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A similarity transformation is given, which reduces the partial, nonlinear differential equations 
describing a compressible, polytropic plasma flow across an azimuthal magnetic field in a duct with 
plane inclined walls to an ordinary nonlinear differential equation of second order. The latter is 
solved rigorously in terms of a hyperelliptic integral. The form of the plasma flow fields in pure 
outflows (diffuser) is discussed analytically in dependence of the Reynolds (R) and Hartmann (H) 
numbers and the polytropic coefficient (y) for given duct angles 0O . The realizable Mach numbers 
are shown to be eigenvalues of the nonlinear boundary-value problem, M=MX{R, H, y,60). The 
flow solutions are different in type for Hartmann numbers H 1) below and 2) above a critical Hart- 
mann number Hc defined by tfc2= [2(y — 1)/(y +1)]R+ [2 y/(y +1)]2. Some of the eigenvalues Mx 
are calculated and the associated velocity profiles are represented graphically for prescribed flow 
parameters.

I. Introduction

The resolution of nonlinear partial differential 
equations can frequently be reduced to the analysis 
of ordinary nonlinear differential equations by means 
of so-called similarity transformations 1. Thus, rigor­
ous solutions have been found in the theory of in­
compressible, viscous fluids2' 3 and compressible, 
nonviscous gases 4-7. This investigation is concerned 
with the divergent, compressible flow of a viscous 
plasma across an azimuthal magnetic field in a duct 
with plane, inclined walls (Jeffery-Hamel flow)2' 3. 
As usual in the mathematical theory of compressible 
gases and plasma 8' 9, conservation of energy is taken 
into account by means of a polytropic energy inte­
gral with polytropic coefficient y(0 7 ^ oo, y = 0,
1, and oo correspond to isobaric, isothermal and 
incompressible flow, respectively).

It is shown that a similarity transformation of the 
structure F(r, 0) = r~ m G{6) exists for the plasma 
fields (with different power "m" and function "G" 
for different fields) which transforms the nonlinear 
partial differential equations of the compressible 
flow into an ordinary nonlinear differential equation 
of second order for the amplitude g(0) of the radial 
velocity field, u{r, 0) — r~~n g (0 ). The solution of 
the latter differential equation is given in terms of 
a hyperelliptic integral which is evaluated analyti­
cally for large Reynolds numbers as of physical in­
terest. The theory presents information on the de­
pendence of the velocity, pressure and density distri­
butions on the Reynolds (R), Hartmann (//), poly­
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tropic (y) numbers and duct angles (0O) in out­
flows. The Mach number is shown to be an eigenvalue 
of the nonlinear boundary-value problem,

M = MX(R, H, y, 0O).

In the limiting case of vanishing electrical con­
ductivity or magnetic field, the similarity theory 
describes the compressible, viscous flow of an ordi­
nary gas in a diffuser, a previously unsolved problem 
of gas dynamics. If, in addition, the limiting process, 
y—>oc, is carried through, the solution reduces to 
one obtained in connection with the classical investi­
gations on the incompressible outflow of a viscous 
fluid between inclined walls by Jeffery and 
Hamel 2' 3.

II. Formulation of Problem

Let cylindrical coordinates (r, 0, z) be introduced 
for the description of the Jeffery-Hamel plasma flow 
(Figure 1). The plasma flow is bounded in the 
planes ( 0 = + 0 o, rx ^  r r2) and (6 = — 60 , 
r j^ r ^ r o )  by insulating walls, and quasi-unbounded 
in the directions parallel to the z-axis. The latter 
assumption is applicable to a finite diffuser with 
electrode plates at z = ± z 00, where zoc^>1/2(r1 
+ r2)00 . The injection (r = r1) and removal (r = r2) 
of the plasma occurs in a selfsimilar way. In fluid 
dynamic experiments, this is commonly realized by 
putting the diffuser into a much larger, similar dif­
fuser through which the working gas is pumped at 
the desired rate 10 (Figure 1).
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Fig. 1. Geometry of duct with azimuthal magnetic field (qua­
litative velocity profile).

The magnetic field has its sources in an electric cur­
rent I flowing through a conducting rod (0^r< ^ ro, 
— ^ o ^ z ^  + ct, r„< r j). In accordance with 
Stokes' law, § B • ds = ju0 /, the magnetic field is 
azimuthal (/<0 = permeability of vacuum), and has 
the induction

B 2 rr e 6, r0 ^  r <  cv . (1)

In absence of flow sources or sinks at the inclined 
walls, the velocity field is radial, if the accelerating 
force fields are radial,

v = u e r (2)

The flow of the plasma (conductivity o) across the 
magnetic field induces an axial current density field 
(Hall-effect disregarded) 11

J - o ( E .  + uB9) e , .  (3)

The resulting Lorentz force density is a purely radial 
field which opposes the inducting flow,

j x B  = -  o{Ez + uB0)B0e r . (4)

Because of V  X E = 0, V  j  = a (V  E + B • V  XV 
— V-V  X B) = tfV 'E  = 0' and the boundary con­
ditions at z = z±00, the electric field vanishes,

E = Ez e z= 0 ,  for Ez = i 0. (5)

The axial current density )z flows through the planes 
2 = ± Zoo (electrodes) and forms an electrical cur­
rent J in the external circuit,

rt 1- c0
/  = /  2 ^ /  f  u (r,0 )d rd d . (6)

The Eqs. (1) — (6) are based on the assumption 
that the induced magnetic field is small compared to 
the external magnetic field, which implies small 
magnetic Reynolds numbers,

RB = ju0o u { r,G )r<  1, rt ^ r < L r 2, | 0 | ^  0O .

This condition is satisfied in many experiments, 
operating at temperature levels, for which the plasma 
is weakly or partially ionized.

