Thermodynamische Zustandsgrößen von Alkalimetallplasmen und von deren Komponenten

Thermodynamic Properties of Alkali Metal Plasmas and of their Components

F. W. Reiter*

Gemeinsames Forschungszentrum der Europäischen Atomgemeinschaft, Division Technologie, EURATOM, Ispra, Italien

(Z. Naturforsch. 28 a. 1676 – 1686 [1973]: reingegangen am 23. Mai 1973)

Thermodynamic functions of plasmas of alkali metals and of their components — diatomic molecules, atoms, simply charged ions and electrons — are calculated in the temperature range 298.15 °K—10000 °K. At this it is supposed, that the plasma is in thermodynamic and chemical equilibrium and in an ideal gas state.

The internal partition functions of the components of the plasmas are calculated by summation term by term up to characteristic quantum numbers. These characteristic quantum numbers are determined by graphic and calculating methods.

The thermodynamic functions of alkali metal plasmas and their components are discussed and compared with results calculated by approximative methods.

1. Einleitung

In den letzten Jahren und Jahrzehnten wurden Alkalimetalle im flüssigen und gasförmigen Zustand in zunehmendem Maß als Arbeitsmittel verwendet oder vorgesehen. Beispiele sind: mit flüssigen Alkalimetallen gekühlte Kernspaltungs- oder Fusionsreaktoren, thermionische Energiewandler, in denen gasförmiges Cs von etwa 0,01 atm Druck bis zu Temperaturen von 2200 °K verwendet wird, und MHD-Wandler, in denen Cs oder andere Alkalimetalle als Seeding-Materialien bei Temperaturen bis etwa 3500 °K Anwendung finden. Für Wärmeübertragungsrechnungen und Sicherheitsbetrachtungen in diesen Systemen ist u.a. die Kenntnis der thermodynamischen Funktionen im gasförmigen Zustand erwünscht.

Diese Berechnungen wurden unter der Voraussetzung durchgeführt, daß das Gas oder Plasma sich im thermodynamischen und chemischen Gleichgewicht und im idealen Gaszustand befindet. Ferner wird vorausgesetzt, daß das Plasma sich im hier untersuchten Temperaturbereich zusammensetzt aus zweiatomigen Molekeln, Atomen, einfach positiv geladenen Ionen und Elektronen.

Die Berechnung der Zusammensetzung und der thermodynamischen Funktionen eines Alkalimetallplasmas erfolgt dann aus den Zustandssummen der Komponenten und den Reaktionsenthalpien der im Plasma ablaufenden Reaktionen Dissoziation und Ionisation.

* Nach einem vom Verfasser auf dem Thermodynamik-Kolloquium des VDI am 25. und 26. September 1972 in Bad Kissingen gehaltenen Vortrag. In den Abschnitten 2-4 wird die Berechnung der Zustandssummen und der thermodynamischen Funktionen der Komponenten des Plasmas und in Abschnitt 5 die Berechnung der Zusammensetzung des Plasmas beschrieben. In Abschnitt 6 werden die thermodynamischen Funktionen des Plasmas angegeben und diskutiert.

2. Zweiatomige Molekeln

Die Zustandssumme Z_1 der zweiatomigen Molekeln läßt sich darstellen als Produkt der Zustandssummen der Translation $Z_{\rm T}$, Elektronenbewegung $Z_{\rm E}$, Schwingung $Z_{\rm S}$ und Rotation $Z_{\rm R}$.

$$Z_1 = Z_{\rm T1} Z_{\rm E1} Z_{\rm S} Z_{\rm R}$$
 (1)

mit
$$Z_{\text{T1}} = \frac{(2 \pi m_1 k T)^{3/2}}{h^3} V$$
 (2)

 $(m_1 \text{ Molekülmasse}, T \text{ absolute Temperatur}, V \text{ Molvolumen}, k \text{ Boltzmann-Konstante}, k \text{ Planck-Konstante}).$

In der Zustandssumme der Elektronenbewegung

$$Z_{\rm E1} = \sum_{t} e_t \exp\left\{-T_{et}/kT\right\} \tag{3}$$

 $(T_{et}$ Energie des Molekülzustandes t, e_t statistisches Gewicht des Zustandes t) wurden der Elektronengrundzustand und die 4 niedrigsten angeregten Zustände der Molekel, die in ein Atom im Grundzustand und ein Atom im ersten Anregungszustand

Reprint requests to F. W. Reiter, Division Technologie Centro EURATOM di, *I-21020 Ispra* (Varese), Italien.

Molekel $10^3 \cdot \alpha_{ei}$ Anregungs- T_{ei} D_{0i} Wei Wei Xei B_{ei} rei [Å] $\lceil cm^{-1} \rceil$ $\lceil cm^{-1} \rceil$ $\lceil cm^{-1} \rceil$ [kcal/Mol] zustand (i) $\lceil cm^{-1} \rceil$ $\lceil cm^{-1} \rceil$ $X^{1} \Sigma_{g^{+}} (0)$ Li2 353,6 2,625 0,681 25,76 i 2,673 7,17 $\mathrm{a}^3 \Pi_\mathrm{u}$ 12100a (1)302g $1,80^{h}$ 33,8k2,85a ${
m A}^1 \, {
m \Sigma_u}^+ \ {
m b}^3 \, {
m \Sigma_g}^+ \ {
m B}^1 \, {
m II}_{
m u}$ (2)14068,4 257,0 28,3k3,11 1,593 0,504 5,51 (3)266g $17,4^{k}$ 17800a 2,16h $3,04^{d}$ 20439,4 271.2 2,779 0.564 8.2 9.9k2.94 $X^1 \Sigma_g$ (0)17,53 i Na₂ 0 159,2 0,726 0,79 3,079 0,1547 $a^3 \Pi_u$ (1)12600b 139.5h 0.43h30,0k 3.28 f ${
m A}^1 \, {
m \Sigma_u}^+ \ {
m B}^3 \, {
m \Sigma_g}^+ \ {
m B}^1 \, {
m II}_{
m u}$ (2)14680,4 $24,1^{k}$ 117,6 0,38 0,1107 0,54 3,64 (3)17800b 122,7g 0.54^{h} 15,2k 3,50 f 123,8 20320,2 8,0k (4)0,630 0,94 3,41 0,1259 ${f X^1} {f \Sigma_g} {f a^3} {m \Pi_u}$ K_2 (0)0,353 0,0560 11,85 i 3,923 92,4 0,218 $20,4^{k}$ (1)10000b 80,7g 0,21h 4,18 f $A^{1} \Sigma_{u}^{+}$ $b^{3} \Sigma_{g}^{+}$ $B^{1} \Pi_{u}$ 15,7 k (2)11682,6 68,95 0,153 4,60e 9,3k70,8g 4,46 f (3)13900b 0.33^{h} (4)15378,0 74,85 0,387 0,0480 0,234 $5,1^{k}$ 4,24 Rb₂ $\mathrm{X}^{1}\,\Sigma_{\mathrm{g}}$ (0)57,15 0.0955 0,0610 11,30 i 4,17e $a^3 \Pi_u$ 9400 c (1)50,690.08h $20,7^{k}$ 4,44 f $A^{1} \Sigma_{u}^{+}$ $b^{3} \Sigma_{g}^{+}$ $B^{1} \Pi_{u}^{-}$ 4,89 f (2)11000 c 42,4g 0.07^{h} 16,2k $10,2^{k}$ (3) $13100 \, c$ 44,6g 0.11^{h} $4,75^{\,f}$ $5,7^{k}$ (4) 14662.5 47,9 0.190 4,58e $m X^1 \, \Sigma_g$ Cs2 (0)0 41,99 0.08005 0.0352 10,38 i 4.46e $a^3 \Pi_u$ 8800 c 4,75 f(1) 36.7g 0.05^{h} 18,0k $A^{1} \Sigma_{u}^{-1}$ $b^{3} \Sigma_{g}^{-1}$ $B^{1} \Pi_{u}$ $0,04^{h}$ (2)10300 c 31,1g $13,7^{k}$ 5.23 f

0.08h

0,0780

Tab. 1. Molekulare Konstante der Alkalimolekeln.

a siehe 2.

b berechnet aus

$$\left[\frac{T_{\,\mathrm{e}i}}{T_{\,\mathrm{e}j}}\right]_{\mathrm{Na}_{2},\mathrm{K}_{2}}\!=\!\left[\frac{T_{\,\mathrm{e}i}}{T_{\,\mathrm{e}j}}\right]_{\mathrm{Li}_{2}}$$

12300 c

13043,9

32,2g

34,23

i = 1 und 3, j = 2 und 4.

c berechnet nach der Regel von Shifrin³.

(3)

(4)

d siehe 4.

berechnet nach der Regel von Badger 5.

f berechnet aus

$$\left[\frac{r_{\mathrm{ei}}}{r_{\mathrm{eo}}}\right] = \left[\frac{r_{\mathrm{ei}}}{r_{\mathrm{eo}}}\right]_{\mathrm{Li}_{2}}$$

 $-n_0 s(^2S_g) + n_0 p(^2P_u)$ (n_0 Hauptquantenzahl des äußersten Elektrons im Grundzustand) — zerfallen, berücksichtigt. Tabelle 1 enthält die molekularen Konstanten der Alkalimolekeln. Soweit nicht anders vermerkt, sind diese Werte den Tabellen von Herzberg¹ entnommen. Die hinter dem Termsymbol in Spalte 2 angegebenen Zahlen werden im folgenden als zweiter Index bei den molekularen Konstanten verwendet. Der erste Index e oder o bezieht sich auf den Gleichgewichtsabstand oder Schwingungsgrundzustand.

