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A generalized master equation is derived to describe intramolecular rearrangement processes. 
It is an inhomogeneous equation, including m e m o r y effects. T h e derivation is based on the Liouvi l le 
space formalism. Because chemically relevant information is contained in the o f f -d iagonal 
elements o f the density matrix , a non-diagonal coarse-graining pro jec tor is used. All necessary 
assumptions are stated explicit ly. B y making further approx imat ions , the master equat i on can 
be reduced to an inhomogeneous von N e u m a n n equation with an ef fect ive Liouvi l le o p e r a t o r the 
imaginary part o f which is responsible for relaxation-like coarse-grained solutions. All neglected 
terms are given in closed form. The character o f the solutions o f the master equat ion is discussed 
in " coord inate - f r ee " manner, i.e. without referring to the underlying Hilbert space. 

1. Introduction 

It is a question of fundamental importance for 
chemical reaction kinetics, whether or not an isolated 
system of molecular dimensions can undergo — 
though in a somewhat restricted sense — an irrever-
sible process. The theory by R I C E , RAMSPERGER, 
K A S S E L and MARCUS ( R R K M ) 1 - 4 describes a uni-
molecular reaction as a consequence of two inter-
fering mechanisms, an "outer" and an "inner" one. 
By a strong external collision energy is provided 
to the molecule. The redistribution of this energy 
between the inner degrees of freedom then leads to 
unimolecular reaction. This "inner" mechanism of 
energy randomization is specified by the assumption 
that the ensemble of reacting molecules is micro-
canonical with respect to the inner energy. At this 
very point an intramolecular relaxation process is 
implied with a relaxation time short compared 
with the time between two subsequent external 
collisions. The succes of the RRKM-theory confirms 
the picture of two mechanisms. Because these time 
scales are so different, one would expect that a 
model without an explicit external mechanism 
should still be of chemical importance. The best-
known example for a chemical process determined 
by an inner mechanism is the high pressure rate of 
a unimolecular gas phase reaction. 

Master equations on a heuristic basis have been 
used previously in describing intramolecular pro-
cesses, but they were a phenomenological tool 
only5 '6 . Recently this procedure was very much 
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refined through application of Markov chain tech-
niques7. For the first time, HOFACKER8-10 gave a 
"derivation" of a relaxation equation starting with 
the von Neumann equation and connecting the 
various terms to microscopic quantities. 

The standard technique for the derivation of a 
master equation is presently the projection operator 
method in Liouville space, introduced by Z W A N -
Z I G 1 1 - 1 2 . K E I Z E R 1 3 applied it to the problem of 
relaxation of inner degrees of freedom; but this 
theory is based essentially on an "outer" mechanism 
and is valid only for a projection operator on the 
diagonal elements of the density operator. Every 
chemical reaction however, even a simple one as an 
isomerization, is connected with changing positions 
of the nuclei involved. Therefore relevant informa-
tion is contained in the non-diagonal matrix ele-
ments of the density operator (if the otherwise 
practical representation of stationary states is 
used10). 

It is the aim of this paper to derive a generalized 
master equation for intramolecular relaxation 
processes, i.e. an equation including memory effects. 
By using the above mentioned techniques with a 
non-diagonal projection operator, chemical proces-
ses are included. The underlying assumptions are 
stated clearly, as well as the additional approxima-
tions necessary to reduce the generalized master 
equation to the form given by Hofacker. The 
neglected terms are given explicitly to improve this 
first approximation. 

In Section 2 the Liouville space formalism is re-
viewed briefly insofar as necessary for the theory 
developed here. The connection between coarse-
graining and irreversibility leads to the definition 



of a non-diagonal projection operator in Section 3. 
In Section 4 the generalized master equation and 
the relaxation equation are derived using resolvent 
techniques. Section 5 gives a short discussion of the 
solution of the relaxation equation. 