After the preparations in Eqs. (1) — (6), the non­
linear boundary-value problem describing the veloc­
ity [m = u (r, 0) ], density [{> = Q (r, 0) ], and pressure 
[p = p (r,0 )] fields of the steady-state plasma flow 
between inclined ( -  0O ^  0 0O) walls can be 
formulated as:

du <
3 / = -  ;

+  (1+e)

30 -r

du
3 r

2 ii du

d-u
cr2
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1 du 1 dzu 
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(9)d (g u )/3  r + Qu/r = 0 ,

p — o. Qy, a =  po/ Qoy,
(u(dp/dr) = -y p [d u /d r  + u /r]), (10)

where

u(r, 0 )0 = ±e, =0,
u(r, + 0) = u{r,~ 0 ) ^  0 , rx r ^  r2 , (11) 

u(r,Q) r = 7-0i e=J = « o > 0^
- e 0< e < + e 0, (12)

and

( ) = +f% u )rd 0 , Q > 0; (13)
-0o

u ( r ,0 ) r . ,UM = g { 0 ) r l f ,  + e 0 .
In the solution of this boundary-value problem, two 
integration constants [g(0),C ] and one separation 
constant (x) appear, which are determined by Equa­
tions (11) — (12). Equation (11) contains the 
boundary conditions for zero slip at the walls and 
the symmetry conditions. Equation (12) specifies 
that the velocity at an appropriate point (ro,0) of 
the flow is prescribed, u(r0, 0) = u0 >  0.

In Equation (13), the first relation gives the flow 
rate Q per unit length (Zlz = l)  associated with u0, 
and vice versa [() = Q (m0) ], and the second relation 
specifies that the plasma has to be injected at some 
nonvanishing radius r = r1> 0  and extracted at some 
finite radius r = r2<  oo in a selfsimilar way. g{0) 
represents the azimuthal dependence of similarity 
solution to be derived.

In the momentum conservation equation [Eqs. 
(7) —(8)], (nondiagonal) shear stresses (,«>0)



and (diagonal) secondary viscosity stresses (rj = 
£ ju/3, e 1 for rarefied mono-atomic systems) are 
considered. The compressible plasma flow exhibits 
a convective nonlinearity [Eq. (7)], and additional 
nonlinearities through the conservation equations 
for mass [Eq. (9)] and energy [Eq. (10)] in the 
polytropic approximation (a = p0/£07 is invariant).

The polytropic number y is a phenomenological 
plasma parameter, except for quasi-adiabatic condi­
tions where y ^  cpjcv 9.

For mathematical convenience, the nonlinear 
boundary-value problem in Eqs. (7) — (13) is re­
formulated in terms of dimensionless variables ( ~  )

— du QU
or

1  * 
M2 3r + 1

d2u 
dr2

1 du 1 3 2u 
r >  302

+ 1 (l + s\ 3

0 =  - 1 1 dp 2 1 3  u 
y M2 ~r 30 R r2 30 3

3 \ R

1 l l  + s
R

d
'de

du u

du u~ +
3r r

(14)
R

(15)

d(QÜ)/dr + QÜ/r = 0 , (16)

p = (ü(dp/dr) = -y p [d u /d r  + ÜJF\), (17) 

where

u (f ,d )0=±e0 = 0 , S(r, + 0) = ü ( r , - 0 ) ^ 0 ,
(18)

ü(r,6)r=  1,0 = 0 = 1, — 0O< 0 <  + 0O , (19)
and

Q= J (Qu)rdO , Q = Q/Q0u0r0; u(r~0jf=ri.2 
-00

= ff(0)r - e o £ 0 ^ + e o. (20)

In Eqs. (14) -  (20), the Hartmann (H), Mach (M), 
and Reynolds (R) numbers, and the dimensionless 
variables p, Q, ü, g and r are defined by
H2 = (o/ju) (Be r j 2= (o/ju) (ju0I /2 n )2, (21)

M2 = u02/(y PJ Q0); R = u0r0/(ju/Q0), (22); (23) 
and

P = P/Po » Q = q/qo» u = u/u0, g = g/g0,
r = r/r0 ; p0 == p (r0, 0) ^  0 (24) 

= ¥=0, u0 = u(r0,G) ± 0 , g0 = g(0) =f= 0 .

It should be noted that u0 and p0 are not indepen­
dent for given values of M and R, and vice versa, 
since M2/R = (ju/y r0)u0/p0. A suitable choice of 
reference values for applications is, e. g.,

Po = P(r0,0 ), Q0 = Q(r0,0 ),
u0 = M(r0,0 ), ^0 = 5f(0), (25)

since the flow values at a fixed point r0 along the 
central streamline 0 = 0 are most likely those to be 
known from experiments.

The designations of dimensionless variables by a 
tilde is dispensed with in the following.

III. Similarity Solution

The continuity Eq. (16) indicates that the flow 
density field Q u is a selfsimilar function of r and 0,

Q ( r ,6 )u ( r ,0 )= r-1f(d), (26)

where /(0) has been generated by integration with 
respect to r. For the velocity field u, a similarity 
ansatz is made in the form

u ( r ,6 ) = r - mg(Q) . (27)

It is seen by comparison of Eqs. (26) and (27), that 
the density field has the selfsimilar structure

Q (r ,0 )= rm-if(6 )/g (e )  . (28)
Hence,

p (r,0 )= r?^ -V [f(Q )lg (0 )y  (29)

by Eq. (17) for the selfsimilar pressure field. Sub­
stitution of Eqs. (27) -  (28) into Eq. (15) yields
ry(m-i)-i(fjg)r~1d(f/g)/d9 = i  (M2JR)

• [6 — (m — 1) (1 + e)] r~(w + 2) dg/dO . (30)

