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A new covariant theory of the classical radiating electron is compared with other radiation
reaction theories: On the one hand, the new theory can be deduced from Caldirola’s finite-dif-
ferences theory by suitable approximations; on the other hand, the Lorentz-Dirac theory and the
theory of Mo and Papas are shown to be approximative forms of the new theory. The latter is free
from the difficulties of the other theories: there are no undetermined internal oscillations, no
runaway solutions and pre-acceleration effects, and radiation reaction exists in the case of one-
dimensional motion. The general energy-momentum balance is studied, and the implications of the
existence of radiation reaction in a static constant force field are discussed with regard to the

principle of equivalence.

I. Introduction and Survey of Results

Recently, a new equation of motion for the clas-
sical radiating electron has been proposed?!, which
was expected to avoid most of the discrepancies
inherent in the presently accepted Lorentz-Dirac
theory of radiation reaction®3. Contrary to the
basic equation in the Lorentz-Dirac-Rohrlich theory

mut=Ki+§ 2lit+ @i)u'],  (L1)

the new equation of motion has no runaway solu-
tions and no pre-acceleration. But also if we com-
pare the new theory with other theories of the ra-
diating electron found in the literature, it is readily
recognized that most of the disadvantages of those
theories can be avoided by the present proposal.
From a general mathematical point of view, it
can be said that the new theory is based upon a
covariant differential-difference equation and re-
quires therefore new mathematical tools in managing
concrete problems. But this point is left for future
work. In this paper we are first concerned with a
study of the relations between Caldirola’s finite-
differences theory  on the one hand and the theory
of Mo and Papas® (resp. the theory of Lorentz-
Dirac-Rohrlich) on the other hand. Due to its inter-
mediate position between the finite-differences the-
ory, which allows for undetermined radiationless
self-oscillations, and the differential equation of the
Lorentz-Dirac theory with its runaway solutions, the
new differential-difference theory prohibits both the
self-oscillations and the runaway solutions.
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Nevertheless, the new theory exhibits radiation-
less modes, but these must be excited by suitable
external fields varying very rapidly with periods of
order 10723 sec. It is supposed, therefore, that the
microscopic stationary behaviour of the electron
can be described with the new equation. However,
radiation and the according friction force are pre-
sent whenever the external force varies slowly in
time compared to the elementary time interval men-
tioned above. Therefore, the macroscopic behaviour
of the radiation-damped electron is expected to be
described correctly by the new theory.

Special interest is devoted to a consistent local
approximation of the exact non-local equation of
motion. It is found in this respect that the Lorentz-
Dirac equation (I,1) can be obtained only by a
rather dubious procedure. A more consistent ap-
proximation procedure yields the theory of Mo and
Papas. The question of a consistent and physically
reasonable approximation of the equation of motion
is closely connected with the suitable choice of the
reference point, about which the necessary expan-
sions of the non-local quantities are to be performed.
Since two reference points are possible, there exist
two possibilities for the expansions: one delivers
the Lorentz-Dirac theory, the other the theory of Mo
and Papas.

As is well known, there is no radiation reaction
in the Mo-Papas theory in the case of linear motion.
This was considered as a disadvantage of this theory;
but since in the present context the Mo-Papas theory
arises only as an approximation to a higher level
theory, which clearly exhibits radiation damping in
the indicated case, one should not chalk up this point
to the Mo-Papas equation.
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From this point of view, there arises also a new
aspect of the lack of radiation reaction in the case
of hyperbolic motion, which occurs in free fall of
the radiating electron. Some authors have argued
that Einstein’s principle of equivalence is valid even
for radiating particles, because the generally ac-
cepted Lorentz-Dirac theory produces (due to the
lack of radiation damping in free fall) the same
trajectory, which is also followed by a neutral par-
ticle. But in the present context the Lorentz-Dirac
theory appears only as an approximation, which
furthermore cannot add something new to the neu-
tral particle trajectory in the case of free fall. So it
is found that the Lorentz-Dirac theory cannot be
decisive for the validity problem of Einstein’s prin-
ciple of equivalence. Indeed, this principle does not
hold in the higher level theory of the radiating
electron presented in this paper.

II. The New Equation

In a recent paper ! we have proposed the follow-
ing generalization of the Lorentz-Dirac equation
(I,1):

me? [t — (u)ut] =K*.