2. Liouville Space Formalism 

Quantum statistics describes the state of a system 
by a density matrix W which is an operator acting 
in the usual Hilbert space § of quantum mechanics. 
In dynamical problems, one considers operations 
mapping the manifold of density matrices onto 
itself. Also the so-called coarse-graining can be 
viewed as an operation on density matrices. So one 
is led naturally to study operations on a certain set 
of operators of the Hilbert space £). Things would 
be much easier, if this set were a Hilbert space itself. 

Therefore, one associates with HQ the set 2 of all 
operators (more exactly: with finite trace), mapping 
§ onto itself, and provides this set 2 with a scalar 
product by 

(A S| B) : = T r ( ^ t ^ ) for all A, Be Q . (1) 

Elements of 2 will be characterized by capital let-
ters. One shows easily that the above defined scalar 
product fulfils the usual axioms14. By this proce-
dure, 2 becomes a Hilbert space, the so-called 
Liouville space12. The expectation value of an 
operator A in an ensemble described by an density 
matrix W is simply given by 

<A>w=TT(WA) = (W\\A). (2) 

The scalar product implies a norm in 2 as usual: 

IIA I : = y i A f A ) . (3) 

The equation of motion for elements of the Liouville 
space is the von Neumann equation: 

i~W = . (4) 

It is formally equivalent to the Schrödinger equa-
tion. The Liouville operator ££ is defined by 

&A := [H, A] for all Ae 2 (5) 

where H is the Hamilton operator of the system. 
Operators acting on elements of the Liouville space 
will be characterized by script letters. 

The von Neumann equation is solved by 
W(t) = <%{t) l f (0 ) (6) 
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with the unitary operator 

<%{t) = e x p ( - i&t). (7) 

As is well known, its action on any element A of 2 
is connected with the Hamiltonian by 

W{t)A=e-iHtAeiHK (8) 

The connection between H and leads to 

Theorem 1: 

If H is hermitian in then ££ is hermitian in 2. 

Proof: {A\&B) = Tv{A^HB- A^BH) 
= Tr ([77, ^4]t B) = A\ B), 

whence follows: = . All eigenvalues of are 
therefore real. The hermitian adjoint operator to an 
operator 0 will be denoted by 

In the following, the ad join ting operator 
definded by 

F A : = A i for all e 2 (9) 

will be useful. is an antilinear operator14 and has 
the properties 

= ( i 0 ) 

= (11) 

$ denotes the identity operator on 2. Equation (11) 
is the minimal polynomial of the operator , there-
fore its eigenvalues are £i = 1 and — — 1. The 
corresponding eigenmatrices are hermitian and 
antihermitian respectively. This can be used in 
proving the following theorem. 

Theorem 2: 

To every eigenvalue 2 + 0 of ££ with correspond-
ing eigenmatrix W there corresponds an eigenvalue 
— X with eigenmatrix W t. Hermitian and anti-
hermitian eigenmatrices correspond to the eigen-
value X = 0. 

Proof: For all A e 2 one has 

F £A =f[H,A] = 
= A^H - HAi = - [H, /It] = - sezr A 

or stated generally: 

+ = (12) 

Together with W = X W, one obtains 

jSf TFt = - = - X IFt (13) 

which is the first proposition. Using W = e W with £ = -j- 1 the second part of the theorem 



follows from 
saw = w = r se w - - se3- w = - lew. 

