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The generalized Bethe-Goldstone equation from the eS-theory is used to perform a calculation
in the harmonic oscillator model. It takes into account hole-hole diagrams and eliminates the
model-dependent particle energies. Both effects tend to increase the binding energy and to de-

crease the nuclear radius.

1. Introduction

So far perturbation theory has been used most
widely as an approach to the many-body problem
in nuclear physics, leading to the Goldstone series
for observables such as energy and RMS radii. An
alternative method, briefly denoted as eS-theory,
was introduced by Coester and Kiimmell which
start from a suitable ansatz for the many-body
wave function. The main advantage of this theory
which contains a classification in terms of n-body
correlations from the beginning is the possibility of
treating the expressions by algebraic means. A so-
lution of the ground state problem without de-
generacy was given by Kiimmel2. He described a
technique to extract n-body cluster functions from
the full wave function and discussed the resulting
equations in connection with the well known dia-
gramatic representations.

Here we want to apply Kiimmel’s generalized
Bethe-Goldstone (GBG) equation for correlated two-
body functions to the ground state of 160. The dif-
ferences in comparison with the Bethe-Goldstone
(BG) equation are investigated both theoretically
and by numerical calculations.

As a shell model (SM) approximation we use the
harmonic oscillator (HO) model although an exact
calculation should also involve the determination
of the single particle functions in a self-consistent
way. The problem of self-consistency in connection
with the GBG equation is studied separately in the
work of Kimmel and Zabolitzky 3.

2. The Generalized Bethe-Goldstone Equation

The A-particle bound state for a fermion system
can be written as!

A
|p> =exp[> Su]| D> (1)

n=1

* Thesis, Bochum 1971, abbreviated.
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if one only assumes that |y is orthogonal to the
SM determinant

A
&) = Ha:lo; = |10

which is used as a starting approximation. The

operators
Sn=(1/(r1)?) X
01...0n  Vi...Vn

><<Ql...gnlSn|V1...’Vn>a a, (2)

annihilate n holes (labeled by », u, ...) and create
n particles (labeled by o, o, ...) in the subspace of
non-occupied states. For n > 1 they describe n-par-
ticle correlations since they cannot be reduced to
product terms, or, in the language of graphes, they
are represented by “linked diagrams”.

Among the two alternative versions concerning
the 1-particle part we choose the one where S;=0
which is equivalent to the ““maximum overlap” con-
dition4 |{(p|®) |2 = max. Thus the role of the
proper correlations is exhibited and the equations
are simplified at the same time.

By inserting the ansatz (1) into the Schrodinger
equation

A A
[ST0)+3VE)—Ellw=0 @)

where 7'(7) are the kinetic energies and V (ij) the
two-body potentials one can derive coupled equa-
tions for the hole state functions {x|») and for
correlated n-particle functions. Restriction to 2-par-
ticle correlations leads to the GBG equation for the
correlated 2-particle functions

{rpag | po | vive) = (wraz|vive)

+ (xraz |Sa|vive),  (4)
which reads
[T,, + Ty + V(x122)] 1 22 | 92| v1 92>

+ [U(x1) + U (x2)] Cxr 22| v1ve) (5)
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We have used abbreviations for the projection ope-
rators

=32eoy<ea|, H=3%3|vwlvul, (6)
o0 v

which project onto the space of excited and oc-

cupied 2-particle states, respectively, and for the

Hartree-Fock (HF) potential
U(x1)<x1:c2]vlv2> :VC/V<,"C1|Ul1)1><LL'2[’V2> (7)
where .27, is the antisymmetrization operator with
respect to the »;.

