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A similarity transformation is given, which reduces the partial, nonlinear differential equations
describing a compressible, polytropic plasma flow across an azimuthal magnetic field in a duct with
plane inclined walls to an ordinary nonlinear differential equation of second order. The latter is
solved rigorously in terms of a hyperelliptic integral. The form of the plasma flow fields in pure
outflows (diffuser) is discussed analytically in dependence of the Reynolds (R) and Hartmann (H)
numbers and the polytropic coefficient () for given duct angles 0, . The realizable Mach numbers
are shown to be eigenvalues of the nonlinear boundary-value problem, M=M, (R, H, y,6,). The
flow solutions are different in type for Hartmann numbers H 1) below and 2) above a critical Hart-
mann number H¢ defined by He2=[2(y—1)/(y+1)1R+[2 /(y+1)]2 Some of the eigenvalues M,
are calculated and the associated velocity profiles are represented graphically for prescribed flow

parameters.

I. Introduction

The resolution of nonlinear partial differential
equations can frequently be reduced to the analysis
of ordinary nonlinear differential equations by means
of so-called similarity transformations !. Thus, rigor-
ous solutions have been found in the theory of in-
compressible, viscous fluids*? and compressible,
nonviscous gases *~7. This investigation is concerned
with the divergent, compressible flow of a viscous
plasma across an azimuthal magnetic field in a duct
with plane, inclined walls (Jeffery-Hamel flow)? 3.
As usual in the mathematical theory of compressible
gases and plasma %%, conservation of energy is taken
into account by means of a polytropic energy inte-
gral with polytropic coefficient y (0 <y < oo, y =0,
1, and ~ correspond to isobaric, isothermal and
incompressible flow, respectively).

It is shown that a similarity transformation of the
structure F(r,0) =r " G (0) exists for the plasma
fields (with different power “m’ and function “G”
for different fields) which transforms the nonlinear
partial differential equations of the compressible
flow into an ordinary nonlinear differential equation
of second order for the amplitude g(0) of the radial
velocity field, w(r,0) =r " g(0). The solution of
the latter differential equation is given in terms of
a hyperelliptic integral which is evaluated analyti-
cally for large Reynolds numbers as of physical in-
terest. The theory presents information on the de-
pendence of the velocity, pressure and density distri-
butions on the Reynolds (R), Hartmann (H), poly-

* Supported in part by the US Office of Naval Research.

tropic () numbers and duct angles (0,) in out-
flows. The Mach number is shown to be an eigenvalue
of the nonlinear boundary-value problem,

M: n[x(RaHa Vs 00)'

In the limiting case of vanishing electrical con-
ductivity or magnetic field, the similarity theory
describes the compressible, viscous flow of an ordi-
nary gas in a diffuser, a previously unsolved problem
of gas dynamics. If, in addition, the limiting process,
y—=oo, is carried through, the solution reduces to
one obtained in connection with the classical investi-
gations on the incompressible outflow of a viscous

fluid  between inclined walls by Jeffery
Hamel >3,

and

II. Formulation of Problem

Let cylindrical coordinates (r, 0, z) be introduced
for the description of the Jeffery-Hamel plasma flow
(Figure 1). The plasma flow is bounded in the
planes (0= +0y, ry<r<r,) and (0= —0,,
ri<r=r,) by insulating walls, and quasi-unbounded
in the directions parallel to the z-axis. The latter
assumption is applicable to a finite diffuser with
electrode plates at z= tz., where z,>1/2(r,
+715)0 . The injection (r=r;) and removal (r=r,)
of the plasma occurs in a selfsimilar way. In fluid
dynamic experiments, this is commonly realized by
putting the diffuser into a much larger, similar dif-
fuser through which the working gas is pumped at
the desired rate 1 (Figure 1).
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Fig. 1. Geometry of duct with azimuthal magnetic field (qua-
litative velocity profile).

The magnetic field has its sources in an electric cur-
rent / flowing through a conducting rod (0<r<r,,
— 20Xz +x, r,<ry). In with
Stokes’ law, § B-ds =y, 1, the magnetic field is
azimuthal (1, = permeability of vacuum), and has
the induction

accordance

B- Le, r,<r<x. (1)

In absence of flow sources or sinks at the inclined
walls, the velocity field is radial, if the accelerating
force fields are radial,

v=ue,. (2)
The flow of the plasma (conductivity ) across the

magnetic field induces an axial current density field

(Hall-effect disregarded) !
j=o(E.+uBye,. (3)
The resulting Lorentz force density is a purely radial
field which opposes the inducting flow,
jxB=—0(E,+uBs)Bse,. (4)

Because of \V/ xE= 0, \V-j=0(V-E+B-V xv
—v-\/xB)=0V-E=0, and the boundary con-

ditions at z =z. ., the electric field vanishes,
E-E,e.=0, for E,., =0. (5)
The axial current density j, flows through the planes

z= 12z, (electrodes) and forms an electrical cur-
rent / in the external circuit,

rs  +0,
J=1s [ fu(r,@)drd@. (6)
Ty -0,

The Eqs. (1) — (6) are based on the assumption
that the induced magnetic field is small compared to
the external magnetic field, which implies small
magnetic Reynolds numbers,

Ro=pyou(r0r<1,rn<r<r, |0]£6,.
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This condition is satisfied in many experiments,
operating at temperature levels, for which the plasma
is weakly or partially ionized.