(IL,1)

The motivation for this proposition was the fact that
runaway solutions and pre-acceleration are excluded
in a theory based upon (II, 1). If the radiating elec-
tron is interacting with an external electromagnetic

field F, the force {K*} was assumed to be

Ky =Z P agy upe = ZF9u,. (11, 2)

Since we are considering now the electron in inter-
action with an arbitrary force field {K*} (e.g.
gravitational field), we first have to give a precise
meaning to the four-force {K?}, if the force three-
vector K is known. As a natural, non-local generali-
zation of the usual four-force

{K'} = {_»Kv/: - — o} ,» (IL,3)

V1—v3/c?’ V1-v?c?

where K and v refer to the same event on the world
line, we now choose

K 450 \/C K _ 49 ’
K;.smz{(_g«vo_w. - Kaan | g
{Ko) V1—v%)/c? V1—-v2/c? ( )

This is consistent with (II, 1) because of
Kl(” U(s) = 0.

In the following, we are dealing sometimes with
one-dimensional problems [K(, = (0,0,K)] .
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Therefore we apply to (II,1) and (II,3) the an-

satz

{ul(s)} = {COSh Ws) s 0, 0, Sinh w(s)} (II, 4)

and obtain after some elementary calculations

m ¢ Cosh (dw) =K , (I1, 5)
where
A . _ dw«s)
W= W) =g 3 dw i = we) —wis_ s
S s-4s A
K:=Ki-45-

Though a preliminary judgment on the differential-
difference Eq. (II,5) allows for the conclusion that
this equation will yield a physically reasonable
theory, nowhere in literature could be found a hint
on a treatment of this type of equation. So, irrespec-
tive of the physics standing behind, Eq. (II,5)
seems to represent also a purely mathematical chal-
lenge.

For the physicist, the striking features of (II, 5)
are the following:

1. If at a certain time the force on the particle
vanishes (K =0), then the acceleration vanishes,
too, at the same time (0 =0) ; this means exclusion
of runaway solutions and pre-acceleration.

2. The neutral particle limit (4s—0) is New-
ton’s equation of motion for a non-radiating par-
ticle, written in the variable w:

m C2‘l,i)(s) =K.

(11, 6)

3. The invariant acceleration for the radiating
particle as calculated from (II,5) is always smaller
in amount than that for the neutral particle, taken
from (I1,6) :

K| .

= L <1k l=me|d] -
Cosh (dw) < |K|=m | |neutr. - (IL, 7)

i -

|mc2w|

So we have always a radiation reaction in the ex-
pected direction (contrary to the Lorentz-Dirac
theory and that of Mo and Papas).

4. If we want to regain the one-dimensional form
of the Lorentz-Dirac equation, we write (II,5) ex-
plicitely as
m ¢ s - 45) Cosh [w(g) —w(s_45] =Ko a5 (IL,5")

and expand the quantities, which refer to the “ad-
vanced” point {4} = {z*;_45} on the world
line, about the point {z* } :

W(s- gs) = W(s) _As'w(s> +...,

K(S_As)=K(3)—AS‘K<s)+... . (II, 8)
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Observing ! the constraint for 4s

mc2As=%272

(L, 9)

and retaining only terms of maximal order (4s)?,
one finds easily from (11, 5")

m 02 u.}(s) ___%Z*Z il}(s) =K(s) -+ O(Asl) o (II, 10)

Neglection of all terms containing 4s™ with n>1
leads immediately to the one-dimensional Lorentz-
Dirac equ.

(II, 10a)

mc? W) — % 72 W(s) = K(s) 5

We do not think that the approximation proce-
dure below point 4. is a correct one. As a support
of this view, expand the corresponding quantities in
(II,5") about {%*4}, rename §=s—4s by s and
find

mc? 14')(3)=K(s)+0(dsi) " (II, 10’)

So we see that the two approximative forms (II, 10)
and (IL,10") are different and obviously depend
upon whether the expansion is performed about
{#*} or {#*4}. It is interesting to observe that
an expansion about the advanced point {#*,} does
not lead to the unphysical effects, not even in higher
orders. Accounting for the (4s)!-terms in (II, 10")
yields

mc? wes [1 +% (4s)? ‘w2(3)] 2Ky . (11, 10”)

If we take this equation as the approximated equa-
tion of motion, then we do not have to bother our-
selves with the unphysical effects. Consequently, it
is better to write the equation of motion (II,5") as

m c? u‘)(s)'Cosh[w(s+AS) —W(s*)] =K(3) (11,5”)

in order to indicate that expansions have to be per-
formed about the suitable reference point [now
{z%} in (II,5”)]. We shall come back to this
point later, when the present theory is compared
with those of Caldirola and of Mo and Papas.

These general remarks on the equation of motion
(11, 5) will do for our purpose here, and we proceed
now to study the motion of the radiating electron in
a static, homogeneous force field K, parallel to the
direction of the force. As a realization of this situa-
tion one can think of free fall.