Die Daten von $\mathrm{Li}_2^7,~\mathrm{K}_2^{39}$ und $\mathrm{Rb}_2^{85},$ die in 1 für das häufigste Isotop angegeben sind, sind für das natürliche Isotopengemisch umgerechnet worden. Für Rb₂ ist in ¹ als niedrigster angeregter Elekg berechnet nach der Regel von Birge⁶ und Mecke⁷.

h berechnet aus dem Kurvenverlauf $(F_{v+1} - F_v)(v)$.

i siehe 8.

k berechnet aus

$$D_{oi} = D_{oo} + T_A - T_{ei}$$
.

8,0k

 $5,8^{k}$

5,07 f

4,89e

Die nicht in ¹ angegebenen Werte der Rotationskonstanten B_e und α_e sind nach Gl. (8) und (9) berechnet worden $(\omega_e \text{ Schwingungskonstante}, \omega_e x_e \text{ Schwingungskonstante},$ D_0 Dissoziationsenergie, r_e Gleichgewichtsabstand, F_v Energie des Schwingungszustandes v, TA Energie des 1. Anregungszustandes (2Pu) 9 des Atoms).

tronenzustand der Multiplizität 1 ein ${}^{1}\Pi_{u}$ -Zustand angegeben. Wie bei den anderen Alkalimolekeln muß jedoch dieser Zustand der zweite angeregte Zustand der Multiplizität 1 sein und hat daher in Tab. 1 die Bezeichnung $B^1\Pi_u$ erhalten.

Nach Mulliken² existieren — außer $A^1\Sigma_{\mathbf{u}}^+$ und $B^{1}\Pi_{u}$ – zwei weitere stabile angeregte Elektronenzustände der Alkalimolekeln, die bei Dissoziation zu einem Atom im Grundzustand und einem Atom im ersten Anregungszustand zerfallen. Diese angeregten Zustände haben die Multiplizität 3.

Übergänge vom Grundzustand zu den angeregten Triplettzuständen und umgekehrt sind in Emission und Absorption verboten, jedoch müssen sie in der Zustandssumme berücksichtigt werden, da sie durch

zwischenmolekulare Zusammenstöße oder andere Prozesse angeregt werden können. Die Existenz des a $^3\Pi_{\rm u}\text{-}{\rm Zustandes}$ wurde von Carroll 10 aus dem schwachen Auftreten eines verbotenen $^1\varSigma \leftrightarrow ^1\varSigma\text{-}$ Überganges im magnetischen Rotationsspektrum geschlossen. Das Auftreten des Übergangs wurde von Carroll durch eine Störung des oberen $^1\varSigma\text{-}{\rm Zustandes}$ durch den $^3\Pi_{\rm u}\text{-}{\rm Term}$ erklärt.

In Gl. (3) sind die statistischen Gewichte der Singulettzustände 1 und der Tripplettzustände 3. Die Summierung über die Schwingungszustände F_v in der Zustandssumme der Schwingung

$$Z_{\rm S} = \sum_{v=0}^{v_{\rm D}} f_v \exp\{-F_v/kT\}$$
 (4)

 $(f_v$ statistisch. Gewicht des Schwingungszustandes v) wird ausgeführt bis zu einer charakteristischen Quantenzahl der Schwingung $v_{\rm D}$, die den letzten stabilen Schwingungszustand der Molekel vor der Dissoziationsgrenze angibt. Die Bestimmung von F_v und $v_{\rm D}$, die noch vom Elektronenzustand t abhängen, wird nach einem von Baumann 11 angegebenen graphischen Verfahren durchgeführt. Man trägt auf $\Delta F_{v+1/2} = F_{v+1} - F_v$ als Funktion von v. Die Anfangsneigung dieser Kurve kann in vielen Fällen durch experimentelle Werte von F_v festgelegt werden. Der weitere Verlauf der Kurve wird dann so gewählt, daß der Flächeninhalt unter der Kurve gleich D_0 ist.

$$D_0 = \sum_{v=0}^{v_{\rm D}-1} \Delta F_{v+1/2} \,. \tag{5}$$

Experimentelle Werte der Schwingungsniveaus F_v der Alkalimolekeln liegen nur für kleine v und die Singulettzustände vor $^{12-16}$. Für die Triplettzustände wird der Anfangswert der Kurve $\Delta F_{1/2} = \omega_{\rm e}$ nach der Regel von Birge 6 und Mecke 7 berechnet.

Das statistische Gewicht f_v der Schwingungszustände in Gl. (4) ist 1. In Tab. 2 sind die charakteristischen Schwingungsquantenzahlen der hier betrachteten Elektronenzustände angegeben.

Tab. 2. Charakteristische Quantenzahlen der Schwingung v_{Dt} .

	Li_2	Na_2	K_2	Rb_2	Cs_2
$v_{\mathrm{D}0}$	42	62	74	100	142
$v_{\rm D1}$	73	139	162	250	299
v_{D2}	73	132	128	236	266
v_{D3}	39	72	81	139	157
v_{D4}	19	32	33	61	89

In der Zustandssumme der Rotation

$$Z_{\rm R} = \sum_{J=0}^{J_{\rm D}} g_J \exp\{-G_J/kT\}$$
 (6)

 (G_J,g_J) Energie, statistisches Gewicht des Rotationszustandes J) wird die Summierung bis zu einer charakteristischen Quantenzahl der Rotation J_D ausgeführt. J_D kennzeichnet den höchsten stabilen Rotationszustand vor der Dissoziationsgrenze durch Rotation und hängt wie G_J vom Elektronenzustand t und vom Schwingungszustand v ab. $J_D(t,v)$ wird ebenfalls nach einem von Baumann 11 angegebenen graphischen Verfahren ermittelt. In Tab. 3 sind für v=0 die Quantenzahlen J_{Dt} angegeben.

Tab. 3. Charakteristische Quantenzahlen der Rotation $J_{\mathrm{D}t}$ für v=0.

	Li_2	Na_2	K_2	Rb_2	Cs_2
D0	173	329	468	686	825
D1	198	394	528	843	1034
)2	197	388	552	822	1046
D3	159	309	386	656	752
D4	128	251	331	516	726

Die Rotationsenergie G_J in Gl. (6) wird berechnet aus

$$G_J = [B_e - \alpha_e(v + \frac{1}{2})]J(J+1) - D_eJ^2(J+1)^2$$
(7)

mit

$$B_{\rm e} = h/8 \,\pi^2 \,c \,\mu \,r_{\rm e}^2 \,, \tag{8}$$

$$\alpha_{\rm e} = 6 \left(\sqrt{\omega_{\rm e} x_{\rm e} B_{\rm e}^3} - B_{\rm e}^2 \right) / \omega_{\rm e} \,,$$
 (9)

$$D_{\rm e} = 4 \, B_{\rm e}^3 / \omega_{\rm e}^2 \tag{10}$$

(c Lichtgeschwindigkeit, μ reduzierte Masse der Molekel).

Das statistische Gewicht g_J in Gl. (6) ist gegeben durch:

$$g_J = (\Lambda/s)(2J+1).$$
 (11)

Für die Alkalimolekeln ist der Symmetriefaktor s=2, und der Faktor $\Lambda=1$ für die Σ -Zustände und $\Lambda=2$ für die anderen Zustände.

Die Genauigkeit der Berechnung der inneren Zustandssumme der Alkalimolekeln ist begrenzt durch die Vernachlässigung der höheren Elektronenzustände und die Ungenauigkeit der molekularen Konstanten der Triplettzustände.

In den Tab. 4–8 sind für p=1 atm die aus den Zustandssummen berechneten thermodynamischen Funktionen freie Enthalpie G_1^0 , Enthalpie H_1^0 ,