A selfsimilar solution exists by Eq. (30) if the power 
m is specified as
m = ( y - l ) / ( y  + l ) ,

- l ^ m ^ + l  for O ^ y ^ o o .  (31)

According to Eqs. (30) and (31), the differential 
relation between /(0) and g(0) is

/d 
d0

2 M-
Q ' E> 5 _1_ 1+g dg

1+y.l d0

2 M2 (0 l+ s\ 1 ly

(32)

(33)

Hence, 

9
where a = a(y) is an integration constant. Insertion 
of the Eqs. (31) and (33) into the Eqs. (27) -  (29)



leads to the intermediate result:
u(r,Q) = + g (6),

o(r, 0) +

p (r, 0) =rr(0-i)% + i)-i) |a +

2 M2 
«+  V  ^ p 3 + 1+e \ 

i + r ) g

2 M2
, r  p (3 + 1+7

and
(34) d 2g
My d 02

5
(35)

)9
(36) by

i p q 2 -H 2

2 A/2
3 -y -ä

+ *7 + 1

3 + l + e \
1+7

1/y 0-2 = (40)

=  * r W < r  + » dßA(r) =  - x R ,7 A/2 dr

Integration of Eq. (15) with respect to 0, and f nCe witht 34)' (.36)\  The Product
• , £ , j £ designates the separation invariant of Equation (40),elimination ot the pressure neld from Eq. (14) ° r , ,

I he /--dependent pressure constituent obtains by
intesration as

yields the equations
M2 up = 2y

and

Q U

R r
1 M2 ,
3 y Ä (i + O

d2u 1 du u
3 r2 T 3 T T2

H2 Ji 1 d/? (r)
/? r2 7 M2 dr

1 o'u 
r2'  302

(37)

(38)

Hence,
2 M2 

P =  3 ^ / T 3 +  \ l 8-) g r - M M + ß i r ) ,  (39)

y5(r ) =h{y + l)y.M2r - 2?lb + 1K (41)

From the identity of Eqs. (36) and (39) it follows 
that the similarity transformation does not permit a 
homogeneous over-pressure 12, and that

a=h{y + l)M 2x, x~ R °, x > 0 {p > 0 ) .
(42)

Equation (42) indicates that the integration constant 
a = a(y) [Eq. (33)] and the separation constant x 
[Eq. (40) ] are proportional.

According to the Eqs. (40) and (42), and the conditions in Eqs. (18) -  (20), the function #(0) is 
described by the nonlinear boundary-value problem:

d2,; 
d02 +  4

/ \ •> 
i / J H- ^  a  «

, 2 M2 /' l + e\
*

i \v 2 n M~2R . g2 + 2 a = 0 ̂ 7 + 1
where 

and
#(0) 0= ±o0 = 0 , g { + e ) - g { - 0 ) ;  g{0) = 1, - 0 O< 0 < + 0 O,

+ 0»
l+£ \ 

3 ' R r  ' 1+7Q -
2 M2 

a +  n 7 g d0

(43)

(44); (45) 

(46)

are the conditions determining the integration [C,#(0)] and separation (a ~ x ) constants, and the flow 
rate associated with the selfsimilar flow, respectively.

Equation (43) is readily integrated by separation of variables, which leads to the differential expression

2
Hence,

d ^ 2 
d0

d d g \2
d0 I

= C -  4 

- 2

M~2 R 
7 + 1 

7-1
7 + 1

R

\ 7 + 1

2  ̂ M2
3

- H2 7 + 1
2 A/2
T- y p 3 + l+E \

1+7 !Iff
Vr , n M~2 R <T + 2 r + 1 a d<7

y
M2 
/?

3 + 

3 +

1 +£ 
1+7 
1+7 
1 + 7 /]

a 9
1 Ivj y _  

I 1+3 7

\ 7 + 1
H2

[(a* + g)(i+Sy)lr _ a*( 1 + 3M] (47)

- 2 a * i /o , ,  [ (a * + # )(1 + 2y)/y + + a*2 _a*(W)/r]

by ordinary integrations, where C is an integration constant, and a* a parameter which is large in all cases 
of interest,

1 + s2 M2
3 y R 3 + 1 + 7

CC R >  1 (48)



by Equation (42). Another integration gives an implicit, closed form solution for g{0) in terms of the 
quadrature:

g(e)
dg/VP(g) = + d 0, (49;

where

P ( g ) = C - 4

<7(0)

M~2R 
7 + 1

Ry+1

M-

M2
l+y

3 ''' R 3 + 1+E
l+y

a g -
l/v

7 + 1 - t f 2

1+3 y
_ [ ( a * _ a*d + 3y)/y] (50)

- 2 a *  1+y [(a* + £ )(1 + 2̂  + + a*2 1 + „ [(a*+ #)(1 + ̂  -a* ^ )/} -]l+2y
and " ± "  sign for d# /d0^O .

In Eq. (49), 0 is an arbitrary reference angle, — 0O ^  0 ^  0O, and the associated g(6) the remaining inte­
gration constant. Similarly, the integration constant C is related to the root g, for which P{g) = [dg/d0] 7j=f, 
= 0, by

C = 4

+ 2

M~2R 
7 + 1 

7-1
7 + 1 R

M2 
R (3 + l+ s  

1+7
M2 1 +£ 

1+7.'

a* g +

1 /Vf
( 7 I 7 + 1 - / / 2

— 2 a* 1+72;, [ ( a '+ t f ) ^ 2̂

\ 1+37 [ ( a ' + ^  + ̂ - a * ^ 3̂ ] (51)

The general solution given in Eq. (49) represents a hyperelliptic integral13 for any y =/= 0, I, 00.
A binomial expansion of the transcendental term in Eq. (43) leads to the semi-convergent expansions 

for P(g) and C:

P(g) = c  -  4
M~2R
7 + 1 7

M2
3+  ;l+ s

2 y - l
3 7 + I R 2  ̂ M2

Q 1 P 3 +

1 + 7 
1 + c 
1+7

a g -

Hr ^
In = 1

7 + 1
3

3 + n \n

- H 2 92

g \  I g/a* I <  1 , (52)

and

C = 4 M~* R 
7 + 1
2 7 - I  

" 3 7 + I

2 M2 [ l+ i  
3 ?  r ( 3 +  l+y

3 +R 2  ̂ M2
Q / E>

a" g +

l+ s 
1+7

7 
7 + 1 - # 2

! +  I« = 1 3+n £3, |S /« * |< 1 . (53)

By combining Eqs. (52), (53) and( 48), one obtains for P{g) jg2 the expression (g^ 0)
P(§) = 4 M-2R ( a

7 + 1

+ 2 7 - I
3 7 + 1

00
R (a^g ) ^

+  4

71 = 0 3 + n \n

_7 _
7 + 1
2 M2V3 R

- H 2 

3 +

1 -

l + e

9 Y 
9

n + 3
g/a* |< 1 .  (54)

The hyperelliptic integral in Eq. (49) can be eval­
uated by analytical methods. Thus, an analytical dis­
cussion of the physical pecularities of the compres­
sible, divergent plasma flow interacting with an in- 
homogeneous magnetic field is feasible. This will be

demonstrated in the following for symmetrical out­
flows (diffuser) :

9 ( - 0 ) = 9 ( + 0 ) t  0 , Q > 0 , R >  0 . (55) 
Equation (55) implies that gmin = g ( ± 0 0) = 0 , and 
ömax = g (0) where <7(0) = 1 for 0 = 0.



The hyperelliptic integral in Eq. (49) reduces 
for the isothermal flow to (y = 1) :

9(0)

9(0) 0

in view of the Eqs. (49) and (50). Integration yields
[(1 - H 2)g + x R ][(x R )2 + (1 - H 2)C ]-y>

= s in [ ± ( l  - H 2)i,t6 + 0 ] (57)

where
0  =  arc sin { [1 — H'2)g{0) + x R ][(x R )2

+  (1 — H2)C]~y*} (58)

and

C = 2 x R g + ( l - H 2)-g2,[ (x R )2+ (1 - H 2)CYh
= (1 - H 2)g + xR (59)

by Equation (51). Application of the boundary con­
ditions in Eq. (44) to Eq. (57) and evaluation of 
Eq. (57) for 6 = 0{g=^g) results in the relations:

xR = g [ ( l - H 2)
■ cos(1 -  H2)1/10O] /[ 1 -  cos(1 -  H2)1/10O] , 

9 = 9(0). (60)

Elimination of the constants (P, C, g and x R by 
means of Eqs. (58) — (60) from Eq. (57) gives the 
solution:

9(0) = l-cos(l -H 2) '/«0 
1 — cos (1 — H2) */« G0 9(0). (61)

The associated (nondimensional) isothermal flow 
fields are by Eqs. (34) -  (36) :

u(r,0) =

Q(r,0) =

cos (1 -IP ) V« e-cos (1 - H2) */» 0„ 
1 — cos (1 — H*)1 0Q

1 (M2/3 R)

9(0), (62)

[1 —cos(l —H2)1/1 0O]
•{3(1 — # 2)cos(l — H2)1'10O 

+ (7 + £ ) [ c o s ( l - / /2),/20 (63)
— cos(l — H2)11* 60]}g(0),

n/r m _ 1 ____ {M2/3 R)p ( r ,o )~  r - _ cos(1_ H2)./J0o]

• {3(1 —//2)cos(l —H2)l,'0 0 (64)
+ (7 + e) [cos (1 -  H2)1/2 0 -  cos (1 -  H2) 6 0] } g (0),

where
M2 = eou02!po, 7 = 1. (65)

According to Eqs. (45), (62), and (63), the flow 
rate Q is for y = 1:

M2 
3 R

<7(0) (7+£)0ol-cos(l -H 2)1'' e0 
+ 2[(1 + e) —3 (1 — ]0O cos(l —//2)Vl 0O

— 3[(7 + e) —2(1 — H2) ] sin(l-Hs)1/« 0V
( l - t f 2)Vi 

•cos(l — H2)1'10O j . (66)

The Eqs. (62) — (66) are valid for //= S l, and 
may be rewritten in terms of hyperbolic functions

[cos(1 -  H2)1/2 0 = ch {H2 -  i y h 0 , 
sin(l —//2)1/10/(1 — H2)1'*

= sh (^ 2- l ) ,/l 0/ (H2 — l ) ,/f].

By means of Bernoulli's rule, one finds in the special 
case, H = 1:

02

Q(r,0) =

p(r,0) = 

and

u ( r ,e )=  ( 1 -

M2

9(0),

3 R

M2 
3 R

6 0 o-2 + (7  + £) 1

6 0O~2 + (7 + e) ( 1 -

02 
n 2

02

(67)

(68)

9(0), 
(69)

Q =
8 M2
3 R id ,

1 . 2(7 + £) fl 
15 Wo ^(0 )2 . (70)

The Eqs. (62), (67) indicate that the velocity 
profile of the isothermal compressible flow varies 
with increasing H, from a trigonometric (0^ H  <  1), 
to a parabolic (H = 1), and finally to a hyperbolic 
(1 <  H <  oo ) structure. It is seen that the velocity 
profiles become flatter with increasing Hartmann 
number. Only a symmetrical solution exists, which is 
unique.

In Eqs. (56) -  (64) and Eqs. (66) -  (70 ),^ (0 ) 
is given in terms of the reference value #(0) =1 
[Eq. (45)] via the solution for #(0) in Equation 
(61). In particular, if the special normalization 
(0 = 0) in Eq. (25) is chosen, then one has simply 
<7(0) =1.