II1. Simple Application: Hyperbolic Motion

Assume K in (I, 5) to be a constant throughout
the motion and try the ansatz

w=g's; g=const. (1L, 1)
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This yields
mc? g-Cosh(g4s) =K (=const) . (III, 2)

If the external force K is produced by an electrical
field E, we can put K=_ZE. The constant invariant
acceleration g [ =sign(K) 'V — ()] has to be
determined in terms of the force K from Equation
(IIL, 2). Figure 1 shows a plot of the function gy

in reduced units.

0.2p

02 4 6 8 10 .2 4

L%
KC

Fig. 1. The invariant acceleration g (solid curve), measured

in units of (4s)—!, is plotted versus the reduced force

K/K., where K¢=m c?/As=% Z%/As®. The dotted curve

results from Caldirola’s finite-differences theory. The tangent

to the curved lines in the origin is the corresponding result
for the Lorentz-Dirac theory.

From this figure, one concludes that the accelera-
tion of the extended particle (curved line), as de-
scribed by (II,5), is always less than the accelera-
tion for a non-radiating particle, respectively less
than the acceleration for the Lorentz-Dirac particle,
which is represented in both cases by the straigth
line. This is what one would expect on account of
radiation reaction. But the deviation of the curved
line from its tangent in the origin is not relevant
until the external force K assumes a horrible
strength. For instance, if the relative difference be-
tween the neutral particle acceleration and the ra-
diating particle acceleration in the same force field
K is prescribed to be one percent, the force K must
satisfy the requirement K ~ 0.1 K., and this is the
interaction force of two Coulomb singularities at a
distance of roughly four times the classical radius
re. It is clear, that such field strengths are not
accessible to experiment.

A further striking feature of Fig. 1 is the absence
of any sort of breakdown in the region K ~ K,,
which stands in contrast to the earlier results of the
finite-size model of the radiating electron®. Never-
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theless, the present result does not contradict the
former one, because in the former model the break-
down phenomena were solely due to the purely
external force (E2-effect). However, in the present
model we have not gone so far in our assumptions
on the four-force {K*} in (II, 1) to include such a
purely external term, but we have only chosen a
slight modification of the usual Lorentz force. The
breakdown in the integro-differential formulation of
the Lorentz-Dirac theory 7 is not reproduced by the
present generalization of the Lorentz-Dirac equation.

Now we assume that the constant force K is zero
in the past, i. e.

K(s) == {

Clearly, a solution of (II,5) for this case is

0; —o<s<0,

K (=const+0); (111, 3)

0§S<c~o.

O; —~OO<S<0,

I1I, 4
9m; 0Ss<o ( )

W(s) = {
with the same constant acceleration g as in
(II1, 2). Once more one realizes that no preaccelera-
tion arises in the present model (see Fig. 2), con-
trary to the Lorentz-Dirac theory.

mciw(s)
K(s)

mcwhe =
K .

g 5
..mcW(s)

n|

0

Fig. 2. Acceleration mc?w(s) and external force K(s)

versus proper time s. The Lorentz-Dirac acceleration

mc2wLlD js non-zero for s<<O (pre-acceleration). In the

present theory, there is no pre-acceleration (m c2w(s) =0

for s<0) and the resulting acceleration is smaller than in

the neutral particle case (m c® g<K) by virtue of radiation
reaction.

IV. Comparison with other Theories
of the Radiating Electron

a) Caldirola’s Finite-differences Theory

The introduction of a fundamental time interval
into the electron’s equation of motion in demand is,
of course, not a new idea. All the older attempts in
this respect can be found in the summary represen-
tation of Erber 8. But in recent time, too, there are

M. Sorg - Radiation Reaction in Classical Electrodynamics

people who hope to overcome the weak points of the
Lorentz-Dirac theory by resorting to the introduc-
tion of an elementary time interval (e.g. Ingraham?
or Cohn 1; note however Kapusta 11).

The most interesting theory of this sort seems to
be the finite-differences theory of Caldirola %, which
was developed twenty years ago and revived re-
cently 1213, A comparison between Caldirola’s the-
ory and the present one is especially instructive.

As the relativistic generalization of 14 15

- ;
- Wo-ve-] =Ky (Iv,1)
0
Caldirola postulated the following equation of mo-
tion for the radiating electron
£
mc?
& {—uhs-s0 + [ us-sn ] 8h9 ) =Ky -
0
(Iv, 2)
Clearly, the left-hand side of (IV,2) yields the
Lorentz-Dirac form (I,1) after expansions of the
type uh(s_sy =uh — S @) +... The connection
between mass m and length interval s, is here

(IV, 3)

instead of (II,9). Thus, one finds sy=24s. Equa-
tion (IV, 2) can equally well be written as

Ltmetsy=3%22

2 V]

o W) — U (s-sy) y W) “Un(s-s0) |

mcesy——— —|U(s) U
So So

=Kty . (IV,2)

Expanding about the “advanced” point {Z} =
{z*s_s9} (see the corresponding statements at the
end of Sect.Il.) yields at once the new Equation
(I1, 1). So we see that the difference of both theories
consists in the substitution of the derivatives {@*}
in (II,1) by the finite-differences
[utcs) —uts_s91/s0 in (IV,2).