T	$-\frac{G_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}-H_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}(298{,}15)}{T}$	T	S_1^0	$C_{\scriptscriptstyle \mathtt{1}}^{\scriptscriptstyle \mathtt{0}}$
(°K)	$(\operatorname{cal/Mol} \cdot {}^{\circ}K)$	$(\operatorname{cal}/\operatorname{Mol} \cdot {}^{\circ}K)$	$(\operatorname{cal}/\operatorname{Mol} \cdot {}^{\circ}\operatorname{K})$	$(\operatorname{cal/Mol} \cdot {}^{\circ}K)$
1000	51,5693	6,3713	57,941	9,371
2000	56,5858	7,9184	64,504	9,297
3000	59,8916	8,3790	68,271	9,668
4000	62,3705	8,9107	71,281	11,309
5000	64,4206	9,4568	73,877	11,668
6000	66,1753	9,7517	75,927	10,653
7000	67,6838	9,7847	77,469	9,324
8000	68,9831	9,6541	78,637	8,206
9000	70,1086	9,4448	79,553	7,381
10000	71,0915	9,2075	80,299	6,795
T	$-\frac{G_{\scriptscriptstyle 1}^9-H_{\scriptscriptstyle 1}^0(298{,}15)}{T}$	$\frac{H_{\scriptscriptstyle \rm I}^{\scriptscriptstyle 0}-H_{\scriptscriptstyle \rm I}^{\scriptscriptstyle 0}(298,\!15)}{T}$	$S_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}$	C_1^{0}
(°K)	$(\operatorname{cal/Mol}^{1} \cdot {}^{\circ}K)$	$(\operatorname{cal/Mol}^{I} \cdot {}^{\circ}K)$	$(\operatorname{cal}/\operatorname{Mol} \cdot {}^{\circ}\operatorname{K})$	$(\operatorname{cal}/\operatorname{Mol}^{\circ}\operatorname{K})$
1000	59,6324	6,5069	66,139	9,473
2000	64,6658	7,7155	72,381	8,173
3000	67,8170	7,8445	75,662	8,591
4000	70,1304	8,3373	78,468	11,070
5000	72,0665	9,0300	81,097	12,133
6000	73,7586	9,4906	83,249	11,243
7000	75,2360	9,6359	84,872	9,767
8000	76,5200	9,5685	86,089	8,483
9000	77,6376	9,3925	87,030	7,541
10000	78,6160	9,1724	87,788	6,882
T	$-\frac{G_1^0-H_1^0(298,15)}{T}$	$H_1^0 - H_1^0(298,15)$	$S_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}$	C_1^0
(0 TZ)	$T \ (\mathrm{cal/Mol} \cdot \mathrm{^{\circ}K})$	$T \ (\mathrm{cal/Mol} \cdot {}^{\circ}\mathrm{K})$	$(cal/Mol \cdot {}^{\circ}K)$	(cal/Mol⋅°K)
(~K)		0.7000	70.00¢	0.040
	CA 204C		70,906	9,040
1000	64,3846	6,5209		
1000 2000	69,2625	7,2800	76,543	7,636
1000 2000 3000	69,2625 72,2841	7,2800 7,7756	76,543 80,060	7,636 $10,274$
1000 2000 3000 4000	69,2625 72,2841 74,6433	7,2800 7,7756 8,6566	76,543 80,060 83,300	7,636 10,274 11,740
1000 2000 3000 4000 5000	69,2625 72,2841 74,6433 76,6400	7,2800 7,7756 8,6566 9,1726	76,543 80,060 83,300 85,813	7,636 10,274 11,740 10,492
1000 2000 3000 4000 5000 6000	69,2625 72,2841 74,6433 76,6400 78,3242	7,2800 7,7756 8,6566 9,1726 9,2483	76,543 80,060 83,300 85,813 87,573	7,636 10,274 11,740 10,492 8,809
1000 2000 3000 4000 5000 6000 7000	69,2625 72,2841 74,6433 76,6400 78,3242 79,7399	7,2800 7,7756 8,6566 9,1726 9,2483 9,0911	76,543 80,060 83,300 85,813 87,573 88,831	7,636 10,274 11,740 10,492 8,809 7,571
1000 2000 3000 4000 5000 6000 7000 8000	69,2625 72,2841 74,6433 76,6400 78,3242 79,7399 80,9394	7,2800 7,7756 8,6566 9,1726 9,2483 9,0911 8,8473	76,543 80,060 83,300 85,813 87,573	7,636 10,274 11,740 10,492 8,809 7,571 6,770
1000 2000 3000 4000 5000 6000 7000 8000 9000	69,2625 72,2841 74,6433 76,6400 78,3242 79,7399 80,9394 81,9653	7,2800 7,7756 8,6566 9,1726 9,2483 9,0911	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551	7,636 10,274 11,740 10,492 8,809 7,571
1000 2000 3000 4000 5000 6000 7000 8000 9000	69,2625 72,2841 74,6433 76,6400 78,3242 79,7399 80,9394	7,2800 7,7756 8,6566 9,1726 9,2483 9,0911 8,8473	76,543 80,060 83,300 85,813 87,573 88,831 89,786	7,636 10,274 11,740 10,492 8,809 7,571 6,770
2000 3000 4000 5000 6000 7000 8000 9000 10000	69,2625 72,2841 74,6433 76,6400 78,3242 79,7399 80,9394 81,9653 82,8568	7,2800 7,7756 8,6566 9,1726 9,2483 9,0911 8,8473 8,5859 8,3350	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	$\begin{array}{c} 69,2625 \\ 72,2841 \\ 74,6433 \\ 76,6400 \\ 78,3242 \\ 79,7399 \\ 80,9394 \\ 81,9653 \\ 82,8568 \\ \\ \hline \\ -\frac{G_1^o-H_1^o(298,15)}{T} \end{array}$	$\begin{array}{c} 7,2800 \\ 7,7756 \\ 8,6566 \\ 9,1726 \\ 9,2483 \\ 9,0911 \\ 8,8473 \\ 8,5859 \\ 8,3350 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192	$7,636$ $10,274$ $11,740$ $10,492$ $8,809$ $7,571$ $6,770$ $6,257$ $5,921$ C_1^0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	$69,2625$ $72,2841$ $74,6433$ $76,6400$ $78,3242$ $79,7399$ $80,9394$ $81,9653$ $82,8568$ $G_1^0 - H_1^0(298,15)$	$\begin{array}{c} 7,2800 \\ 7,7756 \\ 8,6566 \\ 9,1726 \\ 9,2483 \\ 9,0911 \\ 8,8473 \\ 8,5859 \\ 8,3350 \\ \\ \\ \\ H_1^{\circ}-H_1^{\circ}(298,15) \\ \end{array}$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	$\begin{array}{c} 69,2625 \\ 72,2841 \\ 74,6433 \\ 76,6400 \\ 78,3242 \\ 79,7399 \\ 80,9394 \\ 81,9653 \\ 82,8568 \\ \\ \\ -\frac{G_1^o-H_1^o(298,15)}{T} \\ (\text{cal/Mol}^o\text{K}) \\ \\ 69,4154 \end{array}$	7,2800 7,7756 8,6566 9,1726 9,2483 9,0911 8,8473 8,5859 8,3350 $H_1^{\circ} - H_1^{\circ}(298,15) \frac{T}{(\text{cal/Mol}^{\circ}\text{K})}$ 6,4377	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ₁ ° (cal/Mol·°K)	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921 C ₁ ° (cal/Mol·°K)
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	$\begin{array}{c} 69,2625 \\ 72,2841 \\ 74,6433 \\ 76,6400 \\ 78,3242 \\ 79,7399 \\ 80,9394 \\ 81,9653 \\ 82,8568 \\ \\ \\ -\frac{G_1^o-H_1^o(298,15)}{T} \\ (\text{cal/Mol}^\circ\text{K}) \\ \\ \hline 69,4154 \\ 74,2093 \\ \end{array}$	7,2800 7,7756 8,6566 9,1726 9,2483 9,0911 8,8473 8,5859 8,3350 $H_1^0 - H_1^0(298,15) \over T \\ (cal/Mol \cdot {}^{\circ}K)$ 6,4377 7,1747	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ₁ ° (cal/Mol·°K) 75,853 81,384	$7,636$ $10,274$ $11,740$ $10,492$ $8,809$ $7,571$ $6,770$ $6,257$ $5,921$ C_1^0 $(cal/Mol \cdot °K)$ $8,783$ $7,853$
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 T'	$\begin{array}{c} 69,2625 \\ 72,2841 \\ 74,6433 \\ 76,6400 \\ 78,3242 \\ 79,7399 \\ 80,9394 \\ 81,9653 \\ 82,8568 \\ \\ \\ \hline - \begin{array}{c} G_1^{\circ} - H_1^{\circ}(298,15) \\ T \\ (\text{cal/Mol}^{\circ}\text{K}) \\ \hline \\ 69,4154 \\ 74,2093 \\ 77,2366 \end{array}$	$\begin{array}{c} 7,2800 \\ 7,7756 \\ 8,6566 \\ 9,1726 \\ 9,2483 \\ 9,0911 \\ 8,8473 \\ 8,5859 \\ 8,3350 \\ \\ \\ \hline \\ H_1^o-H_1^o(298,15) \\ \hline \\ (cal/Mol\cdot ^o K) \\ \hline \\ 6,4377 \\ 7,1747 \\ 7,9559 \\ \end{array}$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ₁ ° (cal/Mol·°K) 75,853 81,384 85,193	$7,636$ $10,274$ $11,740$ $10,492$ $8,809$ $7,571$ $6,770$ $6,257$ $5,921$ C_1^0 $(cal/Mol \cdot °K)$ $8,783$ $7,853$ $11,395$
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 T	$\begin{array}{c} 69,2625 \\ 72,2841 \\ 74,6433 \\ 76,6400 \\ 78,3242 \\ 79,7399 \\ 80,9394 \\ 81,9653 \\ 82,8568 \\ \\ \\ \hline - \frac{G_1^\circ - H_1^\circ (298,15)}{T} \\ \text{(cal/Mol}\cdot \circ \text{K)} \\ \hline \\ 69,4154 \\ 74,2093 \\ 77,2366 \\ 79,6794 \\ \end{array}$	$\begin{array}{c} 7,2800 \\ 7,7756 \\ 8,6566 \\ 9,1726 \\ 9,2483 \\ 9,0911 \\ 8,8473 \\ 8,5859 \\ 8,3350 \\ \\ \hline\\ \frac{H_1^o-H_1^o(298,15)}{T} \\ (\text{cal/Mol}\cdot ^\circ \text{K}) \\ \hline\\ 6,4377 \\ 7,1747 \\ 7,9559 \\ 9,0160 \\ \end{array}$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ₁ ° (cal/Mol·°K) 75,853 81,384 85,193 88,695	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921 C ₁ (cal/Mol·°K) 8,783 7,853 11,395 12,219
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 T	$\begin{array}{c} 69,2625\\ 72,2841\\ 74,6433\\ 76,6400\\ 78,3242\\ 79,7399\\ 80,9394\\ 81,9653\\ 82,8568\\ \\ \\ -\frac{G_1^\circ-H_1^\circ(298,15)}{T}\\ \text{(cal/Mol}^\circ\text{K)}\\ \\ \hline 69,4154\\ 74,2093\\ 77,2366\\ 79,6794\\ 81,7525\\ \\ \end{array}$	$\begin{array}{c} 7,2800 \\ 7,7756 \\ 8,6566 \\ 9,1726 \\ 9,2483 \\ 9,0911 \\ 8,8473 \\ 8,5859 \\ 8,3350 \\ \\ \hline\\ H_{0}^{o}-H_{1}^{o}(298,15) \\ \hline\\ T \\ ({\rm cal/Mol}^{o}{\rm K}) \\ \hline\\ 6,4377 \\ 7,1747 \\ 7,9559 \\ 9,0160 \\ 9,4727 \\ \end{array}$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ^o ₁ (cal/Mol·°K) 75,853 81,384 85,193 88,695 91,225	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921 C ₁ (cal/Mol·°K) 8,783 7,853 11,395 12,219 10,242
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 T (° K) 1000 2000 3000 4000 5000 6000	$\begin{array}{c} 69,2625\\ 72,2841\\ 74,6433\\ 76,6400\\ 78,3242\\ 79,7399\\ 80,9394\\ 81,9653\\ 82,8568\\ \\ \\ \hline\\ -\frac{G_1^o-H_1^o(298,15)}{T}\\ (cal/Mol^oK)\\ \\\hline\\ 69,4154\\ 74,2093\\ 77,2366\\ 79,6794\\ 81,7525\\ 83,4813\\ \end{array}$	$\begin{array}{c} 7,2800\\ 7,7756\\ 8,6566\\ 9,1726\\ 9,2483\\ 9,0911\\ 8,8473\\ 8,5859\\ 8,3350\\ \\\hline\\ H_1^0-H_1^0(298,15)\\ \hline\\ T\\ (\text{cal/Mol}^\circ\text{K})\\ \\\hline\\ 6,4377\\ 7,1747\\ 7,9559\\ 9,0160\\ 9,4727\\ 9,4364\\ \\\hline\end{array}$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ₁ ° (cal/Mol·°K) 75,853 81,384 85,193 88,695	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921 C ₁ (cal/Mol·°K) 8,783 7,853 11,395 12,219
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 7000 2000 3000 4000 5000 6000 7000	$\begin{array}{c} 69,2625\\ 72,2841\\ 74,6433\\ 76,6400\\ 78,3242\\ 79,7399\\ 80,9394\\ 81,9653\\ 82,8568\\ \\ \\ -\frac{G_1^\circ-H_1^\circ(298,15)}{T}\\ \text{(cal/Mol}^\circ\text{K)}\\ \\ \hline 69,4154\\ 74,2093\\ 77,2366\\ 79,6794\\ 81,7525\\ \\ \end{array}$	$\begin{array}{c} 7,2800 \\ 7,7756 \\ 8,6566 \\ 9,1726 \\ 9,2483 \\ 9,0911 \\ 8,8473 \\ 8,5859 \\ 8,3350 \\ \\ \hline\\ H_{0}^{o}-H_{1}^{o}(298,15) \\ \hline\\ T \\ ({\rm cal/Mol}^{o}{\rm K}) \\ \hline\\ 6,4377 \\ 7,1747 \\ 7,9559 \\ 9,0160 \\ 9,4727 \\ \end{array}$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ^o ₁ (cal/Mol·°K) 75,853 81,384 85,193 88,695 91,225	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921 C ₁ (cal/Mol·°K) 8,783 7,853 11,395 12,219 10,242
1000 2000 3000 4000 5000 6000 7000 8000 10000 7 7 7 1000 2000 3000 4000 5000 6000 7000 8000	$\begin{array}{c} 69,2625\\ 72,2841\\ 74,6433\\ 76,6400\\ 78,3242\\ 79,7399\\ 80,9394\\ 81,9653\\ 82,8568\\ \\ \\ \hline\\ -\frac{G_1^o-H_1^o(298,15)}{T}\\ (cal/Mol^oK)\\ \\\hline\\ 69,4154\\ 74,2093\\ 77,2366\\ 79,6794\\ 81,7525\\ 83,4813\\ \end{array}$	$\begin{array}{c} 7,2800\\ 7,7756\\ 8,6566\\ 9,1726\\ 9,2483\\ 9,0911\\ 8,8473\\ 8,5859\\ 8,3350\\ \\\hline\\ H_1^0-H_1^0(298,15)\\ \hline\\ T\\ (\text{cal/Mol}^\circ\text{K})\\ \\\hline\\ 6,4377\\ 7,1747\\ 7,9559\\ 9,0160\\ 9,4727\\ 9,4364\\ \\\hline\end{array}$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ₁ ° (cal/Mol·°K) 75,853 81,384 85,193 88,695 91,225 92,918	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921 C ⁰ (cal/Mol·°K) 8,783 7,853 11,395 12,219 10,242 8,380
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 7000 2000 3000 4000 5000 6000 7000	$\begin{array}{c} 69,2625 \\ 72,2841 \\ 74,6433 \\ 76,6400 \\ 78,3242 \\ 79,7399 \\ 80,9394 \\ 81,9653 \\ 82,8568 \\ \\ \\ \hline - \frac{G_1^\circ - H_1^\circ (298,15)}{T} \\ \text{(cal/Mol} \cdot \circ \text{K)} \\ \hline \\ 69,4154 \\ 74,2093 \\ 77,2366 \\ 79,6794 \\ 81,7525 \\ 83,4813 \\ 84,9191 \\ \\ \end{array}$	$7,2800$ $7,7756$ $8,6566$ $9,1726$ $9,2483$ $9,0911$ $8,8473$ $8,5859$ $8,3350$ $H_1^0 - H_1^0(298,15)$ T (cal/Mol·°K) $6,4377$ $7,1747$ $7,9559$ $9,0160$ $9,4727$ $9,4364$ $9,1932$	76,543 80,060 83,300 85,813 87,573 88,831 89,786 90,551 91,192 S ₁ ° (cal/Mol·°K) 75,853 81,384 85,193 88,695 91,225 92,918 94,112	7,636 10,274 11,740 10,492 8,809 7,571 6,770 6,257 5,921 C ₁ (cal/Mol·°K) 8,783 7,853 11,395 12,219 10,242 8,380 7,187