V. Polytropic Plasma Flow, 1 < 7 <  oo

In the general case, 1 < ;'< o o , the hyperelliptic 
integral in Eq. (49) can be evaluated analytically for 
large Reynolds numbers, 1, which are exclu­
sively of physical interest. A binomial expansion of



a +

7+1

7 + 1

M-
7

M-

l+£ 
1+7

1 Iy
l  + 2  n = 1

4 7 
3 7 + 1

1 Iy

3 + 1 +£
1+7

R

' 2 " xM2) = 1 , R >  1,

by Equation (42). It is seen that /(0) and g(G) are 
equal, /(0) = #(0) for Ä >  1, since /(0) = #(0) = 1 
by Equation (45). Accordingly,

M2= [ 2 /{ y + l) ]x ~ \  0< M 2 < # ,  * > 0 .  (72)

Equation (72) indicates that the Mach number M 
has eigenvalue character, since the separation con­
stant x is an eigenvalue determined by the boundary 
condition in Equation (44).

Accordingly, only solutions with positive eigen­
values, x > 0 , have a physical meaning (M = imagi­
nary for x <  0). In the same approximation, 
Eqs. (34) — (36) give for the (nondimensional) 
plasma fields:

u(r,0) = r-<r-VI<r + » g (e ) , (73)
Q(r,0) + U -i, (74)

p(r, 0) i R > \ .  (75)

In the limit of large Reynolds numbers, the density 
and pressure fields depend only on the radial (r) 
but no longer on the transverse (0) coordinates, in 
agreement with the so-called boundary-layer ap­
proximation u .

In view of Eq. (71), Eq. (49) reduces to the el­
liptic integral [cf. Eq. (43)] :
<7(0)

J  I r
dff

~ C-93-9(0)

where

V - j i -7
7 + 1 /

= ± y o j d  0
0

, R
y a - *

Q =  2 ( l = l  -  3 \ 7+1 Ä > 0 ,

C =  C / ü ^ 0 .  

The integration constant is positive,

C= (l/Q ) (dg/dO) L  ±«0 ;> 0 ,

(76)

(77)

(78)

since g{0 = ± 0 O) = 0  by Equation (44). Equation 
(76) is rewritten in the form

0 g(o)
dg

9i) (9~9i) (9-93)Vh
<7(0)

(71) where

91+9-2 + 93 = - Q 4 ( ?\ 7 + 1 - H 2

y. R
9i 92 + 9193 + 9'2 9s = 2 o > 0 ' 

9\ 92 9s = =  0 •

(79)

(80)

(81) 

(82)

If g designates one of the roots {gi,g-2,g%) of the 
cubic in Eq. (76), then

C = ?  + Ü
y

7 + 1 - H2 Ä O , o ft R ^ 
9~ + 2 Q 9 (83)

Accordingly, the roots of the trinomial are explicitly 
in terms of g

9 = 9 9 = 9+, 9 = 9->
g+^ g ~  if g± =  real, (84)

where

7
7 + 1 - H2

I O
* R 
Q

u 4

- 4  g

7
7 + 1 

1
Q

— H2

7
7 + 1

+ 9
2

+ 9
) 2

- f f 2

(85)

+ 9

Equation (76) or Eq. (80) leads to different 
types of outflow solutions as will be explained by a 
simple physical argument. In differential form, Eq. 
(76) can be written as

i(dg/d0)2+ V (g J= 0 (86)

where

V(9) = -  2 "

7
7 + 1

C - 9 3
o
' - H2 92- (87)

is negative, since (d^/d0)2 ^  0 for any — 0O ^  0 
<  + 0O. Equation (86) may be interpreted as the 
energy conservation equation for a fictitious particle 
of mass m = l, kinetic energy 1/2(dgr/d0)2, potential 
energy V (g), and total energy E = 0 (<7 ^  displace­
ment, 0 ^  time). The locations of the minimum 
( + ) and maximum ( — ) of the potenial V (g) are



(±) =9

since 
2

3 Q

2
3 Q

2 
3Ü

y
7 + 1

7 + 1 
( + )>ff(->

- f f 2

~ h  Jl 3 Q ) 
if g ^  — real, (88)

d *V(g) 
dg2 = + /2 3Ü

r
7 + 1
8 y.RV> 
3 Q

- f f 2

(89)

to

where
±1/Q 0  =

Accordingly, the maximum of V (g) precedes the 
minimum of V (g) as shown in Figure 2. In the pos­
sible cases (1 —2), the fictitious particle starts at 
the origin <7 = 0 for 0 = — 0O and returns to origin 
g = 0 for 0 = + 0O, where the allowed path g(0) is 
determined by the condition V(g) ^  0 [Equation 
(84)]. The case 3) requires negative ^-values, i.e. 
is physically not realizable (M = imaginary).

Fig. 2. Fictitious potential V versus "particle position" g for
the Cases 1, 2, 3 (qualitative).

