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The generalized Bethe-Goldstone equation from the es-tlieory is used to perform a calculation 
in the harmonic oscillator model. It takes into account hole-hole diagrams and eliminates the 
model-dependent particle energies. Both effects tend to increase the binding energy and to de­
crease the nuclear radius.

1. Introduction
So far perturbation theory has been used most 

widely as an approach to the many-body problem 
in nuclear physics, leading to the Goldstone series 
for observables such as energy and RMS radii. An 
alternative method, briefly denoted as es-theory, 
was introduced by Coester and Kümmel1 which 
start from a suitable ansatz for the many-body 
wave function. The main advantage of this theory 
which contains a classification in terms of n-body 
correlations from the beginning is the possibility of 
treating the expressions by algebraic means. A so­
lution of the ground state problem without de­
generacy was given by Kümmel2. He described a 
technique to extract n-body cluster functions from 
the full wave function and discussed the resulting 
equations in connection with the well known dia- 
gramatic representations.

Here Ave want to apply Kümmel's generalized 
Bethe-Goldstone (GBG) equation for correlated two- 
body functions to the ground state of 160. The dif­
ferences in comparison with the Bethe-Goldstone 
(BG) equation are investigated both theoretically 
and by numerical calculations.

As a shell model (SM) approximation we use the 
harmonic oscillator (HO) model although an exact 
calculation should also involve the determination 
of the single particle functions in a self-consistent 
way. The problem of self-consistency in connection 
with the GBG equation is studied separately in the 
work of Kümmel and Zabolitzky3.

2. The Generalized Bethe-Goldstone Equation
The A-particle bound state for a fermion system 

can be written as1

|v> =  e x p [ |^ ] |0 >  (1)
n — 1

* Thesis, Bochum 1971, abbreviated.
Reprint requests to: Institut für Theoretische Physik II, 
Ruhr-Universität-Bochum, D-4630 Bochum, Universi­
tätsstraße 150, POB 2148.

if one only assumes that [ xp} is orthogonal to the 
SM determinant

\^> =  h < \0 > = \v i...V A >
Vi

which is used as a starting approximation. The 
operators

Sn =  (ll(n\)2) I  2  <  • • • <

X <gi... Qn I Sn I VI ... Vn} an ... aVn (2)
annihilate n holes (labeled by v, /u, ...) and create 
n particles (labeled by q, a, ...) in the subspace of 
non-occupied states. For n >  1 they describe n-par- 
ticle correlations since they cannot be reduced to 
product terms, or, in the language of graphes, they 
are represented by "linked diagrams".

Among the two alternative versions concerning 
the 1-particle part we choose the one where &i =  0 
which is equivalent to the "maximum overlap" con­
dition4 | (xp | 0 )  |2 =  max. Thus the role of the 
proper correlations is exhibited and the equations 
are simplified at the same time.

By inserting the ansatz (1) into the Schrödinger 
equation

[1  T (i) +  I  V(ij) -  E]\xp} =  0 (3)
i i<j

where T (i) are the kinetic energies and V(ij) the 
two-body potentials one can derive coupled equa­
tions for the hole state functions (x | v) and for 
correlated n-particle functions. Restriction to 2-par- 
ticle correlations leads to the GBG equation for the 
correlated 2-particle functions

(xi x2 | xp2 | vi v2y =  <xi x21 vi v2y
+  (x1x2\S2\v1v2y , (4)

which reads 
[TX1 +  TX2 +  V (Xl x2)] (x, x2\xp2\ n  *2>

+  [U{x i) +  U {x2)](x1x2\v1v2y (o)
— {eVl +  e,,2) (x\ x2\xp2\ n  v2y 
=  O i x21 [1 — Q] V xp21 n  v2y
— <xi x21 s 2 n  v xp21 vi v2y .



We have used abbreviations for the projection ope­
rators

G =  77 =  1 2 1 ^ X ^ 1 .  (6)ga v n
which project onto the space of excited and oc­
cupied 2-particle states, respectively, and for the 
Hartree-Fock (HF) potential

U(xi) (xxx2 | vi v2> =  I U I v{}(x2\v2y (7)

where s /v is the antisymmetrization operator with 
respect to the n.