Tab. 4. Thermodynamische Funktionen von Li₂ bei p = 1 atm.

Tab. 5. Thermodynamische Funktionen von Na_2 bei p = 1 atm.

Tab. 6. Thermodynamische Funktionen von K_2 bei p = 1 atm.

Tab. 7. Thermodynamische Funktionen von Rb₂ bei p = 1 atm.

T	$-\frac{G_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}-H_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}(298,15)}{T}$	$\frac{H_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}-H_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}(298,15)}{T}$	$S_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}$	$C_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}$
(°K)	$(\operatorname{cal/Mol}^T \circ K)$	$(\operatorname{cal/Mol} \cdot {}^{\circ}\operatorname{K})$	$(\operatorname{cal/Mol} \cdot {}^{\circ}\operatorname{K})$	$(\operatorname{cal/Mol} \circ K)$
1000	72,5402	6,4114	78,952	8,456
2000	77,2523	7,0282	84,281	7,951
3000	80,2541	7,9825	88,237	11,702
4000	82,7034	8,9900	91,693	11,594
5000	84,7540	9,2966	94,051	9,437
6000	86,4418	9,1708	95,613	7,774
7000	87,8355	8,8936	96,729	6,776
8000	89,0032	8,5890	97,592	6,189
9000	89,9970	8,3009	98,299	5,831
10000	90,8588	8.0416	98,901	5,603

Tab. 8. Thermodynamische Funktionen von Cs_2 bei p = 1 atm.

Entropie S_1^0 und Wärmekapazität $C_{p_1}^0$ angegeben. $(H_1^0 (298,15) = \text{molare Enthalpie bei } 298,15 \text{ }^{\circ}\text{K}).$

In den Abb. 1 und 2 sind die Molwärmen von Li_2 und Cs_2 mit von anderen Autoren berechneten Werten verglichen.

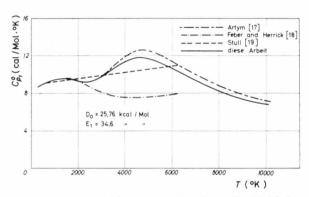


Abb. 1. Molwärme bei konstantem Druck von Li2-Molekeln.

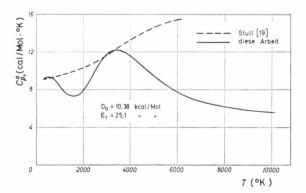


Abb. 2. Molwärme bei konstantem Druck von Cs2-Molekeln.

Artym¹⁷ hat für Li₂ eine ähnliche Berechnung durchgeführt. Seine Werte liegen jedoch bis 8% höher, was auf die Verwendung von unterschiedlichen Konstanten, insbesondere beim a $^3\Pi_{\text{u}}$ -Zustand, zurückzuführen ist.

In den Berechnungen von Feber und Herrick ¹⁸ für Li₂, Na₂ und K₂ sind die Triplettzustände nicht berücksichtigt worden. Hierdurch ist der sehr unterschiedliche Kurvenverlauf gegenüber dem in dieser Arbeit gefundenen zu erklären.

Die Berechnungen von Stull ¹⁹ sind mit Hilfe der Näherung des anharmonischen Oszillators und unstarren Rotators für die innere Zustandssumme durchgeführt worden. Für Li₂, Na₂ und K₂ ist nur der Elektronengrundzustand berücksichtigt worden, während beim Cs₂ auch angeregte Singulettzustände der Molekel bei der Berechnung der Zustandssummen verwendet wurden.