(14) 

3. Coarse-graining and Irreversibility 

Irreversible equations lika a master equation are 
obtained from the reversible von Neumann equation 
by constraining to that information which can be 
controlled by macroscopic observations 15>16. j n 

analogy to classical statistical mechanics one con-
siders only those quantities which are averaged over 
energetically adjacent states. The Hamilton opera-
tor H is divided into an unperturbed part HQ and 
a perturbation V 9: 

H = H0+V. (15) 

This implies a corresponding separation of the 
Liouville operator 

se = + sex (16) 
with 

S£\A = [V,A]. (17) 

The eigenstates | a) of the unperturbed Hamilton 
operator Ho: 

HQ I a ) = E a | a) (18) 

are collected in mutually orthogonal subspaces 
according to their energy. To this end the energy 
axis is divided into intervals AE\, AE%, ..., AEa, 
. . . , AEf,, ••• • For every cell of the phase space a 
projector is defined: 

Ra=Z |«><«|. (19) 
a ea 

Here, cue a is an abreviation for E^GAEa- The 
macroscopic state belonging to the density matrix 
W is described by 

W=2cawa (20) 

a 

with the following definitions 
ca = Tr(WRa), (21) 

Wa = Rai9a , (22) 

and ga = Tr (i?a) . (23) 

In the same way, a correspondence is established 
between an observable A and the macroscopic 
observable A by: 

Ä=^AaRa (24) 

where 
Aa = Tv(WaA)= 2<a|^|a) /gr a . (25) 

txea 

Aa is the expectation value averaged over the states 
a ea . For the expectation value of Ä in an ensemble 
W one gets: 

<Ä)w = Tr (W Ä) = J c« A * • (26) 
a 

The derivation of a master equation could be 
simplified a lot by regarding the coarse-graining as 
operation in Liouville space11-16: 

W = 9 w = 2 Tr (•W Ra) Rai9a • (27) 
a 

Q> is a projector onto that subspace of 2 which 
contains the macroscopically relevant information. 

It has already been mentioned that the usual 
derivations of a master equation15 '16 are not 
applicable to chemical problems. There are three 
essential differences in the case of an intramolecular 
rearrangement process 9 : 
(I) The system under consideration has a finite 

number of degrees of freedom; 
(II) Non-diagonal elements of the density matrix 

contain relevant information; 
(III) The density matrix at time t = 0 does not 

commute with the unperturbed Hamiltonian 
H 0 . 

Because of (I), the master equation to be derived 
is only valid on a certain time scale (cf. the detailed 
argumentation in 9). (Il l ) gives rise to a somewhat 
more complicated derivation than usual12 '16. (II) 
can be handled by the introduction of a new coarse-
graining projector 3P. Consider the following set of 
elements of S: 

P . » = ( 0 . 0 » ) - 1 / a 2 5 > > < j S | . (28) 
a ea ß eb 

The following equations turn out to be very useful: 

P a b = P b a ^ , (29) 

P a b P a ' ö ' = d a ' ö P a b ' , ( 3 0 ) 

Tr Pat) = dab , (31) 
(Pab\\Pa'b') = daa'dbb'. (32) 

Equations (29) —(32) can easily be proved. 
The set {Pab} consists of orthonormal elements17. 

The new coarse-graining operator & is given by 

^ : = ^ T r ( P a J A ) P a b 
a.b 

= 2 1 1 Pab)(Pab\\A) f o r a l l A e Z . ( 3 3 ) 
a.b 



By an obvious extension of Dirac's formalism, For operators A which are diagonal in the {|a>}-re-
Eq. (33) reads: 

a,b 
(34) 

Theorem 3: 

The operator defined by Eq. (34) is a pro-
jector14, i.e. 

a) = & , (35) 

b) = (36) 

Proof: a) = 0> ̂ \\Pab) (Pab\ 
a,b 

= 2 2WPcd)(Pcd\Pab){Pab\\ 
a,b c,d 

= 2 2\\Pcd)dacdbd(Pab\\=^. 
a,b c,d 

b) (A\9>B) = 2(A\\Pab)(Pab\\B) 
a,b 

= (PaftH B) 
a,b 

= (2Pab(Pab\\A) 1 B) 
a,b 

= (0>A\\ B). 

