
tum treatment will usually be preferable or perhaps
necessary, but the classical approach may be useful
in some cases. The quantum approach consists in
finding a solution of the corresponding Schrodinger
equation for the internal degrees of freedom of the
individual atoms and the relative motion of the
proper pairs. The number of collisions in unit vol-
ume and unit time which lead to the formation of
diatomic molecules is given, in our notation, by

N = ngy nXe (P3,0 (P, q) )p.g > (35)
where P3 (P, q) denotes the 0—3 channels reac-

tion probability per unit time with the initial mo-
menta P and q. The parenthesis stands for the aver-
age over the initial momenta P and q. For many
chemically reacting systems it is a very good ap-
proximation to assume a Maxwell-Boltzmann dis-
tribution for the translational motion of the reacting
atoms. In the quantum approach the recombination
rate constant £(T) takes, according to (34), (35)
and (32), the following form

k(T) =—V’Z<(2 _t'g)’gfd"q I

(PP gm0
) 6(E0—E3zr./)>p.q )

(1120 7,0); q|

Vo)!(%OO);p,qW
(36)

where (300) denotes commonly the 5P, state of
Rb and the ground state of both Xe atoms, but
(3(ty5vJ,0) stands for the A2y, state of the
quasimolecule RbXe* (life-time of the order
3107 8sec) and the ground state of one of the
xenon atoms. The eigenfunctions of a free motion
are given by

1 . L
| — —— o' ki la) - iKksn 7
P) VV“’ s q) vV (37)
1 "
) =5 ¢

where prime means that the corresponding momen-
tum refers to the final state and p=h k,, q =k k,
and Q" =% k,’. The energies E, and E;,; are given
by
Eg=p*/2 iy + ¢*/2 12+ &12,0,05
Esei=q"%2 to+ 19050 - (38)
The energy €12.9.0 and &2, 7. refer to the internal
degrees of freedom of the particles; 9.9 is the
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sum of the energies of an excited Rb atom being in
the 52P;» state and two ground state Xe atoms and
£1257,0 1s the sum of the energies of the RbXe*
molecule in a (v/J) vibrational-rotational state and
a free Xe atom in the ground state. The interaclion
operators V'3 and V, are given by

Vo=V(1,2) +¥(1,3)+V(2,3),
Ve=V(1,3)+V(2,3).
Since, according to (38)
g =fa@Tqrag
0
=[dQ 1y V2 py (Esvy — #172,57,0) dE3, 1,

the integration over moduli of the momentum q in
(36) can be easily performed and we get

V,u,hk,;
/2
= Z< (2ah)?

VotV )5100; , > 30
(‘3 'iF H+00(2 )pq) p.q()

with

[4Q[((Cay2v1,0); q' |

g =k =V2150 R 1+ @2 15+ 1)

and [,.;=¢€192,0.0—&2,7,0 the dissociation energy
of the RbXe* molecule from the fv,]) state.

4. Recombination Rate Constant in the Eikonal
Approximation

We want now to express the matrix element

M=V ((Cupvl,0; q| (40)

<V3+V3E0—H+ 0 )1(200)’1’ q)

in the eikonal approximation. In a first approxima-
tion we assume that the electronic wave function of
the molecule considered is a product of the cor-
responding wave functions of the isolated atoms *
As will be seen in Sect. 6 our assumption seems to
be well justified, since in the present calculation the
long-range forces between the interacting atoms
prove to play the decisive role. In the following we

* Usually, to calculate the interaction energy between an
alkali atom and one of the nobel gas atoms one takes a
linear combination of some of atomic states of the alkali
atom with different quantum numbers [. This is done so
since only the projection of the orbital momentum of a
molecule on the interatomic axis is well defined (see
Baylis 7).
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assume the interaction between two atoms to be of
the dipole-dipole type, i. e.