Der in dieser Arbeit gefundene Kurvenverlauf der Molwärme zeigt Minima, die sich von 2400 °K beim Li₂ nach 1600 °K beim Cs₂ verschieben. Das Auftreten dieser Minima läßt sich erklären dadurch, daß die Anregungsenergie $T_{\rm e1}$ des ersten angeregten Molekelzustandes beträchtlich größer ist als die Dissoziationsenergie D_{00} des Grundzustandes. Die Minima werden in der Reihe vom Li₂ zum Cs₂ ausgeprägter, da das Verhältnis $T_{\rm e1}/D_{00}$ zunimmt (Tabelle 1).

Der Abfall der Molwärmen nach dem zweiten Maximum wird in Wirklichkeit etwas langsamer erfolgen, da Molekülzustände, die zu höheren Atomzuständen als n_0s+n_0s bzw. n_0s+n_0p zerfallen, nicht berücksichtigt wurden. Eine Überschlagsrechnung zeigte jedoch, daß der nächsthöhere, aus spektroskopischen Messungen bekannte Molekülzustand $C^1\Sigma_u^+$ nur einen Beitrag von maximal 0.5% zur Molwärme im hier untersuchten Temperaturbereich gibt. Da in diesem Energiebereich mit weiteren Triplettzuständen gerechnet werden muß, deren Existenz und Lage unbekannt sind, wurden der C-Zustand und höhere Zustände nicht berücksichtigt.

3. Atome

Die Zustandssumme der Atome

$$Z_2 = Z_{\mathrm{T2}} \cdot Z_{\mathrm{E2}} \tag{12}$$

enthält außer dem translatorischen Anteil

$$Z_{
m T2} = rac{(2\,\pi\,m_2\,k\,T)^{3/2}}{h^3}\,V$$

 $(m_2$ Masse eines Atoms) die Zustandssumme der Elektronenanregung

$$Z_{E2} = 2 \sum_{n=n_0}^{n_g} \sum_{l=0}^{n-1} (2l+1) \cdot \exp \left\{ -\frac{R_0}{kT} \left[\frac{1}{(n_0 - \mu_0)^2} - \frac{1}{(n-\mu_l)^2} \right] \right\}$$
(13)

 $(n_g$ charakteristische Hauptquantenzahl, R_0 Rydberg-Konstante, μ_0 , μ_1 , μ_2 , ... Rydberg-Korrektion für s, p, d, ...-Elektronen der Atome der Alkalimetalle).

Die Anregungsenergien der Atomzustände mit kleinem n wurden im allgemeinen aus spektroskopischen Daten 9 entnommen; die mit größerem n wurden berechnet wie in Gl. (13) angegeben. Die Rydberg-Korrektionen μ_l wurden aus 9 berechnet.

Die charakteristische Hauptquantenzahl n_g wurde berechnet aus $^{20}\colon$

$$n_g = \left[\frac{1}{[z] a_0}\right]^{1/2} = \left[\frac{DkT}{8 \pi^1 N_k e_0^2 a_0^2}\right]^{1/4} \quad (14)$$

 $((1/[\varkappa]$ mittlerer Abstand der entgegengesetzten Ladung, D Dielektrizitätskonstante, ${}^1N_{\rm k}$ Zahl der positiven Ionen pro cm³, e_0 Elementarladung, a_0 Bohrscher Radius des Wasserstoffatoms).

Da Gl. (14) noch die zunächst unbekannte Größe ${}^1N_{\bf k}$ enthält, mußte n_g durch ein Iterationsverfahren berechnet werden. Dabei wurde die erste Näherung von ${}^1N_{\bf k}$ aus der Saha-Gleichung berechnet. In Abbildung 3 sind die charakteristischen Hauptquanten-

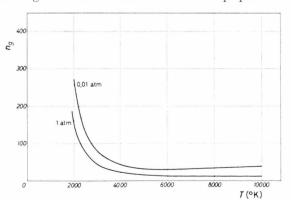


Abb. 3. Charakteristische Hauptquantenzahlen in atomarem Lithium.

zahlen des atomaren Lithium dargestellt. n_g nimmt zunächst schnell ab, da die Ionendichte stark zunimmt

Bei p=0.01 atm durchläuft n_g ein Minimum und steigt danach wieder schwach an. Im Bereich des Minimums ist die Ionisierung schon sehr weit fortgeschritten. Bei höheren Temperaturen nimmt die Ionendichte dann wieder ab, da hier die durch thermische Ausdehnung bedingte Abnahme der Ionendichte die durch weitere Ionisierung bedingte Zunahme der Ionendichte übertrifft. Bei 1 atm ist im Bereich $6000-10000\,^{\circ}\mathrm{K}$ n_g ungefähr konstant bei 12 bis 14. Der **z**ugehörige mittlere Abstand der entgegengesetzten Ladung beträgt etwa $100\,^{\circ}\mathrm{A}$. Hier ist dann mit einem merklichen Fehler in den thermodynamischen Funktionen zu rechnen, da die Berechnungen für den idealen Gaszustand durchgeführt wurden.

In Abb. 4 ist die Molwärme des atomaren Lithiums dargestellt. Es ergeben sich Kurven mit ausgeprägten Maxima, die sich mit zunehmendem

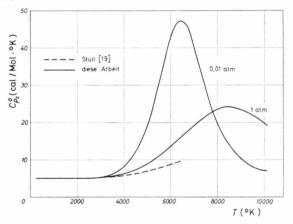


Abb. 4. Molwärme bei konstantem Druck von atomarem Lithium.

Druck nach höheren Temperaturen verschieben und kleiner werden. Die gestrichelte Kurve gibt berechnete Werte von Stull ¹⁹ an. Stull hat in der inneren Zustandsumme über alle spektroskopisch bekannten Energiezustände des Li-Atoms summiert und erhält damit druckunabhängige Werte. Wegen der spektroskopischen Auswahlregeln bzw. Übergangsverbote ist dabei jedoch nur über einen Teil der zu berücksichtigenden Energiezustände summiert worden und für die Molwärme zu geringe Werte erhalten worden. In den Tab. 9 bis 13 sind die thermodynamischen Funktionen der Alkalimetalle im atomaren Zustand angegeben.

