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A new covariant theory of the classical radiating electron is compared with other radiation 
reaction theories: On the one hand, the new theory can be deduced from Caldirola's finite-dif-
ferences theory by suitable approximations; on the other hand, the Lorentz-Dirac theory and the 
theory of Mo and Papas are shown to be approximative forms of the new theory. The latter is free 
from the difficulties of the other theories: there are no undetermined internal oscillations, no 
runaway solutions and pre-acceleration effects, and radiation reaction exists in the case of one-
dimensional motion. The general energy-momentum balance is studied, and the implications of the 
existence of radiation reaction in a static constant force field are discussed with regard to the 
principle of equivalence. 

I. Introduction and Survey of Results 

Recently, a new equation of motion for the clas-
sical radiating electron has been proposed which 
was expected to avoid most of the discrepancies 
inherent in the presently accepted Lorentz-Dirac 
theory of radiation reaction2>3. Contrary to the 
basic equation in the Lorentz-Dirac-Rohrlich theory 

mc2 ux = Kx + %Z2[üx + (üü)ux] , (1,1) 

the new equation of motion has no runaway solu-
tions and no pre-acceleration. But also if we com-
pare the new theory with other theories of the ra-
diating electron found in the literature, it is readily 
recognized that most of the disadvantages of those 
theories can be avoided by the present proposal. 

From a general mathematical point of view, it 
can be said that the new theory is based upon a 
covariant differential-difference equation and re-
quires therefore new mathematical tools in managing 
concrete problems. But this point is left for future 
work. In this paper we are first concerned with a 
study of the relations between Caldirola's finite-
differences theory 4 on the one hand and the theory 
of Mo and Papas5 (resp. the theory of Lorentz-
Dirac-Rohrlich) on the other hand. Due to its inter-
mediate position between the finite-differences the-
ory, which allows for undetermined radiationless 
self-oscillations, and the differential equation of the 
Lorentz-Dirac theory with its runaway solutions, the 
new differential-difference theory prohibits both the 
self-oscillations and the runaway solutions. 
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Nevertheless, the new theory exhibits radiation-
less modes, but these must be excited by suitable 
external fields varying very rapidly with periods of 
order 10 - 2 3 sec. It is supposed, therefore, that the 
microscopic stationary behaviour of the electron 
can be described with the new equation. However, 
radiation and the according friction force are pre-
sent whenever the external force varies slowly in 
time compared to the elementary time interval men-
tioned above. Therefore, the macroscopic behaviour 
of the radiation-damped electron is expected to be 
described correctly by the new theory. 

Special interest is devoted to a consistent local 
approximation of the exact non-local equation of 
motion. It is found in this respect that the Lorentz-
Dirac equation (1,1) can be obtained only by a 
rather dubious procedure. A more consistent ap-
proximation procedure yields the theory of Mo and 
Papas. The question of a consistent and physically 
reasonable approximation of the equation of motion 
is closely connected with the suitable choice of the 
reference point, about which the necessary expan-
sions of the non-local quantities are to be performed. 
Since two reference points are possible, there exist 
two possibilities for the expansions: one delivers 
the Lorentz-Dirac theory, the other the theory of Mo 
and Papas. 

As is well known, there is no radiation reaction 
in the Mo-Papas theory in the case of linear motion. 
This was considered as a disadvantage of this theory; 
but since in the present context the Mo-Papas theory 
arises only as an approximation to a higher level 
theory, which clearly exhibits radiation damping in 
the indicated case, one should not chalk up this point 
to the Mo-Papas equation. 
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From this point of view, there arises also a new 
aspect of the lack of radiation reaction in the case 
of hyperbolic motion, which occurs in free fall of 
the radiating electron. Some authors have argued 
that Einstein's principle of equivalence is valid even 
for radiating particles, because the generally ac-
cepted Lorentz-Dirac theory produces (due to the 
lade of radiation damping in free fall) the same 
trajectory, which is also followed by a neutral par-
ticle. But in the present context the Lorentz-Dirac 
theory appears only as an approximation, which 
furthermore cannot add something new to the neu-
tral particle trajectory in the case of free fall. So it 
is found that the Lorentz-Dirac theory cannot be 
decisive for the validity problem of Einstein's prin-
ciple of equivalence. Indeed, this principle does not 
hold in the higher level theory of the radiating 
electron presented in this paper. 

II. The New Equation 

In a recent paper 1 we have proposed the follow-
ing generalization of the Lorentz-Dirac equation 
( 1 , 1 ) : 

mc2[üx-(üu)ux]=Kx. (11,1) 

The motivation for this proposition was the fact that 
runaway solutions and pre-acceleration are excluded 
in a theory based upon (II, 1). If the radiating elec-
tron is interacting with an external electromagnetic 
field F~uv, the force {Kx} was assumed to be 

K\s) = Z FfsiAs)• ufl(s) = Z F'uX uß. (11,2) 

Since we are considering now the electron in inter-
action with an arbitrary force field (e. g. 
gravitational field), we first have to give a precise 
meaning to the four-force {A 7 } , if the force three-
vector K is known. As a natural, non-local generali-
zation of the usual four-force 

K-v/c K 
( 1 1 , 3 ) 

y i - v 2 / c 2 ' vi-v2ic2\' 

where K and V refer to the same event on the world 
line, we now choose 

I K(g _ /Is) • V (S)JC K(a-Js) 
{K\s)} = • ( 1 1 , 3 ' ) Vi-v\s)/c2 ' yi-v2

(s)/c2 

This is consistent with (II, 1) because of 

KX(S)-uX(S) = 0 . 