(F1R;E£P‘2R) . (41)

1
VIR] = 5 [tz —3

Since the average value of that operator in each of
the electronic states of the system is equal to zero,
the matrix element (40) goes over into

M=V ((Cryev]0); 4q|
_ 1

(42)

VOI(%OO);paq)a

where
Hy=hop+hog+hy+hy+hg=hy+h. (43)

Here h is the Hamiltonian of the free motion of the
system and h refers to the internal degrees of free-
dom of the Rb atom and the two Xe atoms. Putting
now the resolvent in (42) in the integral form we
obtain

M= ~in<(2::1va,0);«1'1173 (44)

- E-H-Ve+it Y 1(300); p,q) de.
Let

e~ iE+ VIt~ S (¢, 0) e~ it (45)

Differentiating the last equation with respect to time,
we get

i95(t,0)/3t=S(t,0) V(1) , (46)

where

V(1) =e-iBet Py it (47)

and

S(t,0) =P exp{ —ij V()d'} (48)

with the initial condition S(0,0) =1 and P de-
noting an antichronological operator. Substituting
now (45) into (44) and making use of the equation

¢B?[(300); p,q) =™*[(300); p.q) ,

we can transform M to the form
7W=—iV6f((2n1,2v]);q'| (49)

® VSS(t, O)G-iﬂﬂ 170 eiH't}('%OO) HY B q) de.

Expanding now S(t, 0) in a series
t -—
S(t,0) =1 —-ife"'Hof' Vo et q¢
0
t e _
+ (_i)2 ffe—iH.t”Vo eiﬂ.g" dt" (50)
00
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we get a corresponding expansion of M. If we insert
unity in the form
ek ik o-iKE o-ikn

between every two interaction operators in each
of the expansion term we shall be able to transform
each two-particle interaction operator ¥ (R) into
V(IR—vt) =V(t), where v is the corresponding
relative velocity of two atoms. That transformation
corresponds in quantum mechanics to the classical
path approximation or to the eikonal approxima-
tion. Thus the matrix element /M transform to the
form

M= = 33 (00 |emilion otk gikin (51)

6{ (300|V3S(t,0)e-14 ¥y (2) i*t|300)]0) dt,

where |0vJ) denotes commonly the eigenstate of
the momentum operator of the system with the eigen-
value zero and the corresponding vibrational-rota-
tional state of the molecule. Inserting further the
unit operator ), |n;nyng) (nynyng|, (the quan-
nyngn
tum numbers n; ,'ng and ng refer respectively to
internal states of the rubidium and two xenon
atoms), between every two interaction operators in
each of the terms of the M expansion and perform-
ing there the time integration according to the ap-
pendix we arrive at the following expression for M

M= % (0,v] | e-ikem eikZ gikin [0 (0) + ¥ p3(0)

— i:f (V15(0) +V23(0))S.(z, 0)
: (V12 ) +Vi3(t) + Vza(t)) de] 10) , (52)

where 7, denotes now the van der Waals potential
acting between particles ¢ and k and

i
S(2,0) =exp{ —i [ [V1s(¥)
0
+Vig(t) +Vps(¢)] '}
is a classical function satisfying the equation

i 38 (2, 0) [Qt=[V12(2) +V13(t)+ Vo3 ()1 S9(2, 0) .
(54)

In deriving (52) we neglected some terms of the
interaction energy which add to the corresponding
London forces and which describe so-called non-
additive forces acting in a three-particle system (see
Acilrod and Teller 8). Those forces contribute to the
interaction energy only when all three particles are

(53)
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in close proximity of each other. Since in the present
calculation the long-range forces appears to be de-
cisive, neglecting those nonadditive energy terms
seems to be sufficiently justified. Making use of Eq.
(54) we can transform M to the form

M=V-%(0,v]]|etkem giksk giken (55)

“[V15(0) +V33(0)] 5 (0, 0) |0) .
Note that the function e'k:® ik Sl( oo, 0) is an
approximate scattering wave function of three col-
liding particles obtained in the eikonal approxima-
tion (see Goldberger et al.?, p.620). Finally, we

arrive at the more explicit form of the recombina-
tion rate constant

__2_'7‘ /"2hkvl
KD =5 2 2ans 199

(| [ d3n [ BEe-ilke-Kan. gikiE(y ] |
‘[Vis(&, M) +V23(E,1)]1 5% (0,0)[?) pq-

The numerical calculation of that expression is the
subject of the next two sections.

(56)

5. Some Further Approximations

In the following we shall want to calculate the
recombination rate constant for the quasimolecule
RbXe* formed during a three-particle collision of
one excited Rb atom with two ground state Xe
atoms. Since the life-time of Rb* is of the order of
3% 107 8sec!! and the duration of the collison is
of the order of 10713 sec one can, for an individual
collision-act, treat the excited Rb atom as a stable
one. In the present calculation we replace the van
der Waals potentials in (56) by more realistic Len-
nard-Jones potentials of the form

e ]

with the corresponding parameters &, and Ry, (see
Mahan et al.1?). In particular, for the interaction
between the Rb*-Xe atoms we utilize the Morse
potential in the form