A further difference exists in the force {K%};
whereas Caldirola_puts K*—Z F*u,, we have
preferred K*—Z F*u,, for this choice ensures
the non-existence of pre-acceleration (F*=0 = &’
—0).

Caldirola’s motivation for the proposition of his
new equation was the same as ours; the new equa-
tion was required to exclude runaway solutions and
pre-acceleration. Indeed, both theories have achieved
this goal, but in Caldirola’s theory one is forced to
deal with a new degree of freedom (internal mo-
tions, spin), for which dynamical laws are missing.

expression
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Our present theory stands between the Lorentz-Dirac
theory (differential equation) and Caldirola’s theory
(finite-differences equation) and it is therefore a
differential-difference equation excluding runaway
solutions on the one hand and also internal motions
on the other hand.

Let us proceed to compare simple solutions of the
basic equations of motion in both theories. Con-
fining ourselves to one-dimensional motion, Caldi-
rola’s equation (IV,2) becomes with the substitu-

tion (II, 4)

(m c2/sq) Sinh[wsy —wis_s9] =Ky, (IV,3)
where Eq. (II, 3) in the form

{K*} =K {Sinhwy; 0, 0, Cosh w }

has been used. From (IV, 3) one can easily find the
general solution of the Caldirola theory by

W(s) =wWes_gy +ArSinh[s) K/mc?] . (IV,4)

If the initial value for w is known (w;=uw,)
together with the force at times s,=s;+nsy, the
quantity w, (= w, +nsy) 1is not uniquely deter-
mined by (IV, 4)

Wy =w,_1 + ArSinh [SOK(S4+ns.)/m 02] , (IV,5)

for one can always add a function w) , which satis-
fies w(s,) =w(s, ) =0. This is the additional degree
of freedom consisting of the internal motion.

But now consider an everlasting constant force
K5y = K = const. Putting w(,) =g*s, we obtain from
(IV, 3) for the invariant acceleration § quite similar
as in the preceding section

(m 62/80) Sinh (§30) =K ’ (IV’ 6)

which is the old result of Lanz 16 (dotted curve in
Fig.1; observe sy=24s). From Fig.1 we recognize
again, that the result of the present differential-
difference theory (solid curve) is situated between
the result of the Lorentz-Dirac differential theory
(straight line) and that of Caldirola’s finite-differ-
ences theory (dotted curve). Thus, the same difficul-
ties of discerning experimentally between the vari-
ous theories persist with respect to the present one
and Caldirola’s theory (see Section III).

b) The Theory of Mo and Papas

Starting with the assumption that the radiation
reaction term % Z2(wu)u* in the Lorentz-Dirac
equation (I, 1) should be expressible by the external

1137

field F**, Mo and Papas® have postulated the fol-
lowing equation of motion for the radiating elec-
tron

2 73 ,
mc2it+ - —— (Fu,u,)ut =Z F*u,

3 mc*
2 7z

3 mc?

(Iv,7)

Bh gy
Indeed, if one approximates the real trajectory of
the radiating electron by its neutral particle limit

mc2ut=7ZF“uy, (IV, 8)

and inserts from here partly into the radiation reac-
tion term % Z2(uu)u* of the Lorentz-Dirac theory,
one easily recovers the second term on the left of
Equation (IV, 7). The second term on the right of
this equation appears -as an ad hoc expression.
Clearly, a theory based on (IV,7) does not exhibit
the unphysical effects of runaway solutions and pre-
acceleration and therefore seems to provide a quite
reasonable description of the radiating electron.
Even if Shen !? points out that the difference of the
results of both theories is masked by quantum ef-
fects and is therefore experimentally not verifyable,
one should nevertheless be highly interested in a
consistent classical theory of the radiating electron;
such demand is surely not met by the causality-
violating Lorentz-Dirac theory.

In order to give a plausible explanation for the
Eq. (IV,7), the neutral particle limit (IV,8) has
been applied and it might seem therefore that (IV, 7)
is only an approximation for the Lorentz-Dirac the-
ory. However, in rederiving (IV,7) from our new
Eq. (I1, 1), written as

me2[at— (u)ut] =Z Friu,,

(IV,9)

one shall realize at once that (IV,7) stands on the
same level of approximation as does the Lorentz-
Dirac equation. The latter one has been derived
from (IV,9) in the earlier paper!. To pursue now
the arising of (IV,7) from (IV,9), we observe
first that expansions in (IV, 9) should be performed
about the “advanced” point {Z*y}, as has been
stated repeatedly in the foregoing considerations.
Therefore,

i a1 22
uky =@ + Asuy +. ..
and hence
~ A A A ) A A8 o B
mc2ut—mcAds(wu)ar>2Z F“*a, +Z AsF“u, .