In the following, we are dealing sometimes with 
one-dimensional problems [K(s) = (0, 0, £(«)) ] . 

Therefore we apply to (11,1) and (11,3) the an-
satz 

{ "*(«)} = {Cosh W(s); 0, 0, Sinh m>(s)} (II, 4) 

and obtain after some elementary calculations 
mc2 w Cosh (Aw) = K , (II, 5) 

where 

w : = u,\s-As) = 
d a ; , » 

ds s- As 
Aw : = W(S) -w(s_As) 

K : = K(S_Z|S) . 

Though a preliminary judgment on the differential-
difference Eq. (11,5) allows for the conclusion that 
this equation will yield a physically reasonable 
theory, nowhere in literature could be found a hint 
on a treatment of this type of equation. So, irrespec-
tive of the physics standing behind, Eq. (11,5) 
seems to represent also a purely mathematical chal-
lenge. 

For the physicist, the striking features of (II, 5) 
are the following: 

1. If at a certain time the force on the particle 
vanishes (K = 0), then the acceleration vanishes, 
too, at the same time (w = 0) ; this means exclusion 
of runaway solutions and pre-acceleration. 

2. The neutral particle limit (As—> 0) is New-
ton's equation of motion for a non-radiating par-
ticle, written in the variable w: 

m c2 W(s) = K,s). (II, 6) 

3. The invariant acceleration for the radiating 
particle as calculated from (11,5) is always smaller 
in amount than that for the neutral particle, taken 
from (11,6) : 

K | , - , ^ 
\mc2w\= 'K\ = mc2\ti> n e u t r . • (II, 7) Losh(Zlic) 

So we have always a radiation reaction in the ex-
pected direction (contrary to the Lorentz-Dirac 
theory and that of Mo and Papas). 

4. If we want to regain the one-dimensional form 
of the Lorentz-Dirac equation, we write (11,5) ex-
plicitely as 
m c2 W(s-As) Cosh [ifl(S) — tC(s_ js)] = K ( s _ A s ) (11,5') 

and expand the quantities, which refer to the "ad-
vanced" point { i\ s ) } = {V ( s _j s ) } o n the world 
line, about the point {z*(S)} : 

tO(s-As) =W(s) —ds-W(s) + . . . , 

K(s- Js) = £ ( s ) — ds-K(S) + . . . . (II , 8 ) 
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Observing 1 the constraint for As 

mc2As = \Z2 (11,9) 

and retaining only terms of maximal order (-4$)°, 
one finds easily from (II, 5') 

m c2 wis) -1 Z2 W(S) = K(s) + 0{As
l). (II, 10) 

Neglection of all terms containing Asn with n > 1 
leads immediately to the one-dimensional Lorentz-
Dirac equ. 

m c2 W(S) — f Z2 iv(S) = K(s), (II, 10a) 
We do not think that the approximation proce-

dure below point 4. is a correct one. As a support 
of this view, expand the corresponding quantities in 
(11,5') about rename s = s — As by s and 
find 

m c2 W(S) = K(S) + 0{As^. (II, 10') 

So we see that the two approximative forms (II, 10) 
and (II, 10') are different and obviously depend 
upon whether the expansion is performed about 
{^(s)} or It is interesting to observe that 
an expansion about the advanced point does 
not lead to the unphysical effects, not even in higher 
orders. Accounting for the (zls^-terms in (II, 10') 
yields 

m c2w(s) [1 + h(As)2 ic2
(s)] mK(s). (II, 10") 

If we take this equation as the approximated equa-
tion of motion, then we do not have to bother our-
selves with the unphysical effects. Consequently, it 
is better to write the equation of motion (II, 5') as 

mc 2 W(s)'Cosh[iV(s + As)-W(s)] =K ( s ) (11,5") 

in order to indicate that expansions have to be per-
formed about the suitable reference point [now 
{V(,s)} in (11,5")] . We shall come back to this 
point later, when the present theory is compared 
with those of Caldirola and of Mo and Papas. 

These general remarks on the equation of motion 
(II, 5) will do for our purpose here, and we proceed 
now to study the motion of the radiating electron in 
a static, homogeneous force field K, parallel to the 
direction of the force. As a realization of this situa-
tion one can think of free fall. 

III. Simple Application: Hyperbolic Motion 

Assume K in (11,5) to be a constant throughout 
the motion and try the ansatz 

w(s) =9's > # = const. (111,1) 

This yields 
me2,g-Cosh{gAs) = K ( = const) . (111,2) 

If the external force K is produced by an electrical 
field E, we can put K = ZE. The constant invariant 
acceleration g [ = sign(£) • ]/ — (ü u) ] has to be 
determined in terms of the force K from Equation 
(111,2). Figure 1 shows a plot of the function g(#) 
in reduced units. 

Fig. 1. The invariant acceleration g (solid curve), measured 
in units of (Zls) is plotted versus the reduced force 
K/Kc, where Kc=m c2/As = § Z2/As2. The dotted curve 
results from Caldirola's finite-differences theory. The tangent 
to the curved lines in the origin is the corresponding result 

for the Lorentz-Dirac theory. 