VIR] =en {[e*®-Fm) _1]2_1}  (58)

with &y =740cm™!, R, =3.48A and a=1.76 A~1
(see Carrington et al.1!). For the xenon-xenon in-
teraction we take &y = 159.155cm™! and R, =
4.55 A (see Trantz et al.1%?). The three integrals
occurring in S(¢,0) [cp. (53)] can be easily cal-
culated if we take all the potentials to be of the form
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(57). Putting for example n =38, each of those inte-
grals is given in a cylindrical coordinate system
connected with any (i, k)-pair of particles, the
z-axis pointing in the direction of the relative ve-
locity of the particles, by the general expression

L VR M | e 22
o] Vir [Ris(0)] dt—€(T>{2 b7 [1+ (2/b)2]3

51 _1\( b .3 b
+(8 b 1)5)([1+<z/b)2124r 2 1+ (z/b)?

+ S aroan(2)+ 25 /o, 69)

2 b 4

with z=—Ry 'vik/vik =T 'Vik»

and b=VRj; —z® a corresponding impact parame-
ter. The relative velocity of the two (i, k)-particles
is denoted by v . The other two parameters {(T)
and v;;, are defined as follows

$(T) =& RE[h 5y (T) ,
vie="V2kT[wgv =0z(T)v,

where 7 (T) is the mean velocity and u;; denotes
a reduced mass of the particles. According to Fig. 1

Xe(3)

Xe(2)

Fig. 1. The system of three interacting particles.

we get
Ri,=§&, Ry=n+1§ and Ry=n-y§

with 2=my/(my+my) and yx=my/(m;+m,).

The average over all the possible initial positions
of the interacting particles given by the position
vectors &, R;3 and R, i.e. the integration over &
and 7 in (56) will be performed in a spherical co-
ordinate system. The coordinate system is chosen in
such a way that its z-axis is pointing along the di-
rection of the initial momentum P. In the coordi-
nate system so chosen we put

&= (¢,91,0y) ,
77=(77’¢29@2) ’
q=(g,93,03) ,
q,= (ka,(Pa” @3,) .

(60)



E. Czuchaj -

For the present calculation we shall take the vibra-
tional eigenfunctions of the RbXe* molecule which
satisfy the Schrédinger equation for a diatomic
molecule with the Morse potential (58) (see Nor-
ling 13). Putting ¥, (£) = (1/€) R, (&), the function
R, (&) is found to be

Rv(f) =N‘v exp{—ge—a(s—ém)} (61)

s (kremG-tm)ik-20-1)] (k-e-2¢-im))
a(k—-2v-1)

]
Ny L;! (k—v-1)T(k—v—1) ]

and L, are so-called generalized Laguerre poly-
nomials given by

where NV, is a normalizing factor

v(v—1)
2!
c(s+v)(s+v—1)2v-2
+ooot (=1)?%(s+v) (s+v=1)...(s+1)
with s=k—2v—1 and k=1/Xe as a characteristic
parameter of a molecule. Recall that the vibrational
energy levels (expressed in cm™!) of a diatomic
molecule treated as an anharmonic oscillator are
given by

G (v) =we(v+3) (62)

(cf. e. g. Herzberg 14, p. 149), where the parameter
®¢*Xe can be determined from the relation w,-Xe
= w,2[4-De, De being the energy of dissociation
of the molecule. Having w, and w, Xe for the
molecule we can readily find the parameter k. For
the RbXe* molecular w,=40cm™!, w,*Xe=0.54
and k£ =74. In the expression (61) &, =R, and all
the other parameters have their usual meaning. On
the other hand, the rotational wave functions for
RbXe* will be taken to be those for a symmetric
top given by so-called Jacoby (hypergeometric)
polynomials (see also Herzberg 4, p. 118):

((pI’@l]]MQ) =§D‘Z{lﬂ(¢1a@13 W)
=)PLEL e diaton) v,

where y refers to the inner motion of a molecule
(motion of electrons about the internuclear axis)
and £ is the quantum number of the resultant
electronic angular momentum about the internuclear
axis. In the considered case 2 =2 and J takes the
successive values.

J=0,0+1,2+2,...