The states |») have to diagonalize a HF matrix
with eigenvalues &,

v P = O’ & (8)

where the HF potential satisfies the self-consistency
condition

a|U|v) = Z(av'

LY

o] 99 (9)

for arbitrary states |o)>. Thus the problem of cor-
relations is connected with the determination of the
hole states |»> and the hole energies &,. The total
energy is given by
E=V<vlT|v>—i—§z v | Vs |vy'). (10)
The GBG equation is most easily discussed in con-
nection with the ordinary BG equation if it is re-
duced to an equation for S, alone by subtracting
the 1-particle equation. For excited states the
theory does not contain any prescription because
they never occur as individual states. We define,
however, a potential U’ such that the equation

[T+ U —¢,l|0>=0 (11)

yields an orthonormalized basis | ;) in the subspace
of excited states. U’ cannot be choosen to be zero
except for the special case of nuclear matter. Then
we find for Sy the equation

1
{0102| 82| v1v2) = P oy
“{—<o102|V|v1v2) — {o102|V giv1v2> (A)
— {o102| S LIV | vive) — {0102 |S2 [TV S2| v1w2)
(B)
+<f)1()g|[U1 +U2]S)|v 1)9/ (C)

which is represented graphically in Figure 1.
Formal solution of the integral equation by itera-

tion shows that part A alone produces the well

known ladder diagrams from Brueckner theory, so
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Fig. 1. Graphical representation of Eq. (12) for Ss.

that the BG equation is contained in the generalized
equation.

Part B, however, leads to down and upgoing lad-
ders not included therein. It describes intermediate
scattering into the Fermi sea, but whithout intro-
ducing hole amplitudes into the wave function.

A modified BG equation was also given by Ga-
litski 5 and Iwamoto 6 to take into account diagrams
of this kind. Their equation, however, does not
avoid hole amplitudes and leads to energy denomi-
nators which are no more the difference of particle
and hole energies.
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Fig. 2. Some energy diagrams summed up by solving the
GBG equation.

Figure 2 shows diagrams for the potential energy
which are summed up in a closed form by solving
the GBG equation. They are expressed here by the
Brueckner matrix (¢ containing all graphs with up-
going ladders.

Part C corrects for the fact that the particle
energies in the denominator contain potential ener-
gies for excited states. These are, of course, as arbi-
trary as is the choice of excited states, so they must
be compensated by the 1-particle potentials inserted
in particle lines. It can be seen from the diagrams C,
however, that matrix elements {»|U’| o> must van-
ish due to the orthogonality condition

Cuipz|Sz|vive) = 0.

This is not satisfied in general by model potentials
which are used to replace U and U’, but it may not
be crucial for the HO potential which is almost
diagonal.

3. Treatment in the Harmonic Oscillator Model

In order to study the influence of the new terms
we have performed a calculation for 160 in the HO
model following mainly the method of Kallio and
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Day 7. Self-consistency has been taken into account
approximately (a) by shifting the hole energies and
the diagonal matrix elements of U so that Eqs. (8)
and (9) were satisfied, and (b) by determining the
oscillator parameter 7« from the condition for non-
diagonal matrixelements

S| |Uhw)| vy — 2 <ov' | Vpa| »¥")|2 = min.
av v’ (13)

As usual the operators w2 and S have been re-
stricted to act only on the relative part of the
2-particle wave functions. This leads to a set of
integro-differential equations which may be coupled
for relative triplet states if the tensor force can
admix a component with a relative angular momen-
tum different from the original one. Note that the
projector /] introduces an additional coupling among
different center-of-mass (CM) states of the 2-particle
system.

The use of a shell model requires corrections con-
cerning the CM motion of the whole nucleus. For
the kinetic energy <(7'cy) and the sqare radius
(R%y> we have taken the exspectation values given
by the uncorrelated model functions and subtracted
them to obtain the binding energy BE and the
RMS radius. The Coulomb corrections for the bind-
ing energy are taken from Eden, Emery, and Sam-
panthar8.

4. Results and Discussion

We have solved numerically 3 versions of the
2-particle equation: (A) is the usual BG equation,
(B) includes hole-hole diagrams, and (C) is the full
GBG equation including also the compensation of
particle energies. The notation corresponds to the
one used above, version B contains the terms A and
B, ete. The calculations have been performed for the
Hamada-Johnston potential® which has a repulsive
hard core, and the Reid soft core potential10.