The states | v) have to diagonalize a HF matrix 
with eigenvalues ev

<?\T\v,y +  (v \U \v 'y> =  d„ 'e , (8)

w here the HF potential satisfies the self-consistency 
condition

<a |C /|v) =  2<av, |F ^ 2|v />  (9)
v'

for arbitrary states | a). Thus the problem of cor­
relations is connected with the determination of the 
hole states | v) and the hole energies ev. The total 
energy is given by

e  =  I < v \ r \ vy +  ■ (io>v v v'
The GBG equation is most easily discussed in con­
nection with the ordinary BG equation if it is re­
duced to an equation for S2 alone by subtracting 
the 1-particle equation. For excited states the 
theory does not contain any prescription because 
they never occur as individual states. We define, 
however, a potential xj' such that the equation

[ T + U ' - e ei] \ Qi> =  0 (11)

yields an orthonormalized basis | in the subspace 
of excited states. xj' cannot be choosen to be zero 
except for the special case of nuclear matter. Then 
we find for S2 the equation

<QlQ*\S2\viVt>= _  _ ---  (12)

' {— <ei q2\V\vi v2) — <{?l 02 | VS2 | vi v2y (A)
— (Q\Q2\ s 2n v \  vi v2y — (q iq2\ s 2i t v  s 2\viv2y

(B)
+  <01Q2 I [Ui' +  u 2'] S21 n  r2>} (C)

which is represented graphically in Figure 1.
Formal solution of the integral equation by itera­

tion shows that part A alone produces the well 
known ladder diagrams from Brueckner theory, so

Fig. 1. Graphical representation of Eq. (12) for S2.

that the BG equation is contained in the generalized 
equation.

Part B, however, leads to down and upgoing lad­
ders not included therein. I t  describes intermediate 
scattering into the Fermi sea, but whithout intro­
ducing hole amplitudes into the wave function.

A modified BG equation was also given by Ga- 
litski5 and Iwamoto 6 to take into account diagrams 
of this kind. Their equation, however, does not 
avoid hole amplitudes and leads to energy denomi­
nators which are no more the difference of particle 
and hole energies.

O—O

Fig. 2. Some energy diagrams summed up by solving the 
GBG equation.

Figure 2 shows diagrams for the potential energy 
which are summed up in a closed form by solving 
the GBG equation. They are expressed here by the 
Brueckner matrix g  containing all graphs with up- 
going ladders.

Part C corrects for the fact that the particle 
energies in the denominator contain potential ener­
gies for excited states. These are, of course, as arbi­
trary as is the choice of excited states, so they must 
be compensated by the 1 -particle potentials inserted 
in particle lines. It can be seen from the diagrams C, 
however, that matrix elements (v | u ' | 0) must van­
ish due to the orthogonality condition

<^1^21 $21 viv2y =  0.

This is not satisfied in general by model potentials 
which are used to replace u  and u ' , but it may not 
be crucial for the HO potential which is almost 
diagonal.

3. Treatment in the Harmonic Oscillator Model

In order to study the influence of the new terms 
we have performed a calculation for 160  in the HO 
model following mainly the method of Kallio and



Day7. Self-consistency has been taken into account 
approximately (a) by shifting the hole energies and 
the diagonal matrix elements of U so that Eqs. (8) 
and (9) were satisfied, and (b) by determining the 
oscillator parameter h co from the condition for non- 
diagonal matiixelements
2  | <a | U(hco) | — 2  <av' | Vip2 \ vv'}\2 =  m in.

(13)

As usual the operators xp2 and S2 have been re­
stricted to act only on the relative part of the 
2-particle wave functions. This leads to a set of 
integro-differential equations which may be coupled 
for relative triplet states if the tensor force can 
admix a component with a relative angular momen­
tum different from the original one. Note that the 
projector//introduces an additional coupling among 
different center-of-mass (CM) states of the 2-particle 
system.

The use of a shell model requires corrections con­
cerning the CM motion of the whole nucleus. For 
the kinetic energy <Tcm) and the sqare radius 
</^cm> we have taken the exspectation values given 
by the uncorrelated model functions and subtracted 
them to obtain the binding energy BE and the 
RMS radius. The Coulomb corrections for the bind­
ing energy are taken from Eden, Emery, and Sam- 
panthar8.

4. Results and Discussion

We have solved numerically 3 versions of the 
2-particle equation: (A) is the usual BG equation, 
(B) includes hole-hole diagrams, and (C) is the full 
GBG equation including also the compensation of 
particle energies. The notation corresponds to the 
one used above, version B contains the terms A and 
B, etc. The calculations have been performed for the 
Hamada-Johnston potential9 which has a repulsive 
hard core, and the Reid soft core potential10.