After the preparations in Eqs. (1) — (6), the non-
linear boundary-value problem describing the veloc-
ity [u=u(r,0)], density [0o=0(r,0)], and pressure
[p=p(r,0)] fields of the steady-state plasma flow
between inclined (-0, <60 <0, walls can he
formulated as:

Qu dp Qw1 3u 1 32 u
gu 3r T 7 3r +‘U[3‘r2+ ro3r o230 er
Lou d [3u , u uel\2 u -
) (1+¢) Sr[er T J 0<20.7) r’ (7)
B 13 , 2u8u | u ‘ o [du u
O_—r"() r2 30 3(1*5)r30‘[3r+r ’

(8)
d(ou)/3r+eu/r=0, (9)
p=ag, a=pfoy,
(z(3p/3r) = —y p[Qu/3r +u/r]), (10)
where
u(r,6)9=¢90=0,
u(r,+60) =u(r,—-020,r,<r<r,, (11)
w(r,0)r-r,0-5 =ug>0, 1, Srg<ry,
—0y<0< +0,, (12)
and

+0,

Q= [(ou)rdd, Q>0; (13)

28,

u(r0)rer,, =gO@)rist, —60,X0Z +6,.

In the solution of this boundary-value problem, two
integration constants [¢(0),C] and one separation
constant (x) appear, which are determined by Equa-
tions (11) — (12). Equation (11) contains the
boundary conditions for zero slip at the walls and
the symmetry conditions. Equation (12) specifies
that the velocity at an appropriate point (rq,0) of
the flow is prescribed, u(ry, 0) =uy>0.

In Equation (13), the first relation gives the flow
rate () per unit length (4z=1) associated with u,
and vice versa [Q = (Q (u,) ], and the second relation
specifies that the plasma has to be injected at some
nonvanishing radius r = r; >0 and extracted at some
finite radius r =7, < oo in a selfsimilar way. g(0)
represents the azimuthal dependence of similarity
solution to be derived.

In the momentum conservation equation [Egs.
(7) — (8)], (nondiagonal) shear stresses (1>0)
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and (diagonal) secondary viscosity stresses (7=
e u/3, ¢ <1 for rarefied mono-atomic systems) are
considered. The compressible plasma flow exhibits
a convective nonlinearity [Eq. (7)], and additional
nonlinearities through the conservation equations
for mass [Eq. (9)] and energy [Eq. (10)] in the

polytropic approximation (a=p,/o,’ is invariant).

éii;_=_7173[;+1 S 13u, 13w

ar yM23r R [32 3 36

o—_ 1 13 2

yM? r 20 R

S(ou)/or+oufr=0, (16)

p=¢, (u(3p/dr) = —yplOu/d3r+ulf]), (17)
where

';(;’9)0=i0., =0, l;(;, +0) =l;(;9 —O)Z 0,

nST=rn, (18)

u(r0)1,6-6=1, —0,<0<+0,, (19)

and

~ ":90~~ - ~ R

Q= j-(ggu)rdo, Q=0Q/oougre; u(r,0)i=r,
=g9(0)71%, —0,<0=+6,. (20)

In Egs. (14) — (20), the Hartmann (H), Mach (M),

and Reynolds (R) numbers, and the dimensionless
variables p, 0, i, g and T are defined by

H? = (o/u) (Bo )%= (o/u) (uo1/27)2, (21)
M2=ug®/(y pof0o) s R=uqyro/(1/00), (22); (23)

and

g=o0fgy, uw=uluy, .‘7:=9/!]0,

B F=rfry; Po=p(r9,0) #0,  (24)
00=0(rg;0) #0, ug=u(ry,0) +0,9,=g(0) +0.
It should be noted that u; and p, are not indepen-
dent for given values of M and R, and vice versa,
since. M?/R = (u/yry)ug/py. A suitable choice of
reference values for applications is, e. g.,

po=p(r0,0), 0p=0(ry,0),
u0=u(r030)3 !]0=9(0),

P=p/po>

(25)

since the flow values at a fixed point r, along the
central streamline 0 =0 are most likely those to be
known from experiments.

The designations of dimensionless variables by a
tilde is dispensed with in the following.

c*u
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The polytropic number y is a phenomenological
plasma parameter, except for quasi-adiabatic condi-
tions where y = ¢,/c,, °.