(Iv, 10)
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Suppressing herein the bar on the dynamical quan-
tities and applying (II, 9), one readily finds

G —-322(wu)w*=ZF*u,+%(Z3/mc?) F*u, .
(IV,11)

Now contract this equation with {u;} to obtain
—3Z2%(uu) =%(Z3/mc®) Fu,u;. (IV,12)

Thus, (IV,11) and (IV,12) lead immediately to
the Mo-Papas equation (IV, 7).

It must be stressed that the neutral particle limit
(IV, 8) has not been used in the foregoing deriva-
tion of (IV,7); nothing else has been done than in
the derivation of the Lorentz-Dirac equation, too.
But the present result (IV,7) is much more satis-
factory.

Of course, one can express also in the new theory
(IV, 9) the radiation reaction term R= —mc(u )
(see below) in terms of the external force. To this
end, contract Eq. (IV,9) with {#@;} to obtain

—ZFdu,a; (IV,9)

and therefore the equation of motion can also be
written as

—mc2(un)(ui)
iy 2w
(wi)

which is obviously a non-local generalization of the
Mo-Papas theory.

w=Z Friy,, (IV,9”)

Now, the equation of Mo and Papas (IV,7) has
been derived from (IV,9), but (IV,9) itself was
derived from Caldirola’s equation (IV,2) (apart
from the As-shift in the external force). Is therefore
(IV,7) derivable from Caldirola’s equation di-
rectly ?

The answer is negative: To prove this, abbreviate

in Eq. (IV,2")

{#te} : = {v'6-s0) (IV,13)
and find
A =0 L~
ch{u L [u1'. b u,,] u’:} —ZFriy,
So So
(IV, 14)
2
== »’—"si {—&+ (ui)uw') =Z Fu, . (IV,14")
0
Contracting (IV,14") with {&@;} yields
me )t i) =ZFéu,d;. (IV,15)
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For weakly curved world lines we can put
—~14+ (uwi)2={(ua)+1}
fui) -1~ 2{ (i) -1} .

Therefore

~ _1}:

and (IV, 14) becomes with this result

17 Fri u, i

u* — i I
m c? — +iZ(Fru,u,)u* =ZFy,
So
(IV,16)
It would be meaningless in this equation to expand
about {z%}; rather we expand again about
{#}:={z%s-s9} and substitute F#t— F#t in
order to ovoid additional derivative terms in F#%
Then one finds

m e i +3 Z sy (F* i, i) it = Z F¥ iy, + 5o Z F*

(IV, 17)

But this equation is not identical with (IV,7), be-
cause the sy-dependent coefficients in front of the
additional terms (with respect to the neutral particle
limit) are not the same.

Finally, we have to spend a few words on the
hyperbolic motion within the framework of the Mo-
Papas theory. As Huschilt and Baylis !® have ob-
served, the Mo-Papas equation (IV,7) reduces in
the one-dimensional case (II,4), where one easily
verifies

(F* i, u,)u* = F* iy, = (FO3 i) u?,

to the one-dimensional form (II,6) of the neutral
particle limit (IV, 8). If therefore the electron moves
in a purely electric field {F; k=1,2, 3}, there is
no radiation reaction present in the Mo-Papas the-
ory, and the electron moves exactly like the neutral
(i. e. non-radiating) particle. We therefore obtain
in the hyperbolic motion case the same invariant
acceleration ¢ as in the Lorentz-Dirac theory. Hu-
schilt and Baylis have considered this as a serious
objection to the Mo-Papas theory and the author
has subscribed to this point of view in an earlier
paper 1°. But in the present context, the Mo-Papas
equation appears as an approximation of the higher
level theory (II, 1), which clearly exhibits radiation
reaction in the special cases of motion indicated
above. In regard of its approximative character, the
just mentioned lack of the Mo-Papas theory seems
to be excusable and should therefore no longer be
regarded as an objection.
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V. General Energy-Momentum Balance

Intuitively, one would associate three sorts of
energy-momentum with the radiating electron ac-
celerated by an external force field: kinetic energy-
momentum of the bound self-fields constituting the
“electron”, energy-momentum of the electromag-
netic radiation escaping from the accelerated charge,
and finally the energy-momentum transfer of the
external forces. However, the Lorentz-Dirac equa-
tion (I,1) contains four terms and this has led to
confusion about the fourth term (Schott term: sec-
ond derivative of four-velocity u'). As a conse-
quence, people believed for a certain time, that the
electron in hyperbolic motion does not radiate, but
this error has been elucidated definitely by Rohr-
lich 2% 21, The meaning of the Schott term as part of
the energy-momentum content of the bound velocity
fields surrounding the source of the Liénard-Wie-
chert potentials was not fully understood until re-
cently 19 22724 (see also Reference ).