The coarse-graining introduced above is completely 
equivalent to that used by HOFACKER9. There, the 
coarse-graining of the perturbation V e.g. is carried 
out by 

a,b aea 
ßeb 

(37) 

with 

Vab=V(Ea,Eb) = (gagb)^2<« \V\ß>- (38) 
aea 
ßeb 

Taking into account that 

(Pab\\ V) = (gagb)-il*Vab 

one recognizes immediately 

(39) 

(40) 

presentation one has 

(Pab\\A) = ( g a g b ) - i l * Z < < W 
aea 
ßeb 

= gaT1 dab 2 < « | ^ | a > . 
aea 

For A = HQ , this yields: 

with 
Ea=2E«l9a-

(43) 

(44) 

(45) 

Two assumptions will be stated now which under-
lie the derivation of the master equation given in 
the next section: 

( A l ) 

This equation holds only approximately; both of 
its sides are calculated separately to estimate the 
error. Here use is made of the identity 

0>\A,0>E\ = \&A,0tE\ (46) 

which can be proved using Eqs. (29) —(32): 

0>\A,0>B\ = 2 lLPab(Pab\\[A, Pa- b') (Pa' b'\\B) 
a,b a',b' 

= 2 Pab{(Pac\\ A) (Pcb || B) - (Pac|| B) (Pcb 1 . 4 ) } 
a,b,c 

= 2 2(da'bPab'-dab'Pa'b)(Pab\\A)(Pa>b'lB) 
a,b a',b' 

= [0>A,0>B]. (47) 

Definition (30) unifies the treatment of observables 
and density operators [cf. Eqs. (20), (24)]. The ori-
ginal coarse-graining projector Q) can be retained 
through restriction of SP to diagonal elements which (E a — Eb) 2 (a 

Taking into account Eqs. (38 ) - (40 ) and (43) - (45 ) 
and putting A — Ho, one obtaines: 

^ Jg?o & B = 2 Pa b (Pub II B) (Ea - Eb). (48) 
a,b 

On the other side of relation (Al ) , one has 

0>&OB = 2P^(Pab\[Ho,B}). (49) a,b 

To arrive at Eq. (Al ) , the following equation 
must hold for every B e 2 : 

(Pab\\B)(Ea-Eb) ~ (Pab\\[Ho,B}). ( 50 ) 

This is equivalent to: 

is allowed for macroscopic observables A : 

(Pab\\A) = Tv(PabiA) = 0 for a±b (41) 

and 
Paa )(Paa\\A). (42) 

aea 
ß(b 

aea 
ßeb (51) 

If the respective coarse-graining intervals AEa and 
AEb are small enough and the number of states 
within them, i.e. ga and gb, are large enough, and 
if there are no correlations between E^ — Eß and 



<(oc | A | ßy — which seems reasonable for all non-
pathological A e 2 —, then Eq. (51) may be a good 
approximation and relation (A l ) should hold. 

The second essential assumption concerns the 
initial state W(t = 0): 

SPW(0) = IF(0). (A2) 

To justify this assumption, consider the following 
relation among the relevant time scales10: 

Eät1 <Tm<Tr<TtI. (52) 

The symbols have the following meaning: E~\ 
atomic time, rm measuring time available for the 
preparation of W (0), t r chemical relaxation time, 
Ttr translational time. 

The width of the coarse-graining intervals AEa 

has been chosen as to meet the constraint9 

AEa < AEcg T-1 . (53) 

According to Eq. (52) one has a fortiori: 

AEeg < T"1. (54) 

Therefore, the coarse-graining intervals AEa can 
never be resolved by an initial measurement with 
an uncertainty r ^ , i.e. no measurement can 
distinguish SPW(0) from JF(0). Relation (A2) cor-
responds to the random phases approximation of 
statistical mechanics15, more exactfy to the as-
sumption of a macroscopic initial state16. If one 
defines 

SL\=£-SP, (55) 

SI is also a projector and relation (A 2) may be 
written as 

J2JF(0) = 0 . (56) 

The projector SL measures the fluctuations around 
the average of the different cells of phase space. As 
an example, take the expectation value of an ob-
servable A in the state SL W: 

(£WjA) = (IT || A) - (SP WI SP A) 

— (Ayw — ( Ä y w • (57) 

The abreviations Ä = SPA and & = SP S£ SP will be 
used subsequently [cf. Eq. (20) and (24)]. 