I. Case: g^>0, g2t3 = Conjugate Complex

If g.2 is the complex conjugate of g3, then 2 i> 0  
since C — gx g2g3 ^  0. Evidently, it is 2i =  <7 and 
g2<3 =  g ± [Eqs. (84) — (85)]. The associated po­
tential curve V (g) is shown in Figure 2.1. It is seen 
that V (g )^ 0  is satisfied for -  oo <#(0) gt . 
Hence, pure outflows are restricted to the interval

0 £ g ( 0 ) £ 9 l , g i= g = g (  0). (90)
Equation (79) is reduced by means of the transfor­
mation [0 =  0 = 0 ,^(0) = ^(0 )] 

<7(0) =<7(0) — A2 [ (1 — cos cp) / (I + cos cp) ],
0< L cp< Ji, (91)

l~ xF{cp, k), 

-H2

(92)

13 ^ (0 )2 + Q |4 

k2 = i  + U - 2 \ s g ( 0 ) +

9( 0 )+ 2 -» £

H2

(93)

(94)

The amplitude g{0) of the velocity field obtains by 
inversion of Eq. (92) and substitution of cp(0) into 
Eq. (91) as:

[ 1 -c n  {VQ /.0;k)]
2(0) =2(0) (95)

[1+ cn(V f2 /.0 ;k )) '

The separation constant (x) in this solution is de­
termined (implicitly) by the boundary condition in 
Eq. (44), i.e., the transcendental equation

cn(VQA00;k) = [ r - - g ( 0 ) ] /V 2 + g (0)]. (96)

The flow rate is in Case 1:
Q = 2 00[ g ( 0 ) - l 2]

- 4 VQ
sn (Y&l Ö0; k) dn (VQ )Q0; k)

l + cn(]/Ü I 60; k) -  E{cp0; k)

(97)

where15 cp0 = am {]/ü /  0O; k ). In Eqs. (90) -  (97), 
2(0) is determined through the normalization, i.e., 
2(0) =1 for 0 = 0.

The flow type 1) exists, since 2 x R/Q = \ g2< 3 |2 
+ 2 Re22,3>0 (0 = 0) by Eq. (80), i.e., Eq. (72) 
is satisfied. Since Re 22,3 <  9i and 2 i= 5r(0) 
= 1(0 = 0), Case 1 requires Hartmann numbers H 
below a critical value [see Eq. (80), 0 = 0]

0 £ H 2 < [2 7/(7 + 1) ]2
+ 2 [ ( y - l ) / ( y  + l)]Ä (0 ). (98)

If the roots 2 i , 22 » an(l 2s are real, the flow 
type 2 exists. The numbering of the roots is chosen 
such that

(99)

2. Case: g3 = g (0 )> 0 , gU2>0.

If 23 = 2(0) > 0 , than 2i,2>0 is possible since 
C — g1g2g3 ^ .0 . The associated potential curve 
V(g) is shown in Figure 2.2. It is V (g) 0 for 
— co <2(0) ^  23 ■ Accordingly, pure outflows are 
limited to the interval

0 £ g ( 0 ) £ g 3, g3 = g(0). (100)



Equation (79) is reduced by means of the trans­
formation [0 = 03 = 0, g (0) = 2(0)]
gi.0) = g 2- [ £ 2-<7(0)]cos 2cp, 0 £ ( p < ,n /2

(101)

to

where

± V Q 6 =  - k - ^ F i ^ k ) , (102)

(103)

(104)
/  = i [ 2 i - 2 (  0 )]1/s, 

= (9i -  9z) \\.9x~9 (0) ] •
The amplitude g{0) of the velocity field obtains by 
inversion of Eq. (102) and substitution of cp{0) 
into Eq. (101) as:
g{0 )= g2- [ g 2- g { 0 ) ]c r r2{VQXe,k). (105)

The eigenvalue is determined by the boundary 
condition in Ecj. (44),

cnHVQ /  0Of k) = [g2 -2 (0 )  ]/g2 ^  0 . (106)

The flow rate is in Case 2:

<? = 2 0 O2 ( 0 ) - 2 - * $ f -  ■
sn(VQXe0;k)dn(VQX00;k) ,1

cn (VQX60;k) ' 1 '

where15 y0 = am (]/ß  I 0O, k ). In Eqs. (1 0 0 )-  
(107), 2i and 2-' are functions of * defined by Eqs. 
(8 0 )- (8 1 ) ,

1
^1+^2+^(0) = - Q -1 - H2

9i 92+ (9i+9s)9(0) = 2 R/Q> 0 ,

(108) 

(109)

where 2(0) is given by the normalization, i.e. 
2(0) =1 for 0 = 0.

The flow type 2 satisfies Eq. (72), since x > 0  
for 2i,2,3>0 _by Eq. (109). Since 2i,2<Sr3> and 
93=9(0) = 1 (0  = 0), Case 2 requires Hartmann 
numbers H above a critical value [see Eq. (108), 
0 = 0],

(jTht)2 + 2 y + i * « »  < * ■ < « .  (110)

A comparison of Eq. (98) and (110) indicates 
that the flow types 1) and 2) appear in adjacent 
intervals of the Hartmann number H, 0 / / < / / , . ,  
and / /( .< //<  oo, where

ffo»= (2y /y  + l)* + 2 [ ( y - l ) / ( y  + l)]Ä (0 ).

Thus, the similarity transformation leads to com­
pressible flow solutions for all possible Hartmann

numbers, 0 < ^ //< c c (0 < /? < o o , 0 < y < o o ). The 
limiting solutions with vanishing small eigenvalues, 
x ^  0, have to be obtained numerically from Eq. 
(49), since the expansion for large R breaks down 
for * 0.

In Fig. 2, the remaining case 3 has only a formal 
mathematical meaning. Since 2t = 9 (0) = 1 (0 = 0) 
and 22.3< 0 in case 3, the Eqs. (80) and (81) can 
be satisfied (simultaneously) only for 0, but not 
for x > 0 . Accordingly, the case 3 would imply 
imaginary Mach numbers M [Eq. (72)], and is, 
therefore, of no physical meaning. It is interesting 
that for the incompressible flow solutions with nega­
tive «-values are considered to be of physical re­
levance 2' 3, since for y = oc a similarity transfor­
mation exists with a positive overpressure so that
p{r, 0) > 0  for * < O ( '0 |< 0 o, r > r x).