Regarding the new equation (II, 1), it is a matter
of ease to identify the three terms of this equation
with the three sorts of energy-momentum mentioned
above.

a) Work of the External Forces

Clearly, we have to identify the work d4/dr of
the external force per unit proper time as

d4 1 .d4

d4 _1d4 ., Kyvyle
ds ¢ drt T V1= (v/e)?
_ Ki_a9 Ve

V11— (v/e)?

(V,1)

B) Kinetic Energy-momentum

As a generalization of the usual expression

Pb‘u(s) =mcu"y) (V, 2a)

let us choose here
(V, 2b)

This choice is in line with the foregoing statements
on the Schott term, because we can recover this
term, if we expand the bound four-momentum
(V, 2b) with respect to 4s [observe (II,9)]

2

1 2.
Py 2Xm cut () — Y —Z%ut .

3

Pb"(s) =mcu;_g5 = mcﬁu .

(V, 2¢)
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According to (V,2b) we define the kinetic energy
T of the particle in arbitrary motion as

To=mc*[uls_49—11=mc2[a—1]. (V,2d)

For motions with constant four-velocity this yields
back the standard result from relativistic point me-
chanics (T(y—>mc*[u’s —1]). It seems very
plausible that one uses now the advanced quantity
u®_ 45 instead of u®y , because, if one thinks the
self-fields of the electron created on the world line
of a representative point within a finite-size struc-
ture of extension s, these fields contribute to the
energy-momentum of the extended structure when
they have reached its surface. But then they carry
the energy-momentum of the state of motion at time
As before, when they originated on the represen-
tative world line (cf. Reference 7).

v) Radiated Four-momentum
Of course, we put
dP# ,q/ds = —mc(ut)u”, (V, 3a)

which reduces in lowest order to the standard re-
sult 3

dP#pgf/ds2mc As(wii)u* = — % -g— Z2 () ut.
(V,3b)
The generalized invariant radiation rate
1 dWraa
= 2 de

becomes now

R=u,(dP*q/ds) = —mec(ui) (V,4a)

and is independent of the chosen inertial frame, as
is the case for the old result 3

Re2Asme(uwii) = — —1——?)—22(1';:1) s

(V, 4b)
which again arises here as the lowest order ap-
proximation.

An especially concrete interpretation of the in-
variant rate R is obtainable if it is expressed in
terms of the external force. Equation (V,4a) yields

together with formula (IV, 9")
A
R L g P iy
c (uwi)

(V, 4c)

In the instantaneous rest system characterized by
{u*} ={1;0,0,0} this expression becomes
({F%; k=1,2,3} =E)

ER=>_Z(E"), (V, 4d)
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respectively, if (II, 3") is used,
2R=— (K'v). (V, 4e)

So we see that in this special coordinate frame the
radiated energy per unit time is exactly given by
the ordinary work (per unit time) an interval 4z
=ds/c before the particle comes to rest. Now we
consider the invariant rate (V,4a) in the specially
chosen coordinate system. With {u?.,,} ={1;0, 0,0}
one easily verifies

C2R=—mcs(uﬁ)=>—c—:li (m 229 (V, 4f)
s

__ 4
T dr
where 7 = (1 —92/c2) 12, D =0, _ 45 and s, is the
proper time, where the particle comes to rest, Hence,
with (V,4d) and (V, 4f)

(me*7),

d A d A A
E‘; (m c? }’) = EL" T(s,)=Z(E-v) . (V, 4<g)

In this special coordinate system * the particle ra-
diates electromagnetic energy (c>R) on expense of
kinetic energy (dT/dr). Clearly, the external work
dA/dr is zero in this case on account of (V,1). In
an arbitrary frame the energy balance reads (ob-

serve u?=dz*/ds=1/c[dz*/dr])

dr dz d4
L g aeple G4
dr +e'R dr dr ’

or by use of the laboratory time 2% (=c?)
dT/dt+c2 R =d4/d:.

The work per unit time of the external force
(d4/dt) is transferred to the change of the kinetic
energy (dT/dt) and to the emitted radiation energy
(2 R).