4. Derivation of a Master Equation 

As a starting point for the derivation of a master 
equation for an intramolecular rearrangement re-
action the damping form of the von Neumann equa-

tion will be used8 - 1 0 . The operator equivalent of 
Eq. (4) is 

- = - iS?W(t) (58) 

with the initial condition 

%(0) = £ . (59) 

The Laplace transform of Eq. (58) is 

z&(z) — g =—%&&(&). (60) 
Here, 

# ( z ) = l /(z + »J2P) (61) 

is the resolvent of (t) = exp(— iSPt). This re-
solvent is connected with the resolvent 

a0(z) = il(z + i&0) (62) 

of the unperturbed evolution operator 

(t) = exp(— iSC0t) 

by the operator identity [cf. Eq. (16)]: 

St(z) = St0(z)-St0(z)iS?iSt(z). (63) 

The application of this identity to the right hand 
side of Eq. (60) yields: 
z9t(z) — £ = - ise^sp - isei^Q - sexsp^se^sp. 

(64) 

If one performs the inverse Laplace transform, one 
obtains: 

A qi(£) = <%(t) _ i S£x (0 
t 

- fdr.S?i^o(T)JS?i#(f — T ) . (65) 
o 

Out of this equation the damping form of the von 
Neumann equation results if one applies it to 
If (0) [cf. Eq. (6)]: 

— w = - ise0 w - isex*-*** j f ( 0 ) 
at 

t 
- I" dr SCi e-iSe»T S£\ W (t — r). (66) 

o 
It seems evident after the discussions of the last 

section that one must concentrate only on that part 
of the density matrix accessible by measurement. 
The aim of this section is therefore to derive an 
equation that governs the time development of SPW. 
If one applies the projector SP to Eq. (64) and 
considers the relations (A l ) and (55), one gets: 
SP(zSi — £) = - iSPSe^SPSP - iSPS£x&%0 

- iSPS£xSLSto 
- SPS£xS*oS£x(SP + SL)SP . (67) 



Multiplying Eq. (60) by j2 from the left yields12: 

S) 
or 

= 0t . (68) 

If one adds i&SC 212ft, on both sides, one obtains 
+ = (69) 

so that 

J ^ ( z ) = £SP(z) [J - » j2JS?i^«(Z)] (70) 

where S?(z) is the resolvent of 

r{t) = exp(—i£&£t). (71) 

Now, in the last term of Eq. (67) can be re-
placed : 

- l i J o ^ 
(72) 

- ^SB^^x^Sf 3. 

+ %0> S T . 

The last term of this equation is of third order in 
the perturbation V and can be regarded as a small 
renormalization of the unperturbed Hamiltonian Ho. 
It shall be neglected henceforth, because it does not 
contribute to the relaxation. The inverse Laplace 
transform of the equation above is: 

~0><&(t) = - i&^o&Wit) -

- %0>&x2<&0{t)£ 
t 

- - T) 
0 

t 
- (* dr ^ Q (T) 2L ZP l̂Kt — r) 

o 
t 

- j d - r ^ ^ i ^ o ( T ) £ e x £ V ( t - r ) £ . (73) 
o 

Operating with this equation on JF(0) and taking 
into account relation (A2) one obtains: 

~0>W{t) = - i^&o&W - i^&i&e-^WiO) 
t 

- f d r ^ i E~IÄ>TT & W(t — T) 
o 
t 

- SdT0>£'10>e-iJ?oT2£'12W [ t - T). 
o 

(74) 

This is the generalized master equation for the 
density matrix 2PW which was sought; it is a 
closed equation in & W and contains memory effects 
because of the integral terms. 