For mathematical convenience, the nonlinear
boundary-value problem in Egs. (7) — (13) is re-
formulated in terms of dimensionless variables (~ )
as:

L‘J+ : (1+8)9~ r°’i+i‘}~m =, (14)
r2 3\ R 3r | 3r r R r
18,1 (,Hf) 3 [aﬁ+f} : (15)
rz 26 3\ R /rd6 |3r r

II1. Similarity Solution

The continuity Eq. (16) indicates that the flow
density field o u is a selfsimilar function of r and 0,

o(r,0)u(r,0) =r~1£(6), (26)

where f(0) has been generated by integration with
respect to r. For the velocity field u, a similarity
ansatz is made in the form

u(r,0) =r""g(6) . (27)

It is seen by comparison of Egs. (26) and (27), that
the density field has the selfsimilar structure

o(r,0) =r""1£(0)/g(0) .
Hence,

p(r,0) =rr™=D[f(0)/9(0) ] (29)
by Eq. (17) for the selfsimilar pressure field. Sub-
stitution of Eqs. (27) — (28) into Eq. (15) yields

r@=D=1(flg)7=1d (f/g) /A0 = 3 (M?/R)
‘[6—(m—=1)(1+&)]r~™+2 dg/d6 . (30)

A selfsimilar solution exists by Eq. (30) if the power
m is specified as

m=(y-1)/(y+1),
—1Zm=Z 41 for 0Ly <o, (31)

According to Egs. (30) and (31), the differential
relation between f(0) and ¢g(0) is
M2

(28)

dg

d(fy 2 1+¢

dO(g)—37}R[3+l+yld0' (32)
Hence,

f 2 m 1+e¢ Uy

1 —[a+ 2y (3+1+:(,)g} . (33)

where a=a(y) is an integration constant. Insertion
of the Egs. (31) and (33) into the Egs. (27) — (29)
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leads to the intermediate result: and
u(r, 6) =r—(7—1)l(7+1)g(9), (34-) dgg + {4( Y4 )2 _H2Jg+ 7—1 R
) do? y+1 7+1
o(r,0) = ro=D/+=1]q . 2 o M 3+ Ha)g}l/y ; 2w 1+e
0 3 VRVT 14y at oy (3+ : )9]1/752 - (40)
(35) V R d;—(l_;
L B 2 M2 1+¢ — . r(3y+1)/(y+1) r = -—ZR,
=Gy +1)—1) y M2
p(r,0) =1 y a+ oV g (3+ H_y)g}. ] dr
(36) by substitution for u(r,0) and p(r,0) in accor-

Integration of Eq. (15) with respect to 6, and
elimination of the pressure field from Eq. (14)
yields the equations

V% u

M?

1 du u
p=2y"p 37 & (L+e) (5 + 5)+B(),
(37)
and
Su 1 (azu 1 Bu | wu 1 3 )
QuSr*R or? roar o2 T2 302)
B w1 df(n

R r y M2 dr (38)

Hence,
2 M2 1+¢ _ &

P= 27 p (3+ 1+~/)g’ @6+ 4 B(r), (39)

dance with Eqgs. 34), (36). The product —x=R
designates the separation invariant of Equation (40).
The r-dependent pressure constituent obtains by
integration as

B(r) =% (y+ 1) M2 r=2rlG+1) (41)

From the identity of Eqs. (36) and (39) it follows
that the similarity transformation does not permit a
homogeneous over-pressure !2, and that

a=%(y+1)M2%, x~R", %>0(p>0).
(42)
Equation (42) indicates that the integration constant

a=a(y) [Eq. (33)] and the separation constant
[Eq. (40)] are proportional.

According to the Egs. (40) and (42), and the conditions in Egs. (18) — (20), the function g¢(0) is

described by the nonlinear boundary-value problem:

d%g Y Vg r—1 2 My Ate) W, G MTER
do? +Hy+1) g+ T R [“+ 37 R B 1+;,) } A=y =0 (43)
where
g(0)o-19,=0, g(+0)=g(—-0); g(0)=1, —0,<0<+0,, (44) 5 (45)
and il
2 M2 14¢ ) .
0= / [aJ” 3 V'R <3+ 1+;'/)g}1/' 940 (46)

"00

are the conditions determining the integration [C,¢(0)] and separation (a~x) constants, and the flow

rate associated with the selfsimilar flow, respectively.

Equation (43) is readily integrated by separation of variables, which leads to the differential expression

o4 (o) =~ {sGE) -#o+ TRl
Hence,
() =~ (5 el )
TRl T
—2a° 1+y2y

2 e 1+e\ |17 , o M—*R
3 7R (3+ 1+y>9J g a}dg'

. . Z 5| o
Ja g [s{, 11 - 1)

[(a*+g)C 3y q*(U+30Ir]

(47)

[(a* +g) A+l _g*A+2)r] 4 g*2 11” [(a* 4 g)@+Nlr _g*(+nl]
/

by ordinary integrations, where C is an integration constant, and ¢* a parameter which is large in all cases

of interest,
2 M2
3 7R

a*za/

(3+

1+5>]0<R>1 (48)

1+y
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by Equation (42). Another integration gives an implicit, closed form solution for g(6) in terms of the
quadrature:

g(0) 0
[ agvpig) -+ [0, (49)
o) ]
where
- M—*R[2 M2 1+e\] & , y )2 2] 2
Plg)=C-a""; [y 2% (3+ 1_(_7”(1 g—[JI(”H) —H]g
y=1 pf2 M ([, 1+t '”7{ A+l _ g* (A +39)y 5
—2y+1R[3 /R(\3+1+y” Ly, [ +g) 09l —gxtei) (50)
—2(1* 1+9 [(a +g) A+2)/y —a (1+27)/7] _i_a*;-’ 11:)47 [(a*+g) @+p)/r _a*(l‘*l')/?]}

and “£ " sign for dg/d0=0.