There is however an important difference between
the exact formulae (V,3a; V,4a) and their ap-
proximations (V,3b; V,4b). This difference con-
sists in the scalar (uZ) not being negative definite
as is the case of its lowest order approximation
(vz) in the approximative formulae (V,3b;
V, 4b). Writing the equation of motion (II,1) in
the form

dPy[dr 4 dP* 4q/dv = K*, (V,5)

* QObserve the astonishing resemblance of (V,4g) with
the energy equation of the neutral particle limit m c2 i
=K%, which can be written in an arbitrary frame as
d/dt(mc2y)=(K-v) (dt=dr in (V,4g), because the
particle is at rest in sr).
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we see that the radiation recoil dP“.q/dv being
always a retarding (friction) force is not guaran-
teed. Is this to be considered a disadvantage of the
present theory? We do not think so; rather, we take
this as an indication that the present theory might
give a hint on the microscopic behaviour of the
electron in microscopic fields. Indeed, it is easy to
convince oneself, that the radiation recoil is almost
always a retarding friction force, if the electron
moves in macroscopic fields, i.e. fields which do
not vary appreciably over time intervals of order
Ar=Aslc (2210722 sec). To see this, regard the
scalar (zz) in (V,3a) or (V,4a) in the rest frame
of the particle, where {u*;,} has the form
{1;0,0,0}. In this case, one has
(u a) =00 = ,14 Zi dv*

2 B dt (V,6)

where all terms with a bar refer to the proper time
s=s,— s [see the notation below (V,4f)]. So we
recognize that the radiation recoil is a retarding
friction force only if d92/dt< 0; i.e. if the absolute
value of the ordinary velocity ¥ is decreasing a
time interval 4r =4s/c before the particle comes to
rest. If d02/dt>0 [= (u#)>0] were valid, then
the particle would accelerate a time interval 4t be-
fore it would come to rest, and in this case the in-
variant radiation rate R would indeed be negative.
But since dv2/dz>0 at time s,—4s and ¥2=0 at
sy, there must be a maximum (or several ones) of
the absolute value of ¥ in the interval s, — 4s <s <s;.
Of course, this might occur even in macroscopic
motions. But for such motions one can expect that
the maxima (or minima) of v? are separated by
time intervals much larger than A7z =As/c; and
since R >0 is possible only in an interval 4s around
an extremum of v2, there would be R > 0 for a much
longer time than R<O0 is possible. So the totai
emitted energy ¢2[Rd: is always positive for
macroscopic motions.

These statements can be made clearer in the case
of one-dimensional motion. Insert (II,4) into the
expression (V,4a) for the radiation rate R and find
with the abbreviations below (II, 5)

R =m ¢ Sinh (dw) . (V,7)

From here one concludes readily that R <0 if % has
opposite sign with respect to Aw. The latter is only
possible in a As-neighbourhood of a (relative) ex-
tremum of the function w, which is uniquely as-
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sociated to the corresponding extremum of the
ordinary velocity v. Since such an extremum is
characterized by the change of sign of w, we rec-
ognize from the one-dimensional equation of motion
(I1,5), that R <0 occurs in a 4s-neighbourhood of
the change of sign of the external force K(;). Since
these changes of sign of K are assumed to be
separated by times much larger than 4s (for macro-
scopic motions only), the total emitted energy is
positive in general.

However, if the external forces are changing very
rapidly, it might occur that the scalar (u %) becomes
positive for a relatively long time and therefore the
electron can gain considerable energy-momentum
from its own radiation field **. It might even be,
that there is no radiation at all, if the electron oscil-
lates at certain frequencies. To elaborate this point
a little bit further, reconsider the one-dimensional
equatign of motions (II,5). Assume the external
force K(5) to be such that the resulting motion has
(V,8)

for all s. Then (II, 5) reduces to the neutral particle
limit (II,6), and because (V,8) implies

Wis) =W(s-4gs) = W,

Aw = W) — W(s-As) =0

(V,9)

we see then from the neutral particle limit equation
(IT, 6) that K(5) must be a periodic function in s
with period At =A4s/c ~10723sec. Since in this
case the radiating particle moves exactly like the
non-radiating one, the invariant radiation rate must
vanish, which is fulfilled on account of (V,7,8).

We see that also in the present theory there are
radiationless modes quite similar as in the non-
relativistic model of Bohm and Weinstein ! or in
the relativistic version of Caldirola 4. But the main
difference is that the radiationless oscillations of the
present theory must be excited by a suitable external
force (the force-free electron can only move with
constant four-velocity 1), whereas in the other theo-
ries just mentioned the radiationless self-oscillations
exist without presence of an external force.