From this figure, one concludes that the accelera-
tion of the extended particle (curved line), as de-
scribed by (11,5), is always less than the accelera-
tion for a non-radiating particle, respectively less 
than the acceleration for the Lorentz-Dirac particle, 
which is represented in both cases by the straigth 
line. This is what one would expect on account of 
radiation reaction. But the deviation of the curved 
line from its tangent in the origin is not relevant 
until the external force K assumes a horrible 
strength. For instance, if the relative difference be-
tween the neutral particle acceleration and the ra-
diating particle acceleration in the same force field 
K is prescribed to be one percent, the force K must 
satisfy the requirement K OA Kc, and this is the 
interaction force of two Coulomb singularities at a 
distance of roughly four times the classical radius 
tc . It is clear, that such field strengths are not 
accessible to experiment. 

A further striking feature of Fig. 1 is the absence 
of any sort of breakdown in the region K ^ Kc, 
which stands in contrast to the earlier results of the 
finite-size model of the radiating electron6. Never-
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theless, the present result does not contradict the 
former one, because in the former model the break-
down phenomena were solely due to the purely 
external force (£2-effect). However, in the present 
model we have not gone so far in our assumptions 
on the four-force {A?-} in (11,1) to include such a 
purely external term, but we have only chosen a 
slight modification of the usual Lorentz force. The 
breakdown in the integro-differential formulation of 
the Lorentz-Dirac theory 7 is not reproduced by the 
present generalization of the Lorentz-Dirac equation. 

Now we assume that the constant force K is zero 
in the past, i. e. 

JO; - oo < s < 0 , 
= ( = const =(= 0 ) ; ( I 1 1 ' 3 ) 

Clearly, a solution of (11,5) for this case is 
(0; — co < 5 < 0 , 

W ( i ) = „ . n c c . 
Ifl'CÄ) ; ö S 5 < oo 

(111,4) 

with the same constant acceleration ĝ K) as in 
(111,2). Once more one realizes that no preaccelera-
tion arises in the present model (see Fig. 2), con-
trary to the Lorentz-Dirac theory. 

m c*w(s) 
K(s) 

K • 
| 

\r,'tr) c'g 

K(s) 
-

mc'w(s) 

Fig. 2. Acceleration mc2 w (s) and external force K (s) 
versus proper time s. The Lorentz-Dirac acceleration 
m c2 wLD is non-zero for s < 0 (pre-acceleration). In the 
present theory, there is no pre-acceleration ( m c 2 i v ( s ) = 0 
for s<0) and the resulting acceleration is smaller than in 
the neutral particle case (m c2 by virtue of radiation 

reaction. 

IV. Comparison with other Theories 
of the Radiating Electron 

a) Caldirola s Finite-differences Theory 

The introduction of a fundamental lime interval 
into the electron's equation of motion in demand is, 
of course, not a new idea. All the older attempts in 
this respect can be found in the summary represen-
tation of Erber 8. But in recent time, too, there are 

people who hope to overcome the weak points of the 
Lorentz-Dirac theory by resorting to the introduc-
tion of an elementary time interval (e.g. Ingraham9 

or Cohn 10; note however Kapusta 11). 
The most interesting theory of this sort seems to 

be the finite-differences theory of Caldirola 4, which 
was developed twenty years ago and revived re-
cently 12 '13. A comparison between Caldirola's the-
ory and the present one is especially instructive. 

As the relativistic generalization of 14 '15 

[!>(*) -l>(f_r ,)] = K(r, VJ (IV, 1) 

Caldirola postulated the following equation of mo-
tion for the radiating electron 

m c~ 
{ - + l > ( a ) ' » ( « - a , ) ] u \ s ) } = KX (s) 

(IV, 2) 
Clearly, the left-hand side of (IV, 2) yields the 
Lorentz-Dirac form (I, 1) after expansions of the 
type u\s _ So) = a* (S) — 50 • üÄ(S) + . . . The connection 
between mass m and length interval s0 is here 

| mc2 s0 = | Z2 (IV, 3) 

instead of (11,9). Thus, one finds s0 = 2 As. Equa-
tion (IV, 2) can equally well be written as 

" * ( a ) - U[(S_-S0) 
(a) 

" , ( a ) K v ( a - a o ) 

>0 
14 ;7S) 

= K V (IV, 2') 

Expanding about the "advanced" point = 
{z*(s_s,)} (see the corresponding statements at the 
end of Sect. II.) yields at once the new Equation 
(II, 1). So we see that the difference of both theories 
consists in the substitution of the derivatives {ü / } 
in (II, 1) by the finite-differences expression 
[i4;-(s) -!4*(S_Äi)]/s0 in (IV, 2') . 

A further difference exists in the force {K*} ; 
whereas Caldirola puts K*-—*-Z F u ß , we have 
preferred F"x uß, for this choice ensures 
the non-existence of pre-acceleration = 0 => 
= 0). 

Caldirola's motivation for the proposition of his 
new equation was the same as ours; the new equa-
tion was required to exclude runaway solutions and 
pre-acceleration. Indeed, both theories have achieved 
this goal, but in Caldirola's theory one is forced to 
deal with a new degree of freedom (internal mo-
tions, spin), for which dynamical laws are missing. 
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Our present theory stands between the Lorentz-Dirac 
theory (differential equation) and Caldirola's theory 
(finite-differences equation) and it is therefore a 
differential-difference equation excluding runaway 
solutions on the one hand and also internal motions 
on the other hand. 