This equation can be simplified8-10 if one ob-
serves the underlying time scales (52). Under the 
first integral J2?o is of the order of Eat so that the 
integration can be continued to infinity as one 
recognizes by changing the integration variable to 
TEat. Moreover, it can be shown9, that & W ( t — r) 
can be replaced by &W(t). The series expansion of 
the exponential function together with relation (A 1) 
gives: 

3Pexp(— i&0t) = 0»exp(— i P & o & t ) ? . (75) 

Taking all this into account, the first integral can 
be carried out formally to yield: 
oo t 
Jdr = lim V ( 7 6 ) 

= - i 3 P I ' v . 

Pv stands for Cauchy's principal value. The imagi-
nary part of the integral will be neglected furtheron9; 
the real part allows for a simplification because of 
Eq. (48): 

= 2 pab (Pab || B) 6 ( E a - E b ) = ® B . ( 7 7 ) 
a,b 

The master equation (74) now reads 

A & W = _ w - iP&i&e-^'WiO) 

(78) 

- \ da & ££ \ 2. *x Q ££ W (t — T) . 
o 

This is the relaxation equation which has been 
derived previously by other methods8-9 — if one 
neglects the integral term. For larger molecules 
with a nearly continous distribution of states on the 
energy scale terms of the form and 2P 
should cause no drastic effects. 

To show the claimed identity of master equations 
explicitly remember Eq. (46) and the statement 
made after Eq. (57), and note the identity 

2 = = = g>. (79) 

Then Eq. (78) can be rewritten as 

A W = - i&o W - i W (0) 

(80) 



or more explicitly: 

* W = - i[Ro, W] -i[V, e-iHot W(0) eiBot] 

-n[V,®[V,W]]. (81) 

This equation is identical to Eq. (18) of Ref.9 . 

5. Character of the Solutions 

The master Eq. (80) has the form of a von Neu-
mann equation with an inhomogeneous term: 

~ W = - i Jgfen W - i j?ie-&<* W (0). (82) 

The effective Liouville operator jSfeff is given by: 

&ett= j?0-in J?i@J?!. (83) 

As one recognizes, J?en is no longer a hermitian 
operator on 2. To assure the completeness of the 
set of eigenmatrices of J?eu in 2, it is assumed sub-
sequently that SCeft is at least similar to a normal 
operator on 2. 

Because of the discussion following relation (A2), 
one may expect tF(0) to be sufficiently smooth, so 
that the inhomogeneous term in Eq. (82) vanishes 
according to the Riemann-Lebesgue Lemma9 . The 
general case can be treated analogously to Ref.9 . 

The eigenvalue problem 
J^eff Wq=xq Wq, I Wq 1 = 1 (84) 

has been treated previously9-10. The results of that 
discussion are summarized for completeness. The 
proofs of the following theorems are given here in a 
"coordinate-free" manner using the techniques of 
Liouville space. The assumption made in Ref.9-1 0 , 
that the perturbation V is represented by a real 
matrix can be avoided here. 

The operator relation [cf. Eq. (46)] 

0 > & e u 0 , = &ett (85) 

shows that the eigenvalue problem (84) can be re-
stricted to the subspace of 2 onto which projects. 
All elements of the orthogonal complement of that 
subspace are trivial eigenmatrices of j£?eff cor-
responding to the eigenvalue Xq = 0 ; they are of no 
interest in the subsequent discussion. 

Theorem 4: 

Diagonal matrices Wq = Q> \Vq are the only 
eigenmatrices of J*?eff which belong to the eigenvalue 
Xq = 0. 