VI. Discussion

It is experimentally known that laminar, com­
pressible flows cannot be realized in diverging ducts 
(diffusers, wind tunnels, nozzles) at arbitrary Mach 
numbers M for a fixed duct angle 0O . With increas­
ing Reynolds number R, laminar outflows are ob­
served only for sufficiently small duct angles 0O 
because of boundary-layer separation. In the case of 
plasmas, laminar flows have been observed for large 
dunct angles, 0 ^  0O <  ti, if the magnetic field be 
is larger than a critical value. These observations 
can be explained quantitatively by further inspec­
tion of the solutions derived under Case 1 and 
Case 2.

l.Case: An infinite number of real eigenvalues 
x >  0 exists by Eq. (96) in Case 1, since

- i  <; cn (V Q ie0,k)<L + i
is a periodic function of * [with period 4>K(k) 
which varies with y., k = k (x) ] and

- l < ( / 2- l ) / ( / 2+ 1 ) ^  + 1 for 0 < * ^ o o .

For extremely large eigenvalues, x u 1, one has 
asymptotically

1 = (2 R /Q )iux u > l ,  x u > \ ,  (111)

k = 2~1/t, x u >  1, (112)

by Eqs. (93) and (94). Equation (95) gives as so­
lution at large eigenvalues:

' [l+cn(l/ß AÖ.2-V«)] '



where
l= [ 4 K ( 2 - t'*)/VQG0] s > \ ,  

Ä = 1,2, 3, . . . ,  oo, x u >  1 , (114)

by Equation (96). It is seen that the solutions with 
large eigenvalues, x'1'* 1, are not only negative 
(#<0) for sufficiently large 0 but also diverge 
(e.g., g | = oo at 0 = 0O/2). Obviously, they have 
no physical meaning.

The cosine amplitude function in Eq. (96) has 
zeroes at \/Q /  0O = s K (k), s' = l, 3, 5, . . . ,  oc . 
Accordingly, only the first, positive root, xx > 0, of 
Eq. (96) gives a positive solution, g (0 )^ .0 , pro­
vided that the duct angle is below a critical value,

0O« V ,  0oc = o„(* = 0), (115)

where 0O° has to be determined numerically from 
Eqs. (43) — (45) for a = 0. The numerical value of xx 
has to be determined by iteration from Eq. (96) for 
the given flow parameters R, / / < / / L. , and 0O< 0 OC. 
Equation (95) gives the associated flow solution, 
which is positive and unique.

According to Eqs. (43) — (95), the flow exhibits 
a fundamental invariance property. If R ^  1, 
0 £ H < H t., 7>  1, and O <0o< 0 oc are varied, but 
such that the combinations

- l y - 1
I 7 + 1

R )~0o, /2 = 7 + 1 
7-1 H2 2 7 \ 2 

7 + 1
(116)

// .8■f

/ .6-
/ .4■ \

/
.2-

\
0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0

e/e0
Fig. 3. g(0/eo) für 71 = 25-101/2( /̂180) and i) /, = 0 and j) 

7» = 4 • 10—1

In Fig. 3, g(0/Q0) is shown for the cases 7X = 
251/10(^/180) and /., = 0, 4 -10 -1. In Fig. 4, 
giG/Oy) is shown for the cases = 50 (vt/180) and 
/., = 0, 4 -10_1. It is, e.g., 7t = 25 1/10(jt/180) for

remain unchanged, then g(G/00), and
x =  [(7 + l ) / ( 7 - l ) ] x 1, M =  [y — l ) l/' M (117)

are invariant. This means that the solution g{G) 
depends only on the normalized angle 0/0o and the 
parameters and / 2 .

e /e0
Fig. 4. g{9/00) for ^ = 50 (jt/180) and i) 72 = 0 and j) I2 = 

4-10"1.

R = 103, 0O = rt/36, 7 = 5/3, and l x = 50 (a/180) 
for R = 104, 0O = a/180, y = 5/3. Further, if y = 5/3, 
it is 7o = 0 for H2/R = 0+  (5/4)2/ f l ^ 0 ,  and /., 
= 4 -10~* for H2/R = 10-1 + [ (5/4)2//? ]^  10_1. 
The numerical values of the eigenvalues (xx, x) and 
the associated Mach numbers (M, M) are given for 
the above values of l x and I2 in Table 1.

Table I. Eigenvalues , x) and Mach numbers (M, M) for 
given parameters 7t and 72.

h 1-2 X M (7 = 5/3)M(r =5/3)

25 FlO (̂ r/180) 0 0.3520 2.384 0.0880 2.920
25 j/10 (tt/180) 4-10- 1 0.6680 1.730 0.1670 2.119
50 (jt/180) 0 1.9064 1.024 0.4766 1.254
50( /̂180) 4-10- 1 2.2332 0.946 0.5583 1.159

The Figs. 3 — 4 indicate that in Case 1 (H < H C) 
the velocity profiles become flatter with increasing 
H. This effect of the magnetic field is, however, 
small as long as H is noticeably below Hc . If R is 
increased, then solutions exist only for smaller 
values of 0O, since 00<G0C by Equation (115).