Let us proceed to compare simple solutions of the 
basic equations of motion in both theories. Con-
fining ourselves to one-dimensional motion, Caldi-
rola's equation (IV, 2) becomes with the substitu-
tion (11,4) 

(m c2/,s0) Sinh[u>(S) — W(s_ So)] = K(s), (IV, 3) 

where Eq. (II, 3) in the form 
{K\s)} = K(s) {Sinh u;(s); 0, 0, Cosh 

has been used. From (IV, 3) one can easily find the 
general solution of the Caldirola theory by 

W(S) =W(s-s0) + ArSinh[s0£ ( s ) /mc2] . (IV, 4) 
If the initial value for w is known {wi = w^Si)) 
together with the force at times sn = S[ + n 5q , the 
quantity wn ( = tV(Si+ns,)) is not uniquely deter-
mined by (IV, 4) 

wn = wn_1 + Ar Sinh [s0 KiSt + nSt)/m c2] , (IV, 5) 

for one can always add a function W(s), which satis-
fies W(Sn) = iv^^j) = 0. This is the additional degree 
of freedom consisting of the internal motion. 

But now consider an everlasting constant force 
K(S) = K = const. Putting W(s)=g-s, we obtain from 
(IV, 3) for the invariant acceleration g quite similar 
as in the preceding section 

(mc2/s0)Smh(gs0)=K, (IV,6) 

which is the old result of Lanz 16 (dotted curve in 
Fig. 1; observe s0 = 2 As). From Fig. 1 we recognize 
again, that the result of the present differential-
difference theory (solid curve) is situated between 
the result of the Lorentz-Dirac differential theory 
(straight line) and that of Caldirola's finite-differ-
ences theory (dotted curve). Thus, the same difficul-
ties of discerning experimentally between the vari-
ous theories persist with respect to the present one 
and Caldirola's theory (see Section III). 

b) The Theory of Mo and Papas 

Starting with the assumption that the radiation 
reaction term § Z2 (li ü)ux in the Lorentz-Dirac 
equation (I, 1) should be expressible by the external 

field Fuv, Mo and Papas 5 have postulated the fol-
lowing equation of motion for the radiating elec-
tron 

m c2 Ü1 + * (F"y uu ur) u>- = Z F">- ufl (IV, 7) 
o m c~ 

Indeed, if one approximates the real trajectory of 
the radiating electron by its neutral particle limit 

mc 2 ü l = Z F ^ u ß (IV, 8) 

and inserts from here partly into the radiation reac-
tion term f Z2(üü)ux of the Lorentz-Dirac theory, 
one easily recovers the second term on the left of 
Equation (IV, 7). The second term on the right of 
this equation appears as an ad hoc expression. 
Clearly, a theory based on (IV, 7) does not exhibit 
the unphysical effects of runaway solutions and pre-
acceleration and therefore seems to provide a quite 
reasonable description of the radiating electron. 
Even if Shen 17 points out that the difference of the 
results of both theories is masked by quantum ef-
fects and is therefore experimentally not verifyable, 
one should nevertheless be highly interested in a 
consistent classical theory of the radiating electron; 
such demand is surely not met by the causality-
violating Lorentz-Dirac theory. 

In order to give a plausible explanation for the 
Eq. (IV, 7) , the neutral particle limit (IV, 8) has 
been applied and it might seem therefore that (IV, 7) 
is only an approximation for the Lorentz-Dirac the-
ory. However, in rederiving (IV, 7) from our new 
Eq. (II, 1), written as 

mc2[üx-(üu)ux]=ZF^uß, (IV, 9) 

one shall realize at once that (IV, 7) stands on the 
same level of approximation as does the Lorentz-
Dirac equation. The latter one has been derived 
from (IV, 9) in the earlier paper To pursue now 
the arising of (IV, 7) from (IV, 9) , we observe 
first that expansions in (IV, 9) should be performed 
about the "advanced" point {2\s)}, as has been 
stated repeatedly in the foregoing considerations. 
Therefore, 

u\s) = üx(s) + As üx(s) + . . . 

and hence 
mc2Ux-mc2 As (üü) üx^ Z FuX üu +Z As fax ü,4. 

(IV, 10) 
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Suppressing herein the bar on the dynamical quan-
tities and applying (11,9), one readily finds 
m c2 üx - f Z2 (ü ü) ux = Z fl* uß + f (Z3/m c2) F"x üß . 

(IV, 11) 

Now contract this equation with {ux} to obtain 

- f Z2 (ü Ü) = f (Z3/m c2) F»1 üß ux. (IV, 12) 
Thus, (IV, 11) and (IV, 12) lead immediately to 
the Mo-Papas equation (IV, 7). 

It must be stressed that the neutral particle limit 
(IV, 8) has not been used in the foregoing deriva-
tion of (IV, 7 ) ; nothing else has been done than in 
the derivation of the Lorentz-Dirac equation, too. 
But the present result (IV, 7) is much more satis-
factory. 

Of course, one can express also in the new theory 
(IV, 9) the radiation reaction term —mc(uü) 
(see below) in terms of the external force. To this 
end, contract Eq. (IV, 9) with {u^} to obtain 

-mc2{uü)(uü) =ZF"xußük (IV, 9') 

and therefore the equation of motion can also be 
written as 

m c2 üx + = Z F1*1 uß , (IV, 9" ) 
(u u) 

which is obviously a non-local generalization of the 
Mo-Papas theory. 