	$G_2^0 - H_2^0(298,15)$		~		Tab. 9. Thermodynamische Funktionen von
$T_{(\circ V)}$	T	T	S_2^0	C_2^0	atomarem Li bei
(°K)	$(\operatorname{cal/Mol} \cdot {}^{\circ}K)$	(cal/Mol⋅°K)	(cal/Mol⋅°K)	(cal/Mol⋅°K)	p=1 atm.
1000	35,6547	3,4856	39,140	4,966	
2000	38,3569	4,2274	42,584	4,982	
3000	40,1284	4,5076	44,636	5,231	
4000	41,4591	4,7773	46,236	6,236	
5000	42,5630	5,2312	47,794	8,916	
6000	43,5658	6,0602	49,626	13,890	
7000	44,5371	7,1862	51,723	18,704	
8000	45,6118	8,9839	54,596	23,698	
9000	46,7706	10,6559	57,427	23,522	
10000	47,9567	11,7756	59,732	19,893	
					Tab. 10. Thermodynami-
	$G_2^0 - H_2^0(298,15)$	$H_{2}^{0}-H_{2}^{0}(298,15)$			sche Funktionen von
T	T	T	S_2^0	C_{2}^{0}	atomarem Na bei
(°K)	$(\operatorname{cal/Mol} \cdot {}^{\circ}\mathbf{K})$	(cal/Mol·°įK)	(cal/Mol⋅°K)	$(\operatorname{cal/Mol} \cdot {}^{\circ}K)$	p=1 atm.
1000	39,2231	3,4856	42,709	4,966	
2000	41,9252	4,2264	46,152	4,971	
3000	43,6939	4,4894	48,183	5,128	
4000	45,0145	4,7303	49,745	6,202	
5000	46,1073	5,2223	51,330	9,645	
6000	47,1081	6,1621	53,270	15,322	
7000	48,1365	7,7229	55,859	21,879	
8000	49,3028	9,7778	59,081	25,293	
9000	50,5547	11,3937	61,948	22,617	
10000	51,8070	12,2766	64,084	17,794	
	$G_2^0 - H_2^0(298,15)$	$H_{2}^{0}-H_{2}^{0}(298,15)$			Tab. 11. Thermodynami- sche Funktionen von
T	T	T	S_2^0	C_2^0	atomarem K bei
(°K)	$(\operatorname{cal/Mol} \cdot {}^{\circ}K)$	$(\operatorname{cal/Mol} \cdot {}^{\circ}K)$	(cal/Mol· °K)	$(\operatorname{cal/Mol} \cdot {}^{\circ}K)$	p=1 atm.
1000	40,8059	3,4856	44,292	4,966	
2000	43,5085	4,2309	47,739	5,013	
3000	45,2877	4,5626	49,850	5,679	
4000	46,6556	5,0706	51,726	8,541	
5000	47,8743	6,1901	54,064		
	41,0140	0.1901	シエ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 	10.078	
6000	49,0740		,	15,078 $20,246$	
6000 7000		7,7173 9,7703	56,791 60,191	20,246	
	49,0740	7,7173 9,7703	56,791		
7000	49,0740 50,4209	7,7173	56,791 60,191 63,055	20,246 22,731 19,513	
$7000 \\ 8000$	49,0740 50,4209 51,8298	7,7173 9,7703 11,2251	56,791 60,191	20,246 $22,731$	
7000 8000 9000	49,0740 50,4209 51,8298 53,4710 54,7802	7,7173 9,7703 11,2251 12,3805 12,4091	56,791 60,191 63,055 65,852	20,246 22,731 19,513 14,555	Tab. 12. Thermodynami-
7000 8000 9000 10000	$49,0740$ $50,4209$ $51,8298$ $53,4710$ $54,7802$ $G_2^{\circ} - H_2^{\circ}(298,15)$	$7,7173$ $9,7703$ $11,2251$ $12,3805$ $12,4091$ $H_{2}^{o}-H_{2}^{o}(298,15)$	56,791 60,191 63,055 65,852 67,189	20,246 22,731 19,513 14,555 11,043	sche Funktionen von
7000 8000 9000 10000 T	49,0740 50,4209 51,8298 53,4710 54,7802	7,7173 9,7703 11,2251 12,3805 12,4091	56,791 60,191 63,055 65,852	20,246 22,731 19,513 14,555	
7000 8000 9000 10000 T	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \hline \\ -\frac{G_2^{\circ}-H_2^{\circ}(298,15)}{T} \end{array}$	$\begin{array}{c} 7,7173 \\ 9,7703 \\ 11,2251 \\ 12,3805 \\ 12,4091 \\ \hline \\ H_2^o - H_2^o(298,15) \\ \hline \\ T \end{array}$	56,791 $60,191$ $63,055$ $65,852$ $67,189$	20,246 22,731 19,513 14,555 11,043	sche Funktionen von atomarem Rb bei
7000 8000 9000 10000 T (°K)	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \hline \\ -\frac{G_2^{\circ}-H_2^{\circ}(298,15)}{T} \\ \text{(cal/Mol}^{\circ}\text{K)} \\ \hline \\ 43,1376 \\ 45,8403 \\ \end{array}$	7,7173 9,7703 11,2251 12,3805 12,4091 $H_{2}^{o}-H_{2}^{o}(298,15)$ T (cal/Mol·°K)	56,791 60,191 63,055 65,852 67,189 S_2^9 (cal/Mol·°K) 46,623 50,072	$20,246$ $22,731$ $19,513$ $14,555$ $11,043$ C_2° (cal/Mol·°K)	sche Funktionen von atomarem Rb bei
7000 8000 9000 10000 T (°K)	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \\ \hline -\frac{G_{2}^{\circ}-H_{2}^{\circ}(298,15)}{T} \\ \text{(cal/Mol}\cdot^{\circ}\text{K)} \\ \\ 43,1376 \end{array}$	7,7173 9,7703 11,2251 12,3805 12,4091 $H_{2}^{o}-H_{2}^{o}(298,15)$ T (cal/Mol·°K) 3,4856	56,791 60,191 63,055 65,852 67,189 S_2° (cal/Mol·°K) 46,623	20,246 22,731 19,513 14,555 11,043 C ₂ (cal/Mol·°K) 4,966	sche Funktionen von atomarem Rb bei
7000 8000 9000 10000 T (°K) 1000 2000	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \\ \hline -\frac{G_2^\circ - H_2^\circ (298,15)}{T} \\ \text{(cal/Mol}\cdot ^\circ \text{K)} \\ \hline 43,1376 \\ 45,8403 \\ 47,6222 \\ 49,0045 \\ \end{array}$	7,7173 9,7703 11,2251 12,3805 12,4091 $H_{2}^{o}-H_{2}^{o}(298,15)$ T (cal/Mol·°K) 3,4856 4,2320	56,791 60,191 63,055 65,852 67,189 S_2^9 (cal/Mol·°K) 46,623 50,072	20,246 22,731 19,513 14,555 11,043 C ₂ ^o (cal/Mol·°K) 4,966 5,024	sche Funktionen von atomarem Rb bei
7000 8000 9000 10000 T (°K) 1000 2000 3000	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \hline \\ -\frac{G_{2}^{\circ}-H_{2}^{\circ}(298,15)}{T} \\ \text{(cal/Mol}^{\circ}\text{K)} \\ \hline \\ 43,1376 \\ 45,8403 \\ 47,6222 \\ \end{array}$	$\begin{array}{c} 7,7173 \\ 9,7703 \\ 11,2251 \\ 12,3805 \\ 12,4091 \\ \hline \\ H_2^{\circ} - H_2^{\circ}(298,15) \\ \hline \\ T \\ (cal/Mol \cdot {}^{\circ}K) \\ \hline \\ 3,4856 \\ 4,2320 \\ 4,5837 \\ \end{array}$	56,791 60,191 63,055 65,852 67,189 S_{2}^{9} (cal/Mol·°K) 46,623 50,072 52,206	$20,246$ $22,731$ $19,513$ $14,555$ $11,043$ C_2^0 $(cal/Mol \cdot {}^{\circ}K)$ $4,966$ $5,024$ $5,863$	sche Funktionen von atomarem Rb bei
7000 8000 9000 10000 T (°K) 1000 2000 3000 4000	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \\ \hline -\frac{G_2^\circ - H_2^\circ (298,15)}{T} \\ \text{(cal/Mol}\cdot ^\circ \text{K)} \\ \hline 43,1376 \\ 45,8403 \\ 47,6222 \\ 49,0045 \\ \end{array}$	$\begin{array}{c} 7,7173 \\ 9,7703 \\ 11,2251 \\ 12,3805 \\ 12,4091 \\ \hline \\ H_{2}^{o}-H_{2}^{o}(298,15) \\ \hline \\ T \\ (cal/Mol^{\circ}K) \\ \hline \\ 3,4856 \\ 4,2320 \\ 4,5837 \\ 5,1812 \\ \end{array}$	$56,791$ $60,191$ $63,055$ $65,852$ $67,189$ S_2^o $(cal/Mol \cdot °K)$ $46,623$ $50,072$ $52,206$ $54,186$	$20,246$ $22,731$ $19,513$ $14,555$ $11,043$ C_2^o $(cal/Mol \cdot °K)$ $4,966$ $5,024$ $5,863$ $9,314$	sche Funktionen von atomarem Rb bei
7000 8000 9000 10000 T (°K) 1000 2000 3000 4000 5000	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \\ \hline \\ -\frac{G_{2}^{\circ}-H_{2}^{\circ}(298,15)}{T} \\ \text{(cal/Mol}\cdot^{\circ}\text{K)} \\ \\ 43,1376 \\ 45,8403 \\ 47,6222 \\ 49,0045 \\ 50,2544 \\ \end{array}$	$\begin{array}{c} 7,7173\\ 9,7703\\ 11,2251\\ 12,3805\\ 12,4091\\ \hline\\ \frac{H_{2}^{o}-H_{2}^{o}(298,15)}{T}\\ (\text{cal/Mol}\cdot^{\circ}\text{K})\\ \hline\\ 3,4856\\ 4,2320\\ 4,5837\\ 5,1812\\ 6,4050\\ 8,2413\\ \end{array}$	56,791 60,191 63,055 65,852 67,189 S_2° (cal/Mol·°K) 46,623 50,072 52,206 54,186 56,659 59,783	20,246 22,731 19,513 14,555 11,043 C ₂ (cal/Mol·°K) 4,966 5,024 5,863 9,314 15,770 21,392	sche Funktionen von atomarem Rb bei
7000 8000 9000 10000 T (°K) 1000 2000 3000 4000 5000 6000	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \\ \hline \\ -\frac{G_2^\circ - H_2^\circ (298,15)}{T} \\ \text{(cal/Mol} \cdot \circ \text{K)} \\ \hline \\ 43,1376 \\ 45,8403 \\ 47,6222 \\ 49,0045 \\ 50,2544 \\ 51,5416 \\ \end{array}$	$\begin{array}{c} 7,7173 \\ 9,7703 \\ 11,2251 \\ 12,3805 \\ 12,4091 \\ \hline \\ H_2^o - H_2^o(298,15) \\ \hline \\ T \\ (cal/Mol \cdot {}^oK) \\ \hline \\ 3,4856 \\ 4,2320 \\ 4,5837 \\ 5,1812 \\ 6,4050 \\ \end{array}$	$56,791$ $60,191$ $63,055$ $65,852$ $67,189$ S_2° $(cal/Mol \cdot {}^{\circ}K)$ $46,623$ $50,072$ $52,206$ $54,186$ $56,659$	20,246 22,731 19,513 14,555 11,043 C ₂ ^o (cal/Mol·°K) 4,966 5,024 5,863 9,314 15,770 21,392 21,969	sche Funktionen von atomarem Rb bei
7000 8000 9000 10000 T (°K) 1000 2000 3000 4000 5000 6000 7000	$\begin{array}{c} 49,0740 \\ 50,4209 \\ 51,8298 \\ 53,4710 \\ 54,7802 \\ \\ \hline \\ -\frac{G_2^\circ - H_2^\circ (298,15)}{T} \\ \text{(cal/Mol} \cdot \circ \text{K)} \\ \hline \\ 43,1376 \\ 45,8403 \\ 47,6222 \\ 49,0045 \\ 50,2544 \\ 51,5416 \\ 52,9695 \\ \end{array}$	$\begin{array}{c} 7,7173\\ 9,7703\\ 11,2251\\ 12,3805\\ 12,4091\\ \hline\\ H_2^\circ-H_2^\circ(298,15)\\ \hline\\ T\\ (cal/Mol\cdot^\circ K)\\ \hline\\ 3,4856\\ 4,2320\\ 4,5837\\ 5,1812\\ 6,4050\\ 8,2413\\ 10,2467\\ \end{array}$	56,791 60,191 63,055 65,852 67,189 S_{2}° (cal/Mol·°K) 46,623 50,072 52,206 54,186 56,659 59,783 63,216	20,246 22,731 19,513 14,555 11,043 C ₂ (cal/Mol·°K) 4,966 5,024 5,863 9,314 15,770 21,392	sche Funktionen von atomarem Rb bei

T (°K)	$-\frac{\mathit{G}_{2}^{\scriptscriptstyle{0}}-\mathit{H}_{2}^{\scriptscriptstyle{0}}(298,15)}{\mathit{T}}\atop\left(\mathrm{cal/Mol}^{\circ}\mathrm{K}\right)$	$\frac{H_{2}^{0}-H_{2}^{0}(298,15)}{T} \ (\mathrm{cal/Mol}^{\circ}\mathrm{K})$	$S_2^0 \ (\mathrm{cal/Mol} \cdot {}^{\circ}\mathrm{K})$	C_{2}^{0} (cal/Mol·°K)
1000	44,4504	3,4856	47,936	4,967
2000	47,1543	4,2418	51,396	5,109
3000	48,9553	4,7097	53,665	6,718
4000	50,4110	5,6490	56,060	11,790
5000	51,8143	7,3754	59,190	18,969
6000	53,2705	9,2634	62,534	21,372
7000	54,8310	10,8799	65,711	19,027
8000	56,3413	11,6271	67,968	14,712
9000	58,0347	12,1680	70,203	10,864
10000	59,3054	11,9206	71,226	8,714

Tab. 13. Thermodynamische Funktionen von atomarem Cs bei p = 1 atm.