In Eq. (49), 0 is an arbitrary reference angle, —0y = 6< 0, and the associated g(0) the remaining inte-
gration constant. Similarly, the integration constant C is related to the root g, for which P(g) = [dg/d@] b=i
=0, by

e JE I T T e
C=4 y+1 [3 "R (3+ 1+y)1“ g+ |4 (,y+l) —H|g
i 2 ,ME,( l+g‘J1/'/{ 1+3y)] *(1+3)/ _
s R[% vy R3T 1+.,,) 143, L@ +g) ol —ghUirinir] (51)
_ * A+29)fy _ % (1+2)/y *2,,,i A+p)y _ g*A+7)/
2a 1+2y[(a +g)rarHl g nir] +a [(a* +g) Al Y y]}

The general solution given in Eq. (49) represents a hyperelliptic integral 13 for any y #0, 1, ~.

A binomial expansion of the transcendental term in Eq. (43) leads to the semi-convergent expansions

for P(g) and C:

P =c-+ 5 Bead oot Gl -l
SRl R e k) [T e 3L CTNE)T ¢ et i<, 62)
and
T INS T PRNER
AR e ) e 3L ()T i< o
By combining Egs. (52), (53) and( 48), one obtains for P(g)/g? the expression (§+0)
= Gl gl b G -k - (5]
Srmen 30 0 S ) e o

The hyperelliptic integral in Eq. (49) can be eval-
uated by analytical methods. Thus, an analytical dis-
cussion of the physical pecularities of the compres-
sible, divergent plasma flow interacting with an in-
homogeneous magnetic field is feasible. This will be

demonstrated in the following for symmetrical out-
flows (diffuser) :

Equation (55) implies that gy, =g(%6,) =0, and
g(0) where g(0) =1 for =0.

Jmax =
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1V. Isothermal Plasma Flow

The hyperelliptic integral in Eq. (49) reduces
for the isothermal flow to (y=1):

g(6)
dg

[C—2xRg— (Q—H)g"

/]
—+ f 40 (56)
g(0) 0

in view of the Eqs. (49) and (50). Integration yields

[(Q-H?)g+xR][(xR)*+ (1-H?)C]™™
—sin[+ (1—H2)"0+®] (57)

where

@ = arcsin{[1 - H?)g(0) +%xR][ (% R)*?

+ (1-H>C]™") (58)

and

C=2xRy+(1-H)P[(#R)2+ (1-H?)C]™
= (1-H%§+#R (59)

by Equation (51). Application of the boundary con-
ditions in Eq. (44) to Eq. (57) and evaluation of
Eq. (57) for 0 =0(g=7) results in the relations:

xR=g[(1-H?)
-cos(1 — H2)":04]/[1 — cos(1 — H?) "2 6,],
g=g(0). (60)

Elimination of the constants @, C, g and xR by
means of Eqgs. (58) — (60) from Eq. (57) gives the

solution:

g0 =1- 1—cos(1—H?%'":0

1—cos(1—H?)'": 6, g(0). (61)

The associated (nondimensional) isothermal flow

fields are by Eqgs. (34) — (36):
cos (1—H?)"*@—cos (1—H?) " 6,

u(r,0) = 1—cos (1—H?) "2 6, g(0), (62)
1 (M2[3 R)
e(r,0) = r [1—cos(1—H?) "z 0,
*{3(1 — H?)cos(1 — H?)*: 0,
+ (74¢)[cos(1 —H?*)"0 (63)
—cos(1 —H?)"0y]}9(0),
p(r,0) = el

[1—cos (1—H?)"z 6,]
-{3(1 — H?)cos (1 — H?)" 0, (64)
+ (7+¢)[cos(1 —H?)"0—cos(1—H?)"0,]} g(0),
where

M?=ogus?/py, 7=1. (65)

H. E. Wilhelm

According to Egs. (45), (62), and (63), the flow
rate () is for y=1:

e B 9@ P
0= 3R | 1—cos(1—H?)'": 6, } : (7T+¢)0,

+2[(7+¢) —3(1— H?)]10,cos(1 — H?) " 0,

- 2 sin(1—H?)"2 6,
—3[(7T+¢) —-2(1-H?)] (1—H2) e

-cos(1 — H?)': 0, J‘ . (66)

The Egs. (62) — (66) are valid for H=1, and
may be rewritten in terms of hyperbolic functions
[cos(1 —H2)"0=ch(H2-1)"0,

sin(1 - H?)":0/(1 - H?)"
=sh(H2-1)"6/(H2-1)"].

By means of Bernoulli’s rule, one finds in the special
case, H=1:

w(n0) = (1- ;2)s0. (67
0(r,0) = 3% (60072 + (T+2)(1- 7% )|900),
(68)
p(0) = 3 [6072+ (T40) (1- 1 )]g00),
(69)
and
e

The Egs. (62), (67) indicate that the velocity
profile of the isothermal compressible flow varies
with increasing H, from a trigonometric (0<H < 1),
to a parabolic (H=1), and finally to a hyperbolic
(1<H < ~) structure. It is seen that the velocity
profiles become flatter with increasing Hartmann
number. Only a symmetrical solution exists, which is
unique.