Now, the equation of Mo and Papas (IV, 7) has 
been derived from (IV, 9), but (IV, 9) itself was 
derived from Caldirola's equation (IV, 2) (apart 
from the Js-shift in the external force). Is therefore 
(IV, 7) derivable from Caldirola's equation di-
rectly? 

The answer is negative: To prove this, abbreviate 
in Eq. (IV, 2') 

{ü\s)}:={u\s.st)} (IV, 13) 
and find 

[ UX — Ü'- Uv — Ü,. 
uy • — .»1 1 

Uv — Ü,. 
uy • — .»1 

I s0 1 

or 

= ZF'd uß 

(IV, 14) 

{ - u;- + (u ü) = Z FuX uß . (IV, 14') 

Contracting (IV, 14') with {u^} yields 

— { - l + ( o ) 2 } =ZF"*ußüx. (IV,15) 

For weakly curved world lines we can put 
- l + ( u u ) 2 = { ( u u ) + l } 

•{uü) -l}«* 2{(uu) 
Therefore 

1 } 

m c~ 
{(uü)-l} = hZF^ußü, 

and (IV, 14) becomes with this result 

4- g Z (F1'" ußüv)ux = Z FuX uß. 

(IV, 16) 
It would be meaningless in this equation to expand 

u — u 
So 

about { ^ ( s ) } ; rather we expand again about 
i~z\s)} : = { 2 V s , ) } an(I substitute F^1 F/jX in 
order to ovoid additional derivative terms in Ff,x. 
Then one finds 
m c2 üx + 1 Z Sq (Ff" üß ür) üx=Z F^ üß + s0Z F»x üß . 

(IV, 17) 
But this equation is not identical with (IV, 7), be-
cause the s0-dependent coefficients in front of the 
additional terms (with respect to the neutral particle 
limit) are not the same. 

Finally, we have to spend a few words on the 
hyperbolic motion within the framework of the Mo-
Papas theory. As Huschilt and Baylis18 have ob-
served, the Mo-Papas equation (IV, 7) reduces in 
the one-dimensional case (11,4), where one easily 
verifies 

üß Uy) ux = F>"x üß = ( f 0 3 w) ux, 

to the one-dimensional form (II, 6) of the neutral 
particle limit (IV, 8). If therefore the electron moves 
in a purely electric field {Fok; A; = 1 , 2 , 3} , there is 
no radiation reaction present in the Mo-Papas the-
ory, and the electron moves exactly like the neutral 
(i. e. non-radiating) particle. We therefore obtain 
in the hyperbolic motion case the same invariant 
acceleration g as in the Lorentz-Dirac theory. Hu-
schilt and Baylis have considered this as a serious 
objection to the Mo-Papas theory and the author 
has subscribed to this point of view in an earlier 
paper 19. But in the present context, the Mo-Papas 
equation appears as an approximation of the higher 
level theory (II, 1), which clearly exhibits radiation 
reaction in the special cases of motion indicated 
above. In regard of its approximative character, the 
just mentioned lack of the Mo-Papas theory seems 
to be excusable and should therefore no longer be 
regarded as an objection. 
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V. General Energy-Momentum Balance 

Intuitively, one would associate three sorts of 
energy-momentum with the radiating electron ac-
celerated by an external force field: kinetic energy-
momentum of the bound self-fields constituting the 
"electron", energy-momentum of the electromag-
netic radiation escaping from the accelerated charge, 
and finally the energy-momentum transfer of the 
external forces. However, the Lorentz-Dirac equa-
tion (1,1) contains four terms and this has led to 
confusion about the fourth term (Schott term: sec-
ond derivative of four-velocity ux). As a conse-
quence, people believed for a certain time, that the 
electron in hyperbolic motion does not radiate, but 
this error has been elucidated definitely by Rohr-
lich 20' 21. The meaning of the Schott term as part of 
the energy-momentum content of the bound velocity 
fields surrounding the source of the Lienard-Wie-
chert potentials was not fully understood until re-
cently 19' 2 2 - 2 4 (see also Reference 25). 

Regarding the new equation (II, 1), it is a matter 
of ease to identify the three terms of this equation 
with the three sorts of energy-momentum mentioned 
above. 

a) Work of the External Forces 

Clearly, we have to identify the work d^/dr of 
the external force per unit proper time as 

d A 
ds 

d A 
dr 

( V , l ) 
Vl~(v ( s ) /c)2 

_ K(s-Js) "V(s)/c 

Vl-(v(s)/c)2 

ß) Kinetic Energy-momentum 

As a generalization of the usual expression 

^V(S) = m c tt'"(s) (V, 2a) 
let us choose here 

Pb^Cs) = m c = m cüß. (V, 2b) 
This choice is in line with the foregoing statements 
on the Schott term, because we can recover this 
term, if we expand the bound four-momentum 
(V, 2b) with respect to As [observe (11,9)] 

1 2 

According to (V, 2b) we define the kinetic energy 
T of the particle in arbitrary motion as 