2. Case: Equation (106) indicates that in general 
more than one real eigenvalue, ^ > 0 , exists in 
Case 2. Since cn(]/Q ZG0,k) = 0 for ]/Ü I 0O 
= s K (k), s = 1, 3, 5, . . . ,  oo, a positive solution, 

exists only for the first root ^ > 0  of 
Equation (106). The latter has no roots for 
g-><g{0). Since

(<72-<7(0))/<72 = 0 , and k? = 1 for g2 = g(0)



cn2 (VQ X 0O, 1) = cosh"2 (1/Q  X 0O) ̂  0 
if VQ X 0O >  1,

the first root y.x is given (in excellent approxima­
tion) by the relation 22(^1) = &(0), i-e.

i04 icflo*

9  11
R \ Ü H2- 2 y 

7 + 1 -  ;  2(0) 2 (0 )> 0 ,

l/i2 ^  0O >  1, (118)
by Eqs. (108) and (109). In the same approxima­
tion, the flow solution is by Eqs. (105) and (106) 

cosh (VQ Xx 0) 
cosh(j/ß Xx 0O)

\ f

9(0) y

/

/ '6 \

1 .4 1

.2

2(0) =2(0) 1 -

where

j , y n  xx 0O >  1
(119)

H2- 2 y \2
7 + 1

32(0) /2> 0  (120)

by Eqs. (103) and (108). The approximations in 
Eqs. (118) — (119) are based on the restriction 
y ü  Xx 0O >  1 which is satisfied in many cases if /j 
and 0O are not too small, since 1. If
y ü  Xt 00< 1, y.t has to be computed by iteration 
from Equation (106). The associated eigensolution 
is defined by the original Equation (105).

1.0 N = I05 104 t cP 106

1 /  z' '8

1 /  6
w

/ .4 M

/ / '2 
i i i i0 -.8 -.6 -.4 -.2 o .2 .4 .6 .8 1.0

e /e0
Fig. 5. g(0/60) for 7t=5(^/180)^, iV = 103-106, and 72 = 4.

n = los i04 10® 10*
g(0)

/  / .8 \  1

1 / .6
\

/ .4 \

i i

.2

i i i i-.6 -.4 -.2 .2 .4 .6 .8 1.0

Fig. 6. ff(0/0o) for lx = 5 (tt/180) A'1/2, N = 103-108, and 
1,=20.

Fig. 7. g(d/60) for 7t = 5(^/180)^, N = 103-106, and 
72 = 40.

The invariance property of the flow is obvious 
from the Eqs. (103) -  (105) : g(6/00), ar, and M 
are invariant with respect to variations of R 1, 
H > H  c, 7> 1 , and 0 < 0 O ^  tt, which leave and 
7o [Eq. (116)] unchanged. Equation (118) indi­
cates that x and M [Eq. (117)] depend only on I2 
in the limit VQX160 >  1.

In Figs. 5, 6, and 7, g{6/60) is shown for 7j 
= 5 (n /l80) yvv\  /V= 103-  106, and / 2 = 4, 20, 40. 
In Figs. 8, 9, and 10, g(6/60) is shown for 7j 
= (45/2) (tt/180)7V1/s, 7V = 103 — 106, and 72 = 4, 20, 
40. It is, e.g., / 1 = 5(7i/180)yV"2 for R = N, 0O 
= tz/18, 7 = 5/3; and = (45/2) ( t t / 1 8 0 ) f o r  

= 0O = rr/4, 7 = 5/3. Further, /2 = 4, 20, 40 im­
plies that # 2/7? as 1, 5, 10 if 7 = 5/3, since 
(2 y/y+ 1)2/R 1. The numerical values of , 
a; and M, M are given for Ix = 5 (rc/180) TV*, 
/V = 103 -  106, and / 2 = 5, 20, 40 in Table 2. [They 
are practically the same for 7X = (45/2) (.t/180)/VV8 
except in the case /V = 103; see Equation (118).]

The Figs. 5 — 7 and the Figs. 8 —10 indicate that 
in Case 2 ( / /> / / c) the flatness of the velocity 
profile increases and the thickness of the boundary 
layer shrinks considerably with increasing / 2 or 
H2/R. This effect is more pronounced at larger 
values of l x . The flow solution is unique and exists 
for all values of 0O, O < 0O <  71.
Table 2. Eigenvalues (x1, x) and Mach numbers (M, M) for 

given parameters It and I2.
7,/5 1, x M M
(Ä/180) (7 = 5/3) (7=5/3)
103/2 5 3.0692 0.808 0.7673 0.989103/2 20 18.9936 0.324 4.7484 0.39710«/2 40 38.9936 0.226 9.7484 0.277
102 5 3.0000 0.816 0.7500 1.000
102 20 19.0000 0.324 4.7500 0.397
102 40 39.0000 0.226 9.7500 0.277

(No changes for ;V>102)
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Fig. 8. g(6/00) for It= (45/2) (jr/180)N1'2, /V=103-106, and 
7»=4.

Fig. 10. g(9/d0) for It= (45/2) (n/180)N1'2, 7V=103-106, 
and 7., = 40.

N =10 10 10,10

Fig. 9. g(G/90) for 7t = (45/2) (n/180) N1/2, 7V = 103 — 106, and 
7,=20.

VII. Conclusions
A closed form similarity solution is feasible for 

the compressible Jeffery-Hamel outflow (diffuser) of 
a plasma across an azimuthal magnetic field. The

solution is different in type depending on whether 
the Hartmann number is 1) //< //,. or 2) / /> // , . .  
These solutions exist for a limited range of duct 
angles, 0 < 0 0< 0 0c<rr, in Case 1) and for all duct 
angles, 0 < 0 0< a , in Case 2 (stabilizing effect of 
the magnetic field). The velocity profile and bound­
ary layer are affected weakly in Case 1), and 
strongly in Case 2) by the magnetic field. The so­
lutions depend only on the normalized coordinates 
r = r/r0, 0 = G/60, and the parameters I1= J1 (R, }', 
00) and I2 = Io (7?, H, y), i.e. are the same if R, 
H, y, and 00 are varied (within their limits) such 
that 71 and / 2 are left unchanged. The Mach number 
M occurs as an eigenvalue. The (outflow) solutions 
are unique, since the higher eigenvalues lead to phy­
sically meaningless solutions.

The problem arose in connection with experi­
ments on compressible plasma flows across inhomo­
geneous magnetic fields in diverging ducts 16~17.
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