In Egs. (56) — (64) and Egs. (66) — (70), g(0)
is given in terms of the reference value g(0) =1
[Eq. (45)] via the solution for g(0) in Equation
(61). In particular, if the special normalization
(0=0) in Eq. (25) is chosen, then one has simply
g(0) =1.

V. Polytropic Plasma Flow, 1 <y < ~

In the general case, 1 <y < o, the hyperelliptic
integral in Eq. (49) can be evaluated analytically for
large Reynolds numbers, R > 1, which are exclu-
sively of physical interest. A binomial expansion of
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Eq. (33) gives:

f 2 M? 1+¢ 1/
e 1 12
o }’+1 . 2 1/y [ e ;l*l
~< . ,CM) ,1+n§1(n )
|4 7 I+e ) 41" p—sn |
[3 y+1 <3+ 1+7> R

Sias sz)”" -1, R>1,

by Equation (42). It is seen that f(0) and g(0) are
equal, f(0) =g(0) for R > 1, since f(0) =g(0) =1
by Equation (45). Accordingly,

M2=[2/(y+1)]="', O<KM2<R, =>0.(72)

Equation (72) indicates that the Mach number M
has eigenvalue character, since the separation con-
stant % is an eigenvalue determined by the boundary
condition in Equation (44).

Accordingly, only solutions with positive eigen-
values, %2 >0, have a physical meaning (M = imagi-
nary for » < 0). In the same approximation,
Egs. (34) — (36) give for the (nondimensional)
plasma fields:

u(r,0) =r~0=0I0+1 g(§), (73)
o(r,0) =rt=DIG+D-1 (74)
p(r,0) =p(G=D/G+D=D; R>1. (75)

In the limit of large Reynolds numbers, the density
and pressure fields depend only on the radial (r)
but no longer on the transverse (0) coordinates, in
agreement with the so-called boundary-layer ap-

proximation .

In view of Eq. (71), Eq. (49) reduces to the el-
liptic integral [cf. Eq. (43)]:

g9(0)

dg
9 (6) {5_93_ i’ [4 <Wy-};l ) _Hg}gz_zinR J } ’
= iv.oj‘do (76)
where 0
e SN
C=C/2=0. (78)

The integration constant is positive,

C=(1/2) (dg/d0)3~ .4, =0,

LYy =
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since ¢(0 = £0;) =0 by Equation (44). Equation
(76) is rewritten in the form
e 9(9)
+v2 [d0- |

] g(a)

dg

[(=1) (4—g) (9—92) (g—g91% (™)

where
_ 17 Y \? 2
J1+9gatg3= — _(_)[4<},+1) —H}, (80)

% R
9192+ 9193 +9293=2/_(_) >0, (81)

719295=C=0. (82)

If § designates one of the roots (g,,9>,g3) of the
cubic in Eq. (76), then

= g 1 P A8 o ~o % R A
C=3+ 5 [4 <y+1) —H]g +2%%5. (83)

Accordingly, the roots of the trinomial are explicitly
in terms of §

9=9; 9=9-3
if g.=real,

9g=g+ >

g+29- (84)

=(lals Gh) - )

+
oo bl (5Tl
-8y -3 ot (L) -3 ]) ).
Equation (76) or Eq. (80) leads to different
types of outflow solutions as will be explained by a
simple physical argument. In differential form, Eq.
(76) can be written as

$(dg/d0)2+V (g) =0 (86)
where
Vig=—- 52 |[C-g°
17 y \2 2 2xRyg| =
—Q[‘L <y+1> _H}gt o |S0 (8D

is negative, since (dg/d0)> =0 for any —0, =<0
< +0,. Equation (86) may be interpreted as the
energy conservation equation for a fictitious particle
of mass m = 1, kinetic energy /2(dg/d0)?2, potential
energy V' (g), and total energy £ =0 (g 2 displace-
ment, 0 2 time). The locations of the minimum
(+) and maximum (—) of the potenial V' (g) are
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given by dV (g) /dg =0 as to
o 1] 2 O\ e TVQ6=—-1"1F(p,k), (92)
g = 9 [—Q ’4 (y+1) - 1 where
2 ol12_ 8 xR)‘/z} = e 5, 2 4 )'—’_ 2] %R | %
4"(;;())4(,,+1>—HJ] 3 0 b= log(o)+.@[4<;'+l & 9(0)+2Q |
g >g), if g(*)—real, (88) (93)
since . o 1 yo\2 ]
) R 2 _ ] 71— . g2l
2 (o) (12 (o Yot R3O g4 (0 )]
30| de2 Jg=gw 130 7+1 J (94)
_8 ‘ﬂR)”" 89)
3 Q ( The amplitude ¢(0) of the velocity field obtains by

Accordingly, the maximum of V(g) precedes the
minimum of V' (g) as shown in Figure 2. In the pos-
sible cases (1 —2), the fictitious particle starts at
the origin ¢=0 for 6 = — 0, and returns to origin
g=0 for 0= +6,, where the allowed path ¢(0) is
determined by the condition V' (g) <0 [Equation
(84)]. The case 3) requires negative x-values, i.e.
is physically not realizable (M = imaginary).