Liy(¢) =2®— 77 (s+0)2°~1+

—weXe (v+3)%+

(63)

A Teratomic Recombination Rate Constant in the Eikonal Approximation

1495
For M =

dJ=3% %and §

1 , 1 1
¢§%(¢13 O,y) = V2n eldn l/ —;xl V2m

l/_' eitn (3z,—1) l/l +24

- gidv

V2.7t

we have respectively

eidv

Qi} ((pl ’ @1 s Y

3 .
Bly(p1, 0,9) = |/ % Gt -2, 1)

/14 1 g
2 V2ax
with 2; =cos @, . The eigenenergy of the molecule

being in a |v]) state is given by

EvJ=EeI+Ev+EJ:

ity

(64)

(65)
where E) is the electronic energy of the molecule,
E, is given by (61) and
s o
7=5p HU+1) —27].
The quantity I is the moment of inertia of a mole-

cule. For the RbXe* molecule I is found to be
1.04 x 10737 gcm?.

Let us come back to the expression (56). In order
to calculate £(T) we replace, in a first approxima-
tion, the average over the momentum moduli p and
q in (56) by taking k(T) with the mean values p
and (j Thus we get

Srslalh a0 ra0u fan f o

_zA'n) elk E(v ] [ [V13(§a ’1) + V23 (Ea ’7)]
'501(00,0)12, (66)

with Ak=Kk,;—k,. Since the modulus of Ak
takes rather large values we conclude that the de-
pendence of the integrand in (66) on the direction
of the vector 77 is mainly given through the first
exponential factor. The remaining part of the inte-
grand depends on the direction of 7 rather slightly,
and as a result we can in the following replace it by
its average value over all the directions of 7. Owing
to that the integration over the directions of 7 in
(66) can be carried out at once. The integrand in
(66) except for the first exponential factor changes
with % also slowly and decreases steeply for #— 0
as well as for 77— co. Therefore, writing Ak-7n
= Ak 5 cos??}, we infer that for any fixed direction

E(T) =
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of the vectors _152 and k,; in integrating over cos® in (66) only those values of cos? contribute to (66)
which satisfy the condition Ak*#y,x cos? < 1. This enables us to integrate as goes

J’dq)fe-iqucosﬂmn,ﬁdﬁ 2nfe'”"”‘”dx 2nfe""""dx An S_IEM

7). dkn
Thus the expression (66) takes the form
,u2 hkyy L 1 3 sin (ﬂ/’?max) ik,E
v]l[V13(§,’1)+V23(§,’1)]5°1(°°,0)]2, (67)
with AR =Tp® — 2o keyy cos O + K2y

and O being the polar angle between the vectors —k2 and k,; . The integrand in (67) depends on the direc-
tion of the vector K, through the modulus A% only. This permits us to integrate (67) over the directions
of k,; immediately. The result of the integration does not depend on the direction of k.

Since

fd(pf sin @ dO , _ 2= ln(k2 +2k2kvj+k.,.;)
0 ko2—2kykyycos O+ k2 2kykyy \ko2—2ks kyy+ k)’
we obtain for k(T) the expression
-3 3 8w (B L an g )
(vII[V13 £,1) +Va5(£,1)15 (c0,0)[2.
As is seen from (63) every rotational eigenfunction of the molecule contains the exponential factor e #:
with M being a half-integer. The change of that factor with ¢; is much stronger than that of the remaining

part of the integrand in (68). If we then replace the latter by its average value over ¢; we can perform the
integration over ¢ in (68) directly.

(68)

. 2n
We obtain [e-iModp, = —i%
0

2a L 4 2]+1 wha o (ks —|—2k2 kpy+kar\ 1 5 . sm(77/17max)
dn (2ah)Sky <k2 2 Ty kg + K2 ) [ A9, | [ & [ 8§ —

ek %d310(0) Yo (E) [Vis(&,m) + Va3 (£, 1)1 5 (0, 0) 2. (69)

The other parameters needed for the present calculation have the values: m; =85.48 g/mol, my=mgz=
131.30 g/mol so that u; =51.77 g/mol, u,=281.77 g/mol as well as 1=0.606 and 7 =0.394. Introducing
now the dimensionless variables ¢ and u, so that £=R, 0 and =R, u, and putting cos @, =z, cos O,
=, and cos O3 =23 we can transform (69) as follows

kE(T)=C(T)-F(T), (70)
wheees C(T) = *ﬁgih"; kRI(nT) *R® [cm®/sec]

with &, =740cm™ and R, =3.48 A, and F(T) is a dimensionless function of the recombination rate con-
stant given by

I 2J+1 ko +2kosz+llzJ

Fig)= vZJM—z—J M? I (ko —2k7ku+LN>

—iGP (T, 0,2) ] ddn (zy) Ro(0) (71)