4. Ionen und Elektronen

Im hier untersuchten Temperaturbereich sind Alkalimetallatome nur einfach ionisiert. Anregungszustände der Alkalimetallionen sind bis $15\,000\,^{\circ}$ K nicht merklich besetzt. Damit enthält die Zustandssumme der Ionen wie der Elektronen bis $10\,000\,^{\circ}$ K nur einen translatorischen Anteil. Diese Zustandssummen können nach Gl. (2) berechnet werden, wenn an Stelle von m_1 die Ionen- oder Elektronenmasse verwendet wird.

5. Zusammensetzung von Alkalimetallplasmen

In dem hier untersuchten Temperaturbereich laufen in gasförmigem Alkalimetall die Reaktionen Dissoziation und Ionisation ab. Geht man von einem Mol des zweiatomigen Gases aus und nimmt an, daß im Gleichgewicht x Mole dissoziiert und y Mole ionisiert werden, so sind die relativen Teilchenzahlen \approx im Gas:

$$\gamma_1 = \frac{1-x}{1+x+y}, \quad \gamma_2 = \frac{2x-y}{1+x+y},$$

$$\gamma_3 = \gamma_4 = \frac{y}{1+x+y}.$$
(15)

Dabei bezieht sich der Index 1 auf zweiatomige Molekeln, 2 auf Atome, 3 auf Ionen und 4 auf Elektronen. x und y erhält man aus:

$$\frac{K_{\rm D}}{p} = \frac{(2x-y)^2}{(1-x)(1+x+y)}$$

$$= \exp\left\{-\frac{2G_2^0 + D_{00} - G_1^0}{RT}\right\},$$

$$\frac{K_{\rm I}}{p} = \frac{y^2}{(2x-y)(1+x+y)}$$

$$= \exp\left\{-\frac{G_3^0 + G_4^0 + (E_{\rm I} - \Delta E_{\rm I}) - G_2^0}{RT}\right\}$$

 $(K_{\rm D}$ Gleichgewichtskonstante der Dissoziation, $K_{\rm I}$ Gleichgewichtskonstante der Ionisation, $E_{\rm I}$ Ionisationsenergie 21 , $\Delta E_{\rm I}$ Erniedrigung der Ionisierungsenergie bei Anwesenheit von Ladungsträgern, R Gaskonstante). $\Delta E_{\rm I}$ läßt sich nach Unsöld 22 berechnen aus:

$$\Delta E_{\rm I} = 0.016 \, (^{1}N_{\rm e})^{1/3} \tag{17}$$

 $(\Delta E_{\rm I} \text{ in cal/Mol}, {}^{1}N_{\rm e} \text{ Zahl der Elektronen pro cm}^{3} = {}^{1}N_{\rm k}).$

Aus Gl. (15) können dann die relativen Teilchenzahlen der Komponenten des Plasmas berechnet werden. Diese sind in den Tab. 14 bis 18 für p=1 atm angegeben.

In Abb. 5 sind die relativen Teilchenzahlen in einem Cs-Plasma dargestellt. Aus dieser Abbildung kann der Anteil der Cs⁺-Ionen im Plasma in zwei wichtigen Anwendungen entnommen werden.

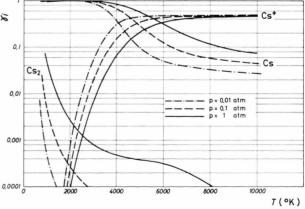


Abb. 5. Relative Teilchenzahlen in einem Cäsium-Plasma.

Die erste Anwendung ist der thermionische Konverter, der bei Temperaturen von 1800—2200 °K und einem Druck von etwa 0,01 atm arbeitet. Im thermodynamischen Gleichgewicht beträgt unter diesen Bedingungen die relative Teilchenzahl der

 $\mathrm{Cs^{+}\text{-}Ionen}\ 1-2^{0}/_{00}$. Sie dienen zur Raumladungskompensation und zur Einstellung von günstigen Austrittspotentialen am Emitter und Kollektor.

Der zweite Fall ist der MHD-Wandler, in dem dem Verbrennungsgas Cs als Seeding-Material zur Erhöhung der elektrischen Leitfähigkeit beigegeben ist. Bei einer Verbrennungstemperatur von 3500 °K und einem Cs-Partialdruck von 0,1 atm beträgt der Anteil der Cs⁺-Ionen im Plasma etwa 3%.

6. Thermodynamische Funktionen der Alkalimetallplasmen

Da die Molmasse M des Plasmas sich mit Temperatur und Druck ändert, wurden die thermodyna-

mischen Funktionen des Plasmas auf 1 g bezogen. Die freie Enthalpie des Plasmas wurde erhalten aus:

$$g^{0} = \frac{1}{M} \left[\sum_{j=1}^{4} \gamma_{j} (G_{j} + RT \ln \gamma_{j}) + \gamma_{2} \frac{D_{00}}{2} + \gamma_{3} (E_{I} - \Delta E_{I}) \right].$$
 (18)

Dabei beziehen sich die Indizes 1, 2, 3 und 4 wieder auf zweiatomige Molekeln, Atome, Ionen und Elektronen. Aus g^0 wurden nach den Gleichungen der Thermodynamik die Enthalpie h^0 , die Entropie s^0 und die Wärmekapazität c_p^0 berechnet. In den Tab. 14 bis 18 sind die thermodynamischen Funktionen der Alkalimetallplasmen angegeben.

Tab. 14. Thermodynamische Funktionen eines Lithium-Plasmas bei p=1 atm.

T $(^{\circ}K)$	γ₁ (—)	$\begin{pmatrix} \gamma_2 \\ (-) \end{pmatrix}$	γ ₃ (—)	$- g^0/T \ ({ m cal/g} \cdot {}^{\circ}{ m K})$	$rac{h^0/T}{(\mathrm{cal/g}^\circ\mathrm{K})}$	$^{s^0}_{(\mathrm{cal/g}\cdot^\circ\mathrm{K})}$	$^{c_{\mathrm{p}}0}_{\mathrm{(cal/g}\cdot^{\circ}\mathrm{K})}$
1000							
2000	0.0256	0,9744	0,0000	4,4999	1,5951	6,095	1,038
3000	0,0027	0,9967	0,0003	5,0935	1,3375	6,431	0,797
4000	0,0008	0,9863	0,0064	5,4598	1,2380	6,698	1,225
5000	0,0004	0,9157	0,0419	5,7363	1,3517	7.088	2,724
6000	0,0003	0,7291	0,1353	5.9897	1.7666	7,756	5,230
7000	0,0003	0,4725	0,2636	6,2587	2,3772	8,636	6,770
8000	0,0003	0.2748	0,3625	6,5683	2,8880	9,456	5,775
9000	0,0002	0,1651	0,4174	6,8950	3,0987	9,994	3,925
10000	0,0001	0,1089	0.4455	7,2085	3,1194	10,321	2,476

Tab. 15. Thermodynamische Funktionen eines Natrium-Plasmas bei p=1 atm.

T (°K)	γ ₁ (—)	$\begin{pmatrix} \gamma_2 \\ (-) \end{pmatrix}$	γ3 (—)	$-\frac{g^0/T}{(\mathrm{cal/g}^\circ\mathrm{K})}$	$rac{h^0/T}{(\mathrm{cal/g}^\circ\mathrm{K})}$	$^{s^0}_{(\mathrm{cal/g}^\circ\mathrm{K})}$	$c_{\mathbf{p}^{0}}$ (cal/g · ° K)
1000							
2000	0.0056	0.9944	0.0000	1,6011	0.4044	2,006	0,2274
3000	0,0010	0,9980	0,0005	1,7520	0,3445	2,097	0,2360
4000	0,0004	0,9805	0,0096	1,8477	0,3315	2,179	0,4053
5000	0,0003	0,8844	0,0576	1,9231	0,3910	2,314	0,9754
6000	0,0002	0,6591	0,1704	1,9964	0,5501	2,547	1,7853
7000	0,0002	0,3977	0,3010	2,0802	0,7540	2,834	2,0380
8000	0,0002	0,2268	0,3865	2,1776	0,8859	3,064	1,5220
9000	0,0001	0,1401	0,4299	2,2775	0,9235	3,201	0,9939
10000	0,0001	0,0961	0,4519	2,3709	0,9141	3,285	0,6426

Tab. 16. Thermodynamische Funktionen eines Kalium-Plasmas bei p=1 atm.