1) 1v

s

Ol g,

2) TV

N

/V A
3) IV
P N P
ﬁa QM

Fig. 2. Fictitious potential ¥V versus “particle position™ g for
the Cases 1, 2, 3 (qualitative).

1.Case: g, >0, g, 3 = Conjugate Complex

If g, is the complex conjugate of g5, then g; >0
since C =g, g»gs = 0. Evidently, it is g, = § and
Gs.5 =g [Eqgs. (84) — (85)]. The associated po-
tential curve V' (g) is shown in Figure 2.1. It is seen
that 7 (g) < 0 is satisfied for — o <g(0)Z g, .

Hence, pure outflows are restricted to the interval
0=90)=g1, 91=9=9(0). (90)
Equation (79) is reduced by means of the transfor-

mation [é = @=O,g(0) =9(0)]
9(0) = g(0) — 22[ (1 — cos p) /(1 +cos ¢) 1,
0=op<m, (91)

inversion of Eq. (92) and substitution of ¢ (0) into
Eq. (91) as:

52 [1—cen(VR20;k)]

9(6) = T 4en(V210;k)]

=g(0) — (95)
The separation constant (x) in this solution is de-
termined (implicitly) by the boundary condition in

Eq. (44), i.e., the transcendental equation

en(VR21710y; k) = [22-g(0)1/[#+g(0)].  (96)
The flow rate is in Case 1:
Q= 290[9‘(0) —;2]
(97)
where 15 @y =am (V2 7 0y; k). In Eqs. (90) — (97),

¢(0) is determined through the normalization, i.e.,
g(0) =1for6=0.

The flow type 1) exists, since 2xR/Q2=|g, 5[
+2Regs 5>0 (0=0) by Eq. (80), i.e., Eq. (72)
is satisfied. Since Regs, 3 <g; and g;=g(0)
=1(0=0), Case 1 requires Hartmann numbers H
below a critical value [see Eq. (80), 6 =0]

0< H2<[27/(»+1)]?
+2[(y-1)/(+1)]R(0).

If the roots gy, ¢,

(98)

and ¢y are all real, the flow
type 2 exists. The numbering of the roots is chosen
such that

912922 Gs- (99)

2.Case: g3=0g(0)>0, g1,:>0.

If g3=¢(0) >0, than gy, ,>0 is possible since
C=g,9295 = 0. The associated potential curve
V(g) is shown in Figure 2.2. Tt is V(g) = 0 for
— o~ <g(0)=< g;. Accordingly, pure outflows are
limited to the interval

O§9(0)§g3, 95=9(0). (100)
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Equation (79) is reduceil by means of the trans-

formation [0 =03=0, g(0) =¢(0)]

9(0) =gs—[g92—9g(0)]cos 2@, 0= < a2
(101)
to
TVR0=—-2"1F(p, k), (102)
where
A=1[g—g(0)1", (103)
B = (91—92)/[91“9(0)}- (104)

The amplitude ¢g(0) of the velocity field obtains by
inversion of Eq. (102) and substitution of ¢(0)
into Eq. (101) as:

g(0) =gs—[92—9(0)Jen2 (VR 10, k).

The eigenvalue » is determined by the boundary
condition in Eq. (44),

(105)

en?(VR20,,k) =[g2—g(0)1/g2 = 0.  (106)
The flow rate is in Case 2:
5 91—9(0)
0=20,9(0) —2-9 3¢
sn (Y2 260y; k)dn (V2 16,; k) e -
en (V2 1.0,; B) —E(po; K, (107)

where ¥ @y =am () 2720,,k). In Egs. (100) —
(107), g, and ¢, are functions of « defined by Eqs.
(80) — (81),

1 y \2 5
91+92+9(0) = — 4 M,‘_'H> —H—}, (108)
9192+ (91+92)9(0) =2x%R/2>0, (109)

where ¢(0) is given by the normalization, i.e.
g(0) =1 for0=0.

The flow type 2 satisfies Eq. (72), since %x>0
for g;.2,3>0 by Eq. (109). Since gy, ,<g;., and
g3=9(0) =1(0=0), Case 2 requires Hartmann
numbers H above a critical value [see Eq. (108),

6-0],
2y \2 y—1
<7+1) +25Ti
A comparison of Eq. (98) and (110) indicates
that the flow types 1) and 2) appear in adjacent

intervals of the Hartmann number H, 0 < H < H..,
and H. < H < ~, where

HE=(2y/y+1)2+2[(y-1)/(»+1)IR(0).

Thus, the similarity transformation leads to com-
pressible flow solutions for all possible Hartmann

R(0) <H>< ~. (110)
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numbers, 0 S H< >~ (0<R< >, 0<y< ). The
limiting solutions with vanishing small eigenvalues,
%20, have to be obtained numerically from Eq.
(49). since the expansion for large R breaks down
for x— 0.