*’*fd%fd%Ifd%fﬂd’)e”(T’@’z‘) (G2 (T, 0,2)

©min
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where
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2z 2n 1 ax
G.°(T, 0,%) =6[ de, {d¢2 [ldx{]n u sin (u/umax) [V13(Ry3) +Va3(Rsg) Jcos [C(T) (a15+azs)]

‘min

2n 2n 1 Umax
G (T, 0,) = { do, { do, [1&2 J wsin (w/umax) [Vig (Ryg) + Vg (Rog) ] sin [E(T) (@43 + 0p3) ]

Umin

and
V(Ts o, 271) =4 (T) 0xy— Z(T) P (99 2'1)

with A(T)= (V2kT us/k)R,. The
a12(0,71),

Qy3 =043 (T7 0, P1,%15 Uy Pa,%a, 933’13) ’
and

0o =0s3 (T, 0, P15 15 U, PosTa, P3sT3) »

are given according to (59) respectively for (1,2)-,
(1,3)- and (2, 3)-pairs of the interacting Rb and
Xe atoms. The potential V3 (Ry3) is given by (58)
and V3 (Ryg) is taken according to (57) with
n=12. The interatomic distances Ry;3 and R,4 are

Rig=[u?+220u(V(1 -2 (1 —2,3)
*cos (@ — 1) +74 7o) +42 0213,

Rys=[u?—270u(V(1 -2 (1-2,?)
* cos (@ — @) +3 7) + 22 0%13.

It turns out that in general the function y (T, 0,2;)
oscillates strongly in ¢ and z;. But for z; in the
range (0.74—0.94) y changes slightly with o for
o>1.1.

From those regions of ¢ and z; there comes the
greatest contribution to the integral (69). Besides,
the functions G,” and G;” change with o slowly being
nearly constant in the above mentioned z; region.
This enables us to integrate (71) over ¢ and z;
without taking into account the explicit dependence
of G,? and G;? on these variables.

functions

6. Details of the Calculation and Results

The recombination rate constant k(7T) has been
calculated for the quasimolecule RbXe* for T =
300°. For this temperature C(T) is found to be
7.542 %1073 cm®sec™!. The function F(T) has
been calculated with the vibrational eigenfunctions
of the molecule for v=1, 3, 6, 11, 14, 17, 20, 25,
30. For each of these vibrational states the rotational
eigenfunctions were taken with J =1/2, 3/2 and 5/2
only. The results of the calculation showed that the
respective J-components of k(7) for a definite

(72)

v-state differ from one another slightly in taken J
values. This could indicate the independence of
k(T) from the rational quantum number J.

Neglecting the dependence of £(T) on J we see
that to get the total recombination rate constant
k(T) we need only to calculate its respective v-com-
ponents for any J-state and to know the number of
rotational states for each of the vibrational state.
This facilitates the calculation of £ (T') considerably.
The next step in our approximation procedure is to
replace the average of F(T) over directions of the
vector K, , which is expressed in (71) by the inte-
gration over @3 and z3, by taking an arithmetical
average of k,(T) calculated for 10 different values
of 5 and x5 chosen at random. Since the vibrational
eigenstates of the molecule for large v are strongly
oscillating our procedure was as follows: first the
integrals G,” and G;” were calculated with the Monte
Carlo method and second the corresponding inte-
grals with a proper vibrational eigenfunction [as is
seen in (71)] were calculated with the usual Gauss
method. All the calculations were carried out on the
CDC 6600 computer at the Computer Centre of the
University Stuttgart. In calculating 4-fold integrals
G’ and G;” there are points in the integration re-
gion for which the functions sin[{(T) - (a3 + as3) ]
and cos[{(T) - (a;3+asg)] oscillate rapidly and
from which there comes the greatest error in the
final results. Assuming that the total contribution
from these points to the integrals equals zero, they
could be removed from the integration range with
some rejection method. The exact analysis of those
points indicates that the main contribution to the
integrals issues from the long-range forces acting
among the interacting particles. The program for
the integrals G,” and G;¥ was written in Fortran IV.
It gave us both the calculated values of G,” and G;*
and their statistical errors. At 50000 points chosen
from the 4-dimensional (¢, u, s, 2,) integration
region at random the statistical error for each cal-
culation was below 10% of the calculated values of
G,” and G;". The results of the present calculations
are presented in Figure 2.
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Fig. 2. The teratomic recombination rate constant k as a

function of vibrational energy of the molecule. The disso-

ciation limit is to the right and the potential minimum
(em= —740 cm—?) to the left.