T{S) = m c 2 js) — 1] = m c2[zi° — 1] . (V, 2d) 
For motions with constant four-velocity this yields 
back the standard result from relativistic point me-
chanics (7\S) —>- m c2[u°(s) — 1]) • It seems very 
plausible that one uses now the advanced quantity 

instead of u°(s), because, if one thinks the 
self-fields of the electron created on the world line 
of a representative point within a finite-size struc-
ture of extension As, these fields contribute to the 
energy-momentum of the extended structure when 
they have reached its surface. But then they carry 
the energy-momentum of the state of motion at time 
As before, when they originated on the represen-
tative world line (cf. Reference 19). 

y) Radiated Four-momentum 

Of course, we put 
d^rad/d* = -mc(uü)u>*, (V, 3a) 

which reduces in lowest order to the standard re-
sult3 

1 2 
dP^rad/ds ^mcAs(uii)ua= — Z2(ü ä)a" . 

c 3 
(V, 3b) 

The generalized invariant radiation rate 
v i d r r a d 
R = c2 d* 

becomes now 
R = (dP"rad/ds) = -mc(uü) (V, 4a) 

and is independent of the chosen inertial frame, as 
is the case for the old result3 

R^Asmc(uü) = - — ^-Z2(üü) , (V, 4b) 
c 3 

which again arises here as the lowest order ap-
proximation. 

An especially concrete interpretation of the in-
variant rate R is obtainable if it is expressed in 
terms of the external force. Equation (V, 4a) yields 
together with formula (IV, 9') 

R 
1 z F & UU Ü; 
C (U Ü) 

(V, 4c) 

Puu(s) = m c u"(s) - - - Z- w\s) (V, 2c) 

In the instantaneous rest system characterized by 
{ V } = { l ; 0, 0, 0 } this expression becomes 

({F0 Ä;Ä = 1 , 2 , 3 } = E ) 

c2R=> —Z(E-v) , (V, 4d) 
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respectively, if (II, 3') is used, 

c 2 # = > - (K-v) . (V,4e) 

So we see that in this special coordinate frame the 
radiated energy per unit time is exactly given by 
the ordinary work (per unit time) an interval Ax 
= As/c before the particle comes to rest. Now we 
consider the invariant rate (V, 4a) in the specially 
chosen coordinate system. With {uX(Sr)} = { l ; 0, 0, 0} 
one easily verifies 

c2R = —mc3(uü)=>—c -7 - (m c2 u°) 
ds 

(V,4f) 

= -—(mc2y), 

where y = (1 — V2Jc2)~1/2, V = V(Sr-As> and sr is the 
proper time, where the particle comes to rest, Hence, 
with (V, 4d) and (V, 4f) 

~{mc2y) = ~T{Sr) = Z{E-i) . (V, 4g) 

In this special coordinate system * the particle ra-
diates electromagnetic energy (c2 R) on expense of 
kinetic energy (dT/dx). Clearly, the external work 
dA/dx is zero in this case on account of (V, 1). In 
an arbitrary frame the energy balance reads (ob-
serve ux = d2;/ds = 1/c [dz^/dr]) 

cIA_ 
dr ' 

dT + c 2 R A z ° _ 
dr dt 

or by use of the laboratory time ( = c t) 

dTldt + c2R = dAjdt. 

The work per unit time of the external force 
(dA/dt) is transferred to the change of the kinetic 
energy ( d T / d t ) and to the emitted radiation energy 
(c2R). 

There is however an important difference between 
the exact formulae (V, 3a; V, 4a) and their ap-
proximations (V, 3b; V, 4b). This difference con-
sists in the scalar (u ü) not being negative definite 
as is the case of its lowest order approximation 
(aü) in the approximative formulae (V, 3b; 
V, 4b). WTriting the equation of motion (11,1) in 
the form 

dP^/dx + dP'"ra(]/dr = Kx, (V, 5) 

Observe the astonishing resemblance of (V, 4g) with 
the energy equation of the neutral particle limit m c2 ii* 
= which can be written in an arbitrary frame as 
d/dt (m c2 y) = (K- v) (di=dr in (V, 4g), because the 
particle is at rest in Sr). 

we see that the radiation recoil dPuiaafdx being 
always a retarding (friction) force is not guaran-
teed. Is this to be considered a disadvantage of the 
present theory? We do not think so; rather, we take 
this as an indication that the present theory might 
give a hint on the microscopic behaviour of the 
electron in microscopic fields. Indeed, it is easy to 
convince oneself, that the radiation recoil is almost 
always a retarding friction force, if the electron 
moves in macroscopic fields, i. e. fields which do 
not vary appreciably over time intervals of order 
Ax = As/c ( ^ 10~23 sec). To see this, regard the 
scalar (u ü) in (V, 3a) or (V, 4a) in the rest frame 
of the particle, where {uk(Sr)} has the form 
{1 ; 0 , 0 ,0 } . In this case, one has 

- 1 JO2 

where all terms with a bar refer to the proper time 
s = sr — As [see the notation below (V, 4 f ) ] . So we 
recognize that the radiation recoil is a retarding 
friction force only if dt)2 /df<0; i.e. if the absolute 
value of the ordinary velocity V is decreasing a 
time interval Ax = AsJc before the particle comes to 
rest. If dv2/dt>0 [=> (uü)>0] were valid, then 
the particle would accelerate a time interval /IT be-
fore it would come to rest, and in this case the in-
variant radiation rate R would indeed be negative. 
But since dv2/dt>0 at time sr- As and V2 = 0 at 
sr, there must be a maximum (or several ones) of 
the absolute value of V in the interval sr — As < 5 < sr. 
Of course, this might occur even in macroscopic 
motions. But for such motions one can expect that 
the maxima (or minima) of V2 are separated by 
time intervals much larger than Ax = Asjc\ and 
since R > 0 is possible only in an interval As around 
an extremum of V2, there would be R > 0 for a much 
longer time than K < 0 is possible. So the total 
emitted energy c2 f R dt is always positive for 
macroscopic motions. 