In Fig. 2, the remaining case 3 has only a formal
mathematical meaning. Since g, —g(0) =1(0=0)
and ¢, 3<0 in case 3, the Egs. (80) and (81) can
be satisfied (simultaneously) only for <0, but not
for 2>0. Accordingly, the case 3 would imply
imaginary Mach numbers M [Eq. (72)], and is,
therefore, of no physical meaning. It is interesting
that for the incompressible flow solutions with nega-
tive x-values are considered to be of physical re-
levance %3, since for y = ~ a similarity transfor-
mation exists with a positive overpressure so that

p(r,0)>0 for x<0( 0 <0y, r=r,).

VI. Discussion

It is experimentally known that laminar, com-
pressible flows cannot be realized in diverging ducts
(diffusers, wind tunnels, nozzles) at arbitrary Mach
numbers M for a fixed duct angle 0,. With increas-
ing Reynolds number R, laminar outflows are ob-
served only for sufficiently small duct angles 0,
because of boundary-layer separation. In the case of
plasmas, laminar flows have been observed for large
dunct angles, 0 < 0, < 7, if the magnetic field Bs
is larger than a critical value. These observations
can be explained quantitatively by further inspec-
tion of the solutions derived under Case 1 and
Case 2.

1. Case: An infinite number of real eigenvalues
#>0 exists by Eq. (96) in Case 1, since

~1<ean(VR10,, k)< +1

is a periodic function of x [with period 4 K (k)
which varies with x, k =k (%) ] and

—1<(2=1)/(22+1)Z+1 for 0<x S co.

For extremely large eigenvalues, %7 > 1, one has
asymptotically

A= (2R/Q)Nx>1, #>1, (111)
k=27, >1, (112)

by Egs. (93) and (94). Equation (95) gives as so-
lution at large eigenvalues:

g(0) =g(0) — 22 [1—cn(VQ16,2-)]

atls >
Dea(y@i6,2-) > % > 1

(113)
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where
A=[4K©27"™|VR20,]s>1,

s=1,2,3, ..., o, #1t>1,

by Equation (96). It is seen that the solutions with
large eigenvalues, »/*> 1, are not only negative
(g<0) for sufficiently large 0 but also diverge
(e.g., |g =o at 0=0,/2). Obviously, they have
no physical meaning.

The cosine amplitude function in Eq. (96) has
zeroes at VQ210,=s K(k), s=1, 3, 5, ..., ~.
Accordingly, only the first, positive root, #; >0, of
Eq. (96) gives a positive solution, ¢(0) = 0, pro-
vided that the duct angle is below a critical value,

0,<0,°, 0,°=0,(x=0). (115)

(114)

where 0,° has to be determined numerically from
Eqs. (43) — (45) for a = 0. The numerical value of #,
has to be determined by iteration from Eq. (96) for
the given flow parameters R, H<H., and 0,<0".
Equation (95) gives the associated flow solution,
which is positive and unique.

According to Eqgs. (43) — (95), the flow exhibits

a fundamental invariance property. If R>1,
0<H<H., y>1, and 0<0,<0,° are varied, but

such that the combinations
2 2y \?
1H N (;'+1) }/R

g—i1 y+1
1 E(
741
(116)

R)" 0, L=""]
remain unchanged, then g(6/60,), and

e=[(y+1D/(r-11%, M= (y-1)"M (117)
are invariant. This means that the solution ¢(0)

depends only on the normalized angle 0/0, and the
parameters /; and I, .

2 ) 2 4 6 8 1.0
6/8,
Fig. 3. ¢(0/0,) fir I,=25-10*(x/180) and i) I,=0 and j)
I,=4-10-

H. E. Wilhelm

In Fig.3, ¢g(0/0,) is shown for the cases I, =
25110(/180) and I,=0, 4-10~%. In Fig. 4,
g(0/0,) is shown for the cases I; =50(t/180) and
I,=0, 4-107%. Tt is, e.g., I; =25 V/10(/180) for

/ a(8)
,// 'B>
2t \

1 It 1 1 1 ! L

Y \
-1.0 -.8 -.6 =4 =2 (o] W2 .4 6 8 1.0

6/6,
Fig. 4. g(0/6,) for I,=50 (-t/180) and i) I,=0 and j) I,=
4-10—1,

R=103, 0y=a/36, y=5/3, and I;=50(7/180)
for R=10% 6,==/180, y =5/3. Further, if y = 5/3,
it is I,=0 for H*/R=0+ (5/4)?/R>=0, and I,
=4-10"1 for H?/R=10"!'+[(5/4)%/R]=10"1.
The numerical values of the eigenvalues (%, ) and
the associated Mach numbers (M, M) are given for
the above values of /; and I, in Table 1.

Table I. Eigenvalues (%,, z) and Mach numbers (M, M) for
given parameters I, and I,.

1, I, x M % (y=5/3)M(y=5/3)
251/10(1/180) 0 0.3520 2.384 0.0880  2.920
257/10(2/180) 4-10—' 0.6680 1.730 0.1670  2.119
50 (1/180) 0 1.9064 1.024 0.4766  1.254
50 (2/180) 4-10~1 22332 0.946 0.5583  1.159

The Figs. 3 —4 indicate that in Case 1 (H<H,)
the velocity profiles become flatter with increasing
H. This effect of the magnetic field is, however,
small as long as H is noticeably below H.. If R is
increased, then solutions exist only for smaller
values of 0, since 0y <60,° by Equation (115).