A rather pronounced dependence of % (7) on the
vibrational quantum number of the molecule is seen.
Such a behaviour of k(7T) with v can readily be
explained. As is seen from (71) every v-contribu-
tion of k(T) consists of two factors: the first of
them depends on the number of rotational states for
a given v-state of the molecule, the other one de-
pends on the value of the integral over ¢ with an
appropriate v-eigenfunction. The number of rota-
tional states for a given vibrational level decreases
with increasing quantum number v. On the other
hand the wave functions given by (61) are nearly
symmetric for small v which implies rather small
values of the corresponding integrals. But with in-
creasing v the proper vibrational wave functions
become more and more asymmetric especially at the
right-hand side end from where there comes the
greatest contribution to the integral. Those two fac-
tors tend in opposite directions in their growths.
This leads to some maximum of %k (7) near the in-
termediate vibrational energies of the molecule. The
total recombination rate constant k(7') is found to
be 2.4x 10732 cm®sec™? with about 10% uncer-
tainty. The value of %k determined by Carrington
et al.11 is 8.2 10732 em® sec with about 20% un-
certainty. The order of magnitude agreement of
both the values %£(T) indicates that the present ap-
proach is correct and can successfully be used for
other concrete calculations. From the explicit form
of the rate constant k(T) [cp. (70) and (71)] we

can deduce its dependence on temperature. We see
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that %£(7T) depends on T through the parameter
C(T) and the function F(T). The parameter C(T)
decreases with increasing T as T~ whereas the
function F(T) should rather increase slightly with
T. This is so since with increasing T' the parameter
{(T) diminishes, which implies less oscillations of
the corresponding sin and cos functions occurring
in G and G,*. Thus we conclude that %£(7) should
depend on temperature about as 773.

7. Conclusion

In the present work a new approach to the cal-
culation of a teratomic recombination rate constant
k has been demonstrated. It has been shown that
starting from the corresponding quantum expres-
sion one can obtain an expression for k£ in the
eikonal approximation which is useful for further
numerical calculations. Such calculations have been
carried out for the RbXe* quasimolecule. The re-
sults of the present calculations were compared with
those obtained by Carrington et al. from molecular
spectrum measurements of the gaseous Rb*-Xe sys-
tem. The good agreement of both results in the
order of magnitude indicates that the present ap-
proach is correct and can successfully be used for
other alkali-nobel gas systems. The investigation of
the formation of quasimolecules from excited alkali
atoms and ground state nobelgas atoms is of par-
ticular interest on account of the possibility of uti-
lizing such systems to the realization of tunable gas
lasers working with van der Waals diatomic mole-
cules (see, e.g. Phelps 1%). It seems that the present
approach can successfully be applied both to the
recombination of gaseous molecules during teratomic
collisions and to the recombination of ions and free
electrons to give neutral atoms. The possibility to
calculate & completely quantum-mechanically is in-
teresting in principle. If, for example, we expanded
the free wave-packets occurring in (40) in terms of
the spherical Bessel functions j;(kr) then k(T)
could be expressed as a sum of probabilities of all
the possible changes of the angular momenta of the
colliding particles as a result of the interaction in
the course of a collision. The quantum calculation
of those probabilities seems to be possible.
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Appendix

Take the following expression

—iZ (%0]V12(§)|n1n2)lir;10fe"7‘

NNy ”

(A1)

*exp {i (D12, + on,) 1} (ny 0z | V12 [6(1) 1|3 0) dt,

where

E()=&—-vt with v=p/y,.

In the following we consider the integral

I=lim ?e‘”’ exp {i (@120, + ©on,) 1} (A2)
T mne ValE @113 0) ar.
Integrating by parts we get
I— — (nyny|V1(5)[30)
i (@172, + ©on,)
—lim [ exp {i(0gon + Do +in)) (A3

7—>00
%(ni ne |V [E(2)1]30) de

L (@1/2n, + Do n,)

According to (41), the matrix element occurring in
the last integrand can be expressed in cylindrical
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coordinates by

. -onst
(rima| Vi LE@T130) = o Ssam
(A4)

where the components z, ¥ and z of the vector & are
r=bcosq, y=bsing and z= —&V/v=7v. Since

3 (nna| V2 [501130)

302 (r—1)
[B2+2 (v—1)2]52 °

= — const
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Lnyna| Vi lEW]1130)

(nins | V32 [E(01]30)
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