The relative wave functions (Fig. 3a) are not very
much altered by the additional terms taken into
account. In the figure their influence can be seen
only in the defect functions (Fig. 3b) which are the
difference of the correlated and the uncorrelated
functions. They exhibit stronger oscillation over the
hole range, particularly for (C), but the short-range
character of the correlations is conserved. As men-
tioned above the orthogonality <(vi»s|S2|v1v2> =0
cannot be satisfied completely for (C) because of the
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Fig. 3. Relative functions in the 338, state for the lowest CM
state calculated with the Hamada-Johnston potential.
(a) shows the correlated and uncorrelated wave functions
including the small | = 2 component. In (b) the defect
functions are drawn as they result from the BG and the
GBG equation.

model potential used. For (A) we find an overlap
of 10-3, whereas for (C) we obtain a value of 10-2,
which means that orthogonality is essentialy con-
served.

The behaviour of the wave functions is reflected
by the behaviour of the diagonal relative {-matrix
elements, t= Vo, which determine the energy.
Their absolute values as well as the potential energy
are increased if the same oscillator parameter is used
(Table 1). Both corrections with respect to the
original BG equation lead to greater binding energy.
The main effect of 0.8 to 0.9 MeV comes from the
lack of particle energies in our BGB equation. The
hole-hole diagrams summed up by solution of the
intermediate version (B) yield only 0.2 MeV. This
is true over the whole range of oscillator parameters
Rw for which we have calculated the energies
((Figs. 4a, b).
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Table 1. Energies and corrected binding energies for iw = 13 MeV.

Hamada-Johnston

Reid soft core

version A B C A B C

E/A — 1.96 — 2.16 — 3.08 — 3.19 —3.27 —4.07 MeV

BE/A 1.73 1.93 2.85 2.96 3.04 3.84 MeV

— 0- ) . :

§ It is well known1! that the RMS radius is mainly
- determined by the model parameters and is only
[ty

Hamada-Johnston
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Fig. 4. Energy per nucleon E/A for different versions of

the 2-particle equation as a function of the oscillator

parameter o without CM and Coulomb corrections. The
arrows mark the self-consistent values.

It is clear, however, that one should compare the
results not at a fixed value % w, but for those values
where the approximate self-consistency condition
(13) is satisfied (Table 2). Then it turns out that
the net effect becomes smaller because greater
values of 72w are needed to achieve self-consistency.
This points to the important réle the HF problem
is playing in the theory of correlations for finite
nuclei. Note that self-consistency is not satisfied for
a maximum of binding energy as function of hw.
This has no physical meaning as it is not connected
with a variational principle.

little decreased by short range correlations. We have
found that for a fixed oscillator parameter it is not
significantly affected by the small changes of the
wave functions if we pass from the BG to the BGB
equation. It is shifted to smaller values only due to
the self-consistency prescription for Aw.

The comparison of calculated values for energy
and radius with the experiment is still unsatis-
factory. Both the inclusion of hole-hole diagrams
and the elimination of the model particle energies
tend to increase the binding energy, but one is far
from reaching the experimental value of 7.98 MeV.
The best value 3 MeV is given by the Reid soft
core potential. While the energy is improved the
radius moves away from the experimental value
2.57 fm up to 2.27 fm.

From the investigation of phase shift equivalent
potentials12 it is known that the discrepancy be-
tween theory and experiment cannot be removed
by choosing other 2-particle potentials considered.
This is in agreement with our results. On the other
hand, we have seen that the effects considered here
are closely related to the self-consistency problem.
Therefore it seems reasonable to solve first the com-
plete Brueckner-Hartree-Fock problem for finite
nuclei before higher correlations are taken into
account.

The author should like to thank Professor Dr.
H. Kiimmel as well as Dr. K. H. Lihrmann and
Dr. J. G. Zabolitzky for many helpful discussions.

Table 2. Bindung energies and RMS radii at self-consistent values % w.

Hamada-Johnston

Reid soft core

version A B C
hw 14.1 14.6 15.6
BE/A 14 1.4 2.1
{r2yl/z 2.46 242 2.3¢

A B C

15.7 15.9 16.8 MeV
2.2 2.3 3.0 MeV
2.35 2.33 2.27 fm
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