The relative wave functions (Fig. 3a) are not very 
much altered by the additional terms taken into 
account. In the figure their influence can be seen 
only in the defect functions (Fig. 3b) which are the 
difference of the correlated and the uncorrelated 
functions. They exhibit stronger oscillation over the 
hole range, particularly for (C), but the short-range 
character of the correlations is conserved. As men­
tioned above the orthogonality <vxv21 S21 i'iv2y =  0 
cannot be satisfied completely for (C) because of the

Fig. 3. Relative functions in the 3Si state for the lowest CM
state calculated with the Hamada-Johnston potential, 

(a) shows the correlated and uncorrelated wave functions 
including the small 1 — 2 component. In (b) the defect 
functions are drawn as they result from the BG and the 

GBG equation.

model potential used. For (A) we find an overlap 
of 10-3, whereas for (C) we obtain a value of 10-2, 
which means that orthogonality is essentialy con­
served.

The behaviour of the wave functions is reflected 
by the behaviour of the diagonal relative ^-matrix 
elements, t —Vxp2, which determine the energy. 
Their absolute values as well as the potential energy 
are increased if the same oscillator parameter is used 
(Table 1). Both corrections with respect to the 
original BG equation lead to greater binding energy. 
The main effect of 0.8 to 0.9 MeV comes from the 
lack of particle energies in our BGB equation. The 
hole-hole diagrams summed up by solution of the 
intermediate version (B) yield only 0.2 MeV. This 
is true over the whole range of oscillator parameters 
Hco for which we have calculated the energies 
((Figs. 4a, b).



Table 1. Energies and corrected binding energies for ha> =  13 MeV.

Hamada - Johnston Reid soft core
version A B C A B C
E/A -  1.96 -  2.16 -  3.08 -  3.19 - 3.27 -  4.07 MeV
BE/A 1.73 1.93 2.85 2.96 3.04 3.84 MeV

Fig. 4. Energy per nucleon E/A for different versions of 
the 2-particle equation as a function of the oscillator 
parameter hco without CM and Coulomb corrections. The 

arrows mark the self-consistent values.

I t is clear, however, that one should compare the 
results not at a fixed value hco, but for those values 
where the approximate self-consistency condition 
(13) is satisfied (Table 2). Then it turns out that 
the net effect becomes smaller because greater 
values of hco are needed to achieve self-consistency. 
This points to the important role the HF problem 
is playing in the theory of correlations for finite 
nuclei. Note that self-consistency is not satisfied for 
a maximum of binding energy as function of hco. 
This has no physical meaning as it is not connected 
with a variational principle.

I t is well known11 that the RMS radius is mainly 
determined by the model parameters and is only 
little decreased by short range correlations. We have 
found that for a fixed oscillator parameter it is not 
significantly affected by the small changes of the 
wave functions if we pass from the BG to the BGB 
equation. I t is shifted to smaller values only due to 
the self-consistency prescription for hco.

The comparison of calculated values for energy 
and radius with the experiment is still unsatis­
factory. Both the inclusion of hole-hole diagrams 
and the elimination of the model particle energies 
tend to increase the binding energy, but one is far 
from reaching the experimental value of 7.98 MeV. 
The best value 3 MeV is given by the Reid soft 
core potential. While the energy is improved the 
radius moves away from the experimental value 
2.57 fm up to 2.27 fm.

From the investigation of phase shift equivalent 
potentials12 it is known that the discrepancy be­
tween theory and experiment cannot be removed 
by choosing other 2-particle potentials considered. 
This is in agreement with our results. On the other 
hand, we have seen that the effects considered here 
are closely related to the self-consistency problem. 
Therefore it seems reasonable to solve first the com­
plete Brueckner-Hartree-Fock problem for finite 
nuclei before higher correlations are taken into 
account.

The author should like to thank Professor Dr. 
H. Kümmel as well as Dr. K. H. Lührmann and 
Dr. J. G. Zabolitzky for many helpful discussions.

Table 2. Bindung energies and RMS radii at self-consistent values hco.

Hamada-Johnston Reid soft core

version A B C A B C
Hco 14.1 14.6 15.6 15.7 15.9 16.8 MeV
BE/A 1.4 1.4 2.1 2.2 2.3 3.0 MeV
<r2>i/2 2.46 2.42 2.33 2.35 2.33 2.27 fm
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