<i>T</i> (° K)	γ'1 (—)	γ ₂ (—)	γ'3 (—)	$- g^0/T \ ({ m cal/g} \cdot {}^\circ { m K})$	$h^0/T \ (\mathrm{cal/g} \cdot {}^\circ \mathrm{K})$	$^{s^0}_{(\mathrm{cal/g}^\circ\mathrm{K})}$	$c_{\mathbf{p}^{0}} \ (\mathrm{cal/g} \cdot {}^{\circ}\mathrm{K})$
1000							
2000	0,0027	0,9972	0,0000	1,0182	0,2024	1,221	0,1304
3000	0,0008	0,9941	0,0026	1,0954	0,1823	1,278	0,1725
4000	0,0004	0,9326	0,0335	1,1480	0,2032	1,351	0,4281
5000	0,0003	0,7164	0,1417	1,1954	0,2952	1,491	0,9439
6000	0,0003	0,4213	0,2892	1,2476	0,4229	1,671	1,1341
7000	0,0003	0,2302	0,3848	1,3097	0,5047	1,815	0,8283
8000	0.0002	0,1386	0,4306	1,3735	0.5241	1,898	0,5348
9000	0.0001	0,1052	0.4474	1,4343	0,5139	1,948	0.3477
10000	0,0000	0,0793	0,4603	1,4863	0,4975	1,984	0,2900

$_{(^{\circ}\mathrm{K})}^{T}$	γ ₁ (—)	$\stackrel{\gamma_2}{(-)}$	γ3 (—)	$- g^0/T \ ({ m cal/g} \cdot {}^{\circ} { m K})$	$h^0/T \ (\mathrm{cal/g} \cdot {}^{\circ}\mathrm{K})$	$_{(\operatorname{cal/g}}^{s^0} \cdot {}^{\circ} \mathrm{K})$	$c_{ m p}{}^0 \ ({ m cal/g} \cdot { m ^{\circ} K})$
1000	0,0614	0,9386	0,0000	0,4227	0,1160	0,5387	0,0949
2000	0.0028	0.9972	0,0000	0,4946	0.0910	0,5856	0,0598
3000	0,0008	0.9919	0,0037	0,5294	0,0830	0,6124	0,0851
4000	0,0005	0,9126	0,0435	0,5536	0,0966	0,6502	0,2250
5000	0.0004	0.6641	0.1678	0,5759	0,1446	0,7206	0,4626
6000	0,0004	0.3740	0,3128	0,6015	0,2034	0,8049	0,4969
7000	0.0003	0.2060	0.3969	0.6311	0,2336	0,8647	0,3360
8000	0.0002	0.1275	0,4361	0,6606	0,2379	0,8986	0,2204
9000	0.0001	0,1000	0,4500	0,6883	0,2315	0,9198	0,1487
10000	0,0000	0.0764	0,4618	0.7117	0,2237	0,9353	0,1281

Tab. 17. Thermodynamische Funktionen eines Rubidium-Plasmas bei p=1 atm.

Tab. 18. Thermodynamische Funktionen eines Cäsium-Plasmas bei p=1 atm.

T $(^{\circ}K)$	$\begin{pmatrix} \gamma_1 \\ (-) \end{pmatrix}$	$\stackrel{\gamma_2}{(-)}$	γ3 (—)	$-\frac{g^0/T}{(\mathrm{cal/g}^{\circ}\mathrm{K})}$	$rac{h^0/T}{(\mathrm{cal/g}^\circ\mathrm{K})}$	$^{s^0}_{(\operatorname{cal/g} \cdot {}^{\circ} \mathrm{K})}$	${}^{c_{\mathrm{p}}0}_{(\mathrm{cal/g}\cdot{}^{\circ}\mathrm{K})}$
1000	0.0505	0,9495	0,0000	0,2851	0,0723	0,3574	0,0546
2000	0.0027	0.9971	0,0001	0,3298	0,0569	0,3866	0,0393
3000	0,0008	0.9859	0.0066	0,3518	0,0539	0,4056	0,0675
4000	0,0005	0.8666	0.0665	0,3678	0,0691	0,4370	0,1873
5000	0,0004	0.5758	0,2119	0,3836	0,1064	0,4900	0,3151
6000	0,0003	0.3129	0.3434	0,4018	0,1386	0,5404	0,2707
7000	0,0002	0.1801	0.4094	0,4219	0,1500	0,5719	0,1758
8000	0,0001	0.1173	0,4413	0,4408	0,1493	0,5901	0,1231
9000	0,0000	0.0958	0.4521	0,4581	0,1442	0,6023	0,0883
10000	0,0000	0,0745	0.4628	0,4727	0,1391	0,6118	0,0892

In einem Mikrokartenbericht ²³ sind ausführlichere Tabellen der thermodynamischen Funktionen von

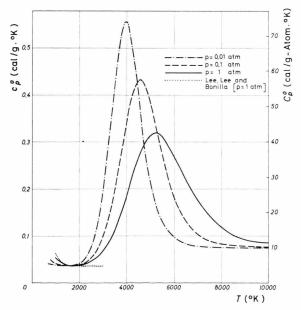


Abb. 6. Wärmekapazität eines Cäsium-Plasmas.

Alkalimetallplasmen und von deren Komponenten angegeben. Diese Tabellen enthalten Werte für 44 Temperaturen und 7 Drucke im Bereich 298,15 bis $10\,000\,^{\circ}$ K und $10^{-5}\,-10$ atm.

Die Wärmekapazität eines Cs-Plasmas ist in Abb. 6 dargestellt. Es ergeben sich ähnlich wie bei der Wärmekapazität der atomaren Alkalimetalle Kurven mit ausgeprägten Maxima, die sich mit zunehmendem Druck nach höheren Temperaturen verschieben und kleiner werden.

Bei hohen Temperaturen und niedrigen Drucken erreicht die Wärmekapazität des Cs-Plasmas etwa den Wert 10 cal/g-Atom $^{\circ}$ K, wenn 1 g-Atom 132,91 g Cs-Plasma enthält. Da in dieser Menge unter diesen Bedingungen etwa $N_{\rm L}$ Ionen und $N_{\rm L}$ Elektronen ($N_{\rm L}=$ Loschmidt-Zahl) enthalten sind, hat die Wärmekapazität fast nur noch translatorischen Anteil. Der geringfügige Abfall der Wärmekapazität bei niedrigen Temperaturen ist auf den Einfluß der zweiatomigen Molekeln zurückzuführen.

In den Berechnungen von Lee, Lee und Bonilla²⁴ bis 3000 °K wurden die Atomanregung und Ionisation vernachlässigt.

¹ G. Herzberg, Molecular Spectra and Molecular Structure. I., V. Nostrand, New York 1959.

² R. S. Mulliken, Rev. Mod. Phys. 4, 1 [1932].

³ F. Sh. Shifrin, Dokl. Akad. Nauk SSSR 110, 549 [1956]. ⁴ S. Fraga u. B. J. Ransil, J. Chem. Phys. **35**, 669 [1961].

⁵ R. M. Badger, Phys. Rev. **49**, 218 [1935].

R. T. Birge, Phys. Rev. 25, 240 [1925].
 R. Mecke, Z. Physik 32, 823 [1925].

- ⁸ W. H. Evans et al., J. Res. Nat. Bur. Stand. **55**, 83
- ⁹ C. E. Moore, Atomic Energy Levels, N.B.S. Circular
- ¹⁰ T. Carroll, Phys. Rev. **52**, 882 [1937].
- ¹¹ G. Baumann, Z. f. Phys. Chem. NF 14, 113 [1958].
- ¹² Li₂: G. M. Almy u. G. R. Irwin, Phys. Rev. **49**, 72 [1936]; F. W. Loomis u. R. E. Nusbaum, Phys. Rev.
- 38, 1447 [1931].
 Na₂: W. R. Fredrickson u. C. R. Stannard, Phys. Rev. 44, 632 [1932]; F. W. Loomis u. R. E. Nusbaum, Phys. Rev. 40, 380 [1932].

- ¹⁴ K₂: F. W. Loomis u. R. E. Nusbaum, Phys. Rev. 39. 89 [1932]; W. D. Crane u. A. Christy, Phys. Rev. 36, 421 [1930].
- ¹⁵ Rb₂: N. Tsi-Ze u. T. San-Tsiang, Phys. Rev. **52**, 91; [1937]; P. Kusch, Phys. Rev. 49, 218 [1936].
- ¹⁶ Cs₂: F. W. Loomis u. P. Kusch, Phys. Rev. 46, 292
- ¹⁷ R. I. Artym, Teplofiz. Vys. Temp. **6**, 1010 [1968].
- ¹⁸ R. C. Feber u. C. C. Herrick, U.S.-AEC Rep. LA-3597 [1967]
- D. R. Stull, JANAF Thermochemical Tables, 3rd add., Dow. Chem. Comp., Midland, Mich. USA.
- K. Schäfer, Statistische Theorie der Materie I, Vandenhoeck und Ruprecht, Göttingen 1960. ²¹ W. Finkelburg u. W. Humbach, Naturw. **42**, 35 [1955].
- ²² A. Unsöld, Physik der Sternatmosphären, Springer-Verlag, Berlin 1956.
- F. W. Reiter, EUR-Bericht im Druck.
 C. S. Lee, D. I. Lee u. C. F. Bonilla, Nucl. Eng. Design 10, 83 [1969].