These statements can be made clearer in the case 
of one-dimensional motion. Insert (II, 4) into the 
expression (V, 4a) for the radiation rate R and find 
with the abbreviations below (II, 5) 

R = mcw Sinh {Aw) . (V,7) 

From here one concludes readily that R < 0 if w has 
opposite sign with respect to Aw. The latter is only 
possible in a Js-neighbourhood of a (relative) ex-
tremum of the function W;s), which is uniquely as-
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sociated to the corresponding extremum of the 
ordinary velocity V. Since such an extremum is 
characterized by the change of sign of W(S) we rec-
ognize from the one-dimensional equation of motion 
(11,5), that £ < 0 occurs in a zls-neighbourhood of 
the change of sign of the external force K(S). Since 
these changes of sign of K(S) are assumed to be 
separated by times much larger than As (for macro-
scopic motions only), the total emitted energy is 
positive in general. 

However, if the external forces are changing very 
rapidly, it might occur that the scalar (u ü) becomes 
positive for a relatively long time and therefore the 
electron can gain considerable energy-momentum 
from its own radiation field **. It might even be, 
that there is no radiation at all, if the electron oscil-
lates at certain frequencies. To elaborate this point 
a little bit further, reconsider the one-dimensional 
equation of motions (11,5). Assume the external 
force K(S) to be such that the resulting motion has 

Aw = w{s)-w{s_As) = 0 (V, 8) 
for all s. Then (II, 5) reduces to the neutral particle 
limit (11,6), and because (V, 8) implies 

W(s)=U>(s-As) = (V, 9) 
we see then from the neutral particle limit equation 
(II, 6) that K(S) must be a periodic function in s 
with period Ar = As/c 10~23 sec. Since in this 
case the radiating particle moves exactly like the 
non-radiating one, the invariant radiation rate must 
vanish, which is fulfilled on account of (V, 7, 8) . 

We see that also in the present theory there are 
radiationless modes quite similar as in the non-
relativistic model of Böhm and Weinstein 14 or in 
the relativistic version of Caldirola 4. But the main 
difference is that the radiationless oscillations of the 
present theory must be excited by a suitable external 
force (the force-free electron can only move with 
constant four-velocity *), whereas in the other theo-
ries just mentioned the radiationless self-oscillations 
exist without presence of an external force. 

VI. Some Remarks on the Principle 
of Equivalence 

If twe think of the constant force K in (111,2) 
to be of gravitational nature, there arises a certain 

** In quantum-mechanical language one would phrase this 
as "emission and reabsorption of photons". Observe that 
reabsorption refers here to the radiation field and not to 
the bound field, which is connected with the Schott term. 

problem *** connected with the principle of equiva-
lence in gravitation theory. Following Rohrlich 3' 21, 
the principle of equivalence states that "the equa-
tions of motion of a non-rotating test body in free 
fall in a gravitational field be independent of the 
energy content of that body". Now, it is well known 
that the vector 

r ' = § z 2 { ü * + ( ü ü ) ^ } , ( v i , i ) 

which occurs in the Lorentz-Dirac equation as 
mc2üx = Kx + rx (VI, 2) 

vanishes in the case of hyperbolic motion ({-TA} = 0) 
and thus the Lorentz-Dirac equation reduces in the 
case of free fall, which is assumed to be described 
by hyperbolic motion, to the neutral particle limit 

mc2 iix = Kx. (VI, 3) 

So it seems that the principle of equivalence is 
fulfilled even for a radiating electron: the neutral 
particle and the electron fall equally fast in a static 
homogeneous gravitational field despite the fact that 
the charged particle emits electromagnetic energy 
and momentum. 

One argues 3 that if this would not be so, there 
would arise a paradox: A freely falling observer is 
connected with a comoving inertial coordinate sys-
tem, relative to which Maxwell's electrodynamics is 
valid in its special-relativistic form. The basic equa-
tions of the latter theory have as a special solution 
a static Coulomb field, called electron, which is con-
sequently at rest relative to the freely falling ob-
server. If the electron would not drop to the earth 
as fast as the neutral particle, the comoving inertial 
observer would find the neutral particle accelerated 
relative to the charged one without presence of a 
force. Thus he could distinguish between his own 
free fall and a gravitation free situation. But this 
would violate the principle of equivalence as stated 
formerly by Einstein and put now in the definitive 
form above by Rohrlich. 

Since the Lorentz-Dirac equation (VI, 2) seems 
to be able to avoid such a contradiction, one con-
cludes that the principle of equivalence is indeed 
fulfilled for charged particles; and one is left only 
with the problem of radiation (which observer does 
the freely falling charged particle see radiating?). 

*** This problem was recently 28 even called the "equivalence 
principle paradox". 
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There has been spent a lot of work20' 21' 2 7 _ 2 9 . 
about this question, but none seems to us to be con-
clusive. We do not argue here against the above 
mentioned results but refer to a footnote of Rohr-
lich21 himself concerning the conception of a test 
particle: "By definition of 'test particle' one must 
ignore here the effect of the particle's own field on 
its motion (electromagnetic as well as gravitational). 
But the electromagnetic self-energy is included as 
part of its mass which is not supposed to enter its 
equation of motion." 