Proof: 

The identity 

@[A,&B] = 0 for all „ 4 , 5 6 2 (86) 

yields for A = RQ and arbitrary B 

= = = 0 (87) 

and for A = V and B = W 

= 0 . (88) 

These equations can be combined to 

0Jg?ert = O. (89) 

Together with Eq. (84) one has 

0 = ® &ett Wq = }.qQ> Wq = kQ Wq . (90) 

Therefore, diagonal matrices belong to the eigen-
value XQ = 0. To prove that they are the only ones, 
one starts with 

j^ e f f Wq = 0 . (91) 
This leads to 

0 = (Wq || SQ Wq) - i n (Wq 1 J5! ® Wt) 

= (Wq I! Fo Wq) — in\Q> Wq II2 . (92) 

Hence, one obtains 

@&1Wq = 0 (93) 

and combined with Eq. (91): 

&0Wq = 0. (94) 

Therefore RQ and Wq commute and can be diagona-
lized together. 

Theorem 5: 

Eigenvalues different from zero have a negative 
imaginary part; the diagonal part of the correspond-
ing eigenmatrices vanishes. 

Proof: According to Eq. (84), one has 

Xq = {Wq l&oWg) - in{Wq II J 5 ! ^ J 5 ! Wq). (95) 

J^o and are hermitian; this implies: 

IMXQ = -N 1 F 9 ] | 2 < 0 . (96) 

Because of Eq. (89), the application of the operator 
& to Eq. (84) yields: 

0 = lqQ> Wq , (97) 

whence 3>Wq=Q for ?.q * 0. 



Theorem 6: 

If Xq is an eigenvalue with corresponding eigen-
matrix Wq, then so is — /* with eigenmatrix 

The proof runs as that of Theorem 2 if one takes 
into account the antilinearity of and the relation 

3 T = = - SC e n &. (98) 

With these theorems in mind the discussion of 
the time evolution for the general solution of the 
master Eq. (82) is performed easily. Because of 
Eq. (89), one has 

~ &W{t) = - i @ S£eff W = 0 (99) 

whence: 
®W{t) = ®W{0). (100) 

The non-diagonal part of IF(0) may be expanded 
by the eigenmatrices of ££eff: 

W (0) = J^dqWq. (101) 

From this follows: 

{ t - 9 ) W ( t ) = y £ d q < r a * W q . (102) 
â =t= 0 

Because of Theorem 5, the non-diagonal part of the 
density matrix decays exponentially, and W (t) 
relaxes to iF(oo) = Q)W{0). The density matrix 
W (t) stays hermitian through all times as W and 

obey the same differential equation. 

6. Conclusion 

Using projection operator techniques in Liouville 
space a generalized master Eq. (74) for intramole-
cular relaxation could be derived. Relations ( A l ) 
and (A 2) are necessary assumptions for that deri-
vation and should hold for large enough molecules 
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(containing more than 4 atoms). The change of the 
density matrix depends on its past form through 
the integral terms which therefore include memory 
effects. However, these memory effects are small as 
is shown by the reduction of the generalized master 
Eq. (74) to a von Neumann Eq. (82) with an effec-
tive Liouville operator (83). The main effect 
of the integral terms is the imaginary part of Sfeft 
which is responsible for the relaxation-like be-
haviour of the solutions (cf. Theorem 5). Equation 
(82) can also be applied to intramolecular rearrange-
ment processes because a non-diagonal coarse-
graining projector has been used. The chemically 
relevant information contained in the off-diagonal 
elements of the density matrix is not lost by this 
procedure. To obtain the rate R of an isomerization 
reaction, for example, one has to calculate the 
change of the expectation value of the species 
operator10 P for the reaction products (cf. Eq. (102)): 

Ä = -^ -Tr( lF(0 P) 

= - i ^ d q X q e - ^ T r i W q P ) . (103) 

This shows that the rate constant is connected with 
that eigenvalue of Sfett which has the smallest 
imaginary part. It should be emphasized, however, 
that the relaxation Eq. (82) is valid only for times 
shorter than that between two "outer" collisions. 

Because of the formalism, all neglected terms 
could be given explicitly. The formalism also allows 
for better higher approximations through inclusion 
of neglected terms. 
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