2. Case: Equation (106) indicates that in general
more than one real eigenvalue, %>0, exists in
Case 2. Since cn(YQ2210,,k)=0 for V210,
—s K(k), s=1,3,5,..., o, a positive solution,
g(0)= 0, exists only for the first root % >0 of
Equation (106). The latter has no roots for
g><g(0). Since

(9:—9(0))/9:=0, and k*=1 for g,=g(0)
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and 1.0 N=10° 10* 10°10°
en2(V210,,1) =cosh™2(Y210,)==0 (8
if VYQ210,>1, A
the first root %, is given (in excellent approxima- ol
tion) by the relation g, (%) =g(0), i.e.
211 2 2 3
a="5 |glE- (2 )] - 2 e@}s@ >0,
V21,6,>1, (118) | -2f
by Egs. (108) and (109). In the same approxima- ) 1 ‘ ‘ ‘ . ‘ ‘
tion, the flow solution is by Egs. (105) and (106):-'¢ -8 -8 -4 -2 0 /06 2 4 & B 10
_ - [ cosh (el 1, ) rl Q > » — 5(a] 12, N = 103—108
g(0) =g(0) i cosn (Y2169 | | Vi 00111 Fig. 7. g(6/6,) for I, —-152(2410{.30)N , N = 103—10°, and
where (119) The invariance property of the flow is obvious
1)1 9y \2 | % from the Egs. (103) — (105): ¢(0/6,), z, and M
Ay = 2 |0 [Hg“ <v+,1> J ~34(0) | “>0 (120) are invariant with respect to variations of R > 1,

by Eqgs. (103) and (108). The approximations in
Egs. (118) — (119) are based on the restriction
V27,0, > 1 which is satisfied in many cases if 1,
and 0, are not too small, since Q~R>1. If
VQ7,0,<1, % has to be computed by iteration
from Equation (106). The associated eigensolution
is defined by the original Equation (105).

1.0 N=10° 10 ¢ i0®
( h )
| g(8) ‘
e A\
| NN
N\ \
‘] "r" 6F A \ \
I/ \ |l
4t \ \\
\
\
2} \|
|
0 8 6 4 2 0 = 4 5 5 1o
676,
Fig. 5. g(6/6,) for I,=5(7z/180) N**, N=10°—108, and I,=4.
1.0 N=10® o' 10° 10°
9(8) W
8}
.6F
&
2k
5 6 4 -2z 0 2z 4 & &5 o
678,
Fig. 6. g(0/6,) for I, = 5(x/180)N'?, N = 103—108, and
1,=20.

H>H., y>1, and 0<0y < 71, which leave I; and
I, [Eq. (116)] unchanged. Equation (118) indi-
cates that 2 and M [Eq. (117)] depend only on I,
in the limit V21,60, > 1.

In Figs.5, 6, and 7, ¢g(0/0,) is shown for I,
—5(2/180) N2, N =103 — 106, and I,=4, 20, 40.
In Figs. 8, 9, and 10, ¢(6/6,) is shown for I,
— (45/2) (2/180) N*2, N = 103 — 108, and I, — 4, 20,
40. It is, e.g., I;=5(1/180)N"* for R=N, 0,
=a/18, y=5/3; and I,= (45/2) (2/180)N"* for
R=N, 0,==a/4, y =5/3. Further, I, =4, 20, 40 im-
plies that H?/R==1, 5, 10 if y=5/3, since
(2y/y +1)%/R < 1. The numerical values of x,
x and M, M are given for I, =5 (/180) N2,
N=10%-10% and I,=5, 20, 40 in Table 2. [They
are practically the same for I; = (45/2) (/180) N
except in the case N =1023; see Equation (118).]

The Figs. 5 —7 and the Figs. 8 — 10 indicate that
in Case 2 (H>H.) the flatness of the velocity
profile increases and the thickness of the boundary
layer shrinks considerably with increasing I, or
H?/R. This effect is more pronounced at larger
values of I, . The flow solution is uniquc and exists
for all values of 0,, O <0,< .

Table 2. Eigenvalues (x,, z) and Mach numbers (M, M) for
given parameters I; and I, .

L/5 I x M #, M
(/180) (y=5/3)  (y=5/3)
102 5 3.0692 0.808 0.7673 0.989
10%2 20 18.9936 0.324  4.7484 0.397
10%/2 40 38.9936 0.226  9.7484 0.277
10° 5 3.0000 0.816 0.7500 1.000
10® 20 19.0000 0.324  4.7500 0.397
10® 40 39.0000 0.226  9.7500 0.277

(No changes for N>102)



Fig. 9. g(0/0,) for I,= (45/2) (/180) N'/*, N=10%—108, and
1,=20.

VII. Conclusiens

A closed form similarity solution is feasible for
the compressible Jeffery-Hamel outflow (diffuser) of
a plasma across an azimuthal magnetic field. The
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