Well, if the effect of the particle's own field on its 
motion has to be neglected, why has then the Lo-
rentz-Dirac equation (accounting for the particle's 
self-interaction with its own radiation field) been 
studied in connection with the principle of equiva-
lence? 

Our point of view is that the principle of equiva-
lence is only valid if no other than gravitational 
interactions are involved. If this is the case, one can 
geometrize the gravitational interactions and arrives 
at General Relativity, which incorporates the prin-
ciple of equivalence in form of the geodesic postu-
late. But as soon as other than gravitational inter-
actions are involved (e. g. electromagnetic self-inter-
actions) the principle of equivalence is overcharged 
to make statements about the equation of motion for 
the test particles. It seems to be quite incidental that 
the Lorentz-Dirac theory (or the Mo-Papas theory 
as well), which is incorporating the self-interaction 
of the radiating charge with its own field, produces no 
deviation of the charged particle's trajectory in static 
homogeneous gravitational fields with respect to the 
trajectory of a neutral particle. One might suppose 
that this missing of a deviation effect is due to the 

fact that the non-local character of the Lorentz-Dirac 
theory, which is best seen in its integro-differentia! 
formulation3, drops out completely in the case of 
hyperbolic motion, and consequently the Lorentz-
Dirac electron in hyperbolic motion might be con-
sidered as test particle in the proper sense. Hereby 
one should exclude any sort of non-locality, and 
linked with it the existence of radiation, for a test 
particle by definition. 

So the Lorentz-Dirac theory (being an approxi-
mation in the framework of the present finite-size 
theory) actually represents the neutral particle limit 
in the special force field under consideration. 

Thus, having neglected radiation reaction in 
using an approximation ecjuation of motion for the 
radiating electron, one finds the principle of equiva-
lence fulfilled even for radiating particles. But ac-
counting for the finite-size of the electron means that 
one can no longer regard the electron as a test par-
ticle and consequently the principle of equivalence 
is not fulfilled for the real electron as soon as one 
leaves the point-like approximation. 

Parenthetically, we mention that the principle of 
equivalence, as stated by Rohrlich3 in its strong 
form, is not valid for true gravitational fields 3' 30. 
even if one works in the point-like approximation; 
and finally the real electron has spin and therefore 
cannot serve for this reason, too, as a test particle 
for Einstein's principle of equivalence. 

Acknowledgement 

The author wishes to express his gratitude to 
Prof. Dr. W. Weidlich for his encouraging interest 
in this work and for some valuable discussions. 

1 M. Sorg, Z. Naturforsch. 31a, 664 [1976]. 
2 P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 

[1938], 
3 F. Rohrlich, "Classical Charged Particles", Addison-Wes-

ley, Reading Mass. 1965. 
4 P. Caldirola, Nuovo Cim. 3. Suppl. 2, 297 [1956], 
5 T. C. Mo and C. H. Papas, Phys. Rev. D 4, 3566 [1971]. 
6 M. Sorg. Z. Naturforsch. 30 a, 1535 [1975]. 
7 M. Sorg, Z. Naturforsch. 31a, 683 [1976]. 
8 T. Erber, Fortschr. d. Phys. 9, 343 [1961]. 
9 R. L. Ingraham, Nuovo Cim. 27 B. 293 [1975]. 

10 J. Cohn, Nuovo Cim. 26 B, 47 [1975], 
11 J. Kapusta, Nuovo Cim. 31 B, 225 [1976]. 
12 P. Caldirola, Lett. Nuovo Cim. 15, 486 [1976]. 
13 P. Caldirola, Lett. Nuovo Cim. 16, 151 [1976]. 
14 D. Böhm and M. Weinstein, Phys. Rev. 74, 1789 [1948]. 
15 C. J. Eliezer, Proc. Camb. Phil. Soc. 46, 199 [1950]. 
16 L. Lanz, Nuovo Cim 23, 195 [1962], 

17 C. S. Shen. Phys. Rev. D 6, 3039 [1972]. 
18 J. Huschilt and W. E. Baylis, Phys. Rev. D 9. 2479 

[1974]. 
19 M. Sorg, Z. Naturforsch. 29 a, 1671 [1974], 
20 T. Fulton and F. Rohrlich, Ann. Phys. 9, 499 [I960]. 
21 F. Rohrlich, Ann. Phys. 22. 169 [1963]. 
22 R. Tabensky and D. Villarroel, J. Math. Phys. 16, 1380 

[1975], 
23 R. Tabensky, Phys. Rev. D 13. 267 [1976]. 
24 Ch. G. vanWeert, Phys. Rev. D 9. 339 [1974]. 
25 E. G. P. Rowe, Phys. Rev. D 12, 1576 [1975]. 
26 D. C. Wilkins, Phys. Rev. D 12, 2984 [1975]. 
27 M. Bondi and T. Gold, Proc. Roy. Soc. London A 229. 

416 [1955]. 
28 D. Leiter, Int. J. Theoret. Phys. 3, 387 [1970]. 
29 V. L. Ginzburg. Sov. Phys. Usp. 12. 565 [1970], 
30 B. S. De Witt and R. W. Brehme, Ann. Phys. 9, 220 

[I960], 