VI. Some Remarks on the Principle
of Equivalence

If twe think of the constant force K in (III,2)
to be of gravitational nature, there arises a certain

** In quantum-mechanical language one would phrase this
as “emission and reabsorption of photons”. Observe that
reabsorption refers here to the radiation field and not to
the bound field, which is connected with the Schott term.
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problem *** connected with the principle of equiva-
lence in gravitation theory. Following Rohrlich 2> 21,
the principle of equivalence states that “the equa-
tions of motion of a non-rotating test body in free
fall in a gravitational field be independent of the
energy content of that body”. Now, it is well known
that the vector

I'*=3 72 {ii*+ (uu)u*}, (VL 1)
which occurs in the Lorentz-Dirac equation as
mc2ut =K+ I' (VL 2)

vanishes in the case of hyperbolic motion ({I'*} = 0)
and thus the Lorentz-Dirac equation reduces in the
case of free fall, which is assumed to be described
by hyperbolic motion, to the neutral particle limit

mc2ut=K*. (VL, 3)

So it seems that the principle of equivalence is
fulfilled even for a radiating electron: the neutral
particle and the electron fall equally fast in a static
homogeneous gravitational field despite the fact that
the charged particle emits electromagnetic energy
and momentum.

One argues? that if this would not be so, there
would arise a paradox: A freely falling observer is
connected with a comoving inertial coordinate sys-
tem, relative to which Maxwell’s electrodynamics is
valid in its special-relativistic form. The basic equa-
tions of the latter theory have as a special solution
a static Coulomb field, called electron, which is con-
sequently at rest relative to the freely falling ob-
server. If the electron would not drop to the earth
as fast as the neutral particle, the comoving inertial
observer would find the neutral particle accelerated
relative to the charged one without presence of a
force. Thus he could distinguish between his own
free fall and a gravitation free situation. But this
would violate the principle of equivalence as stated
formerly by Einstein and put now in the definitive

form above by Rohrlich.

Since the Lorentz-Dirac equation (VI,2) seems
to be able to avoid such a contradiction, one con-
cludes that the principle of equivalence is indeed
fulfilled for charged particles; and one is left only
with the problem of radiation (which observer does
the freely falling charged particle see radiating?).

#** This problem was recently 26 even called the “equivalence
principle paradox”.



1142

There has been spent a lot of work 3% 2127729,
about this question, but none seems to us to be con-
clusive. We do not argue here against the above
mentioned results but refer to a footnote of Rohr-
lich#! himself concerning the conception of a test
particle: “By definition of ‘test particle’ one must
ignore here the effect of the particle’s own field on
its motion (electromagnetic as well as gravitational).
But the electromagnetic self-energy is included as
part of its mass which is not supposed to enter its
equation of motion.”

Well, if the effect of the particle’s own field on its
motion has to be neglected, why has then the Lo-
rentz-Dirac equation (accounting for the particle’s
self-interaction with its own radiation field) been
studied in connection with the principle of equiva-
lence?

Our point of view is that the principle of equiva-
lence is only valid if no other than gravitational
interactions are involved. If this is the case, one can
geometrize the gravitational interactions and arrives
at General Relativity, which incorporates the prin-
ciple of equivalence in form of the geodesic postu-
late. But as soon as other than gravitational inter-
actions are involved (e. g. electromagnetic self-inter-
actions) the principle of equivalence is overcharged
to make statements about the equation of motion for
the test particles. It seems to be quite incidental that
the Lorentz-Dirac theory (or the Mo-Papas theory
as well), which is incorporating the self-interaction
of the radiating charge with its own field, produces no
deviation of the charged particle’s trajectory in static
homogeneous gravitational fields with respect to the
trajectory of a neutral particle. One might suppose
that this missing of a deviation effect is due to the
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11 J. Kapusta, Nuovo Cim. 31 B, 225 [1976].
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15 C. J. Eliezer, Proc. Camb. Phil. Soc. 46, 199 [1950].
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fact that the non-local character of the Lorentz-Dirac
theory, which is best seen in its integro-differential
formulation 3, drops out completely in the case of
hyperbolic motion, and consequently the Lorentz-
Dirac electron in hyperbolic motion might be con-
sidered as test particle in the proper sense. Hereby
one should exclude any sort of non-locality, and
linked with it the existence of radiation, for a test
particle by definition.

So the Lorentz-Dirac theory (being an approxi-
mation in the framework of the present finite-size
theory) actually represents the neutral particle limit
in the special force field under consideration.

Thus, having neglected radiation reaction in
using an approximation equation of motion for the
radiating electron, one finds the principle of equiva-
lence fulfilled even for radiating particles. But ac-
counting for the finite-size of the electron means that
one can no longer regard the electron as a test par-
ticle and consequently the principle of equivalence
is not fulfilled for the real electron as soon as one
leaves the point-like approximation.

Parenthetically, we mention that the principle of
equivalence, as stated by Rohrlich? in its strong
form, is not valid for true gravitational fields 3: 39,
even if one works in the point-like approximation;
and finally the real electron has spin and therefore
cannot serve for this reason, too, as a test particle
for Einstein’s principle of equivalence.
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