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A generalized master equation is derived to describe intramolecular rearrangement processes.
It is an inhomogeneous equation, including memory effects. The derivation is based on the Liouville
space formalism. Because chemically relevant information is contained in the off-diagonal
elements of the density matrix, a non-diagonal coarse-graining projector is used. All necessary
assumptions are stated explicitly. By making further approximations, the master equation can
be reduced to an inhomogeneous von Neumann equation with an effective Liouville operator the
imaginary part of which is responsible for relaxation-like coarse-grained solutions. All neglected
terms are given in closed form. The character of the solutions of the master equation is discussed
in “coordinate-free” manner, i.e. without referring to the underlying Hilbert space.

1. Introduction

It is a question of fundamental importance for
chemical reaction kinetics, whether or not an isolated
system of molecular dimensions can undergo —
though in a somewhat restricted sense — an irrever-
sible process. The theory by RICE, RAMSPERGER,
KasseL and Marcus (RRKM)1-4 describes a uni-
molecular reaction as a consequence of two inter-
fering mechanisms, an “outer’” and an “inner’’ one.
By a strong external collision energy is provided
to the molecule. The redistribution of this energy
between the inner degrees of freedom then leads to
unimolecular reaction. This “inner” mechanism of
energy randomization is specified by the assumption
that the ensemble of reacting molecules is micro-
canonical with respect to the inner energy. At this
very point an intramolecular relaxation process is
implied with a relaxation time short compared
with the time between two subsequent external
collisions. The succes of the RRKM-theory confirms
the picture of two mechanisms. Because these time
scales are so different, one would expect that a
model without an explicit external mechanism
should still be of chemical importance. The best-
known example for a chemical process determined
by an inner mechanism is the high pressure rate of
a unimolecular gas phase reaction.

Master equations on a heuristic basis have been
used previously in describing intramolecular pro-
cesses, but they were a phenomenological tool
only5:6. Recently this procedure was very much
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refined through application of Markov chain tech-
niques?. For the first time, HoFACKER8-10 gave a
“derivation” of a relaxation equation starting with
the von Neumann equation and connecting the
various terms to microscopic quantities.

The standard technique for the derivation of a
master equation is presently the projection operator
method in Liouville space, introduced by Zwax-
z1¢11,12. KE1ZER13 applied it to the problem of
relaxation of inner degrees of freedom; but this
theory is based essentially on an ““outer’” mechanism
and is valid only for a projection operator on the
diagonal elements of the density operator. Every
chemical reaction however, even a simple one as an
isomerization, is connected with changing positions
of the nuclei involved. Therefore relevant informa-
tion is contained in the non-diagonal matrix ele-
ments of the density operator (if the otherwise
practical representation of stationary states is
used 10).

It is the aim of this paper to derive a generalized
master equation for intramolecular relaxation
processes, i.e. an equation including memory effects.
By using the above mentioned techniques with a
non-diagonal projection operator, chemical proces-
ses are included. The underlying assumptions are
stated clearly, as well as the additional approxima-
tions necessary to reduce the generalized master
equation to the form given by Hofacker. The
neglected terms are given explicitly to improve this
first approximation.

In Section 2 the Liouville space formalism is re-
viewed briefly insofar as necessary for the theory
developed here. The connection between coarse-
graining and irreversibility leads to the definition
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of a non-diagonal projection operator in Section 3.
In Section 4 the generalized master equation and
the relaxation equation are derived using resolvent
techniques. Section 5 gives a short discussion of the
solution of the relaxation equation.

2. Liouville Space Formalism

Quantum statistics describes the state of a system
by a density matrix W which is an operator acting
in the usual Hilbert space § of quantum mechanics.
In dynamical problems, one considers operations
mapping the manifold of density matrices onto
itself. Also the so-called coarse-graining can be
viewed as an operation on density matrices. So one
is led naturally to study operations on a certain set
of operators of the Hilbert space $. Things would
be much easier, if this set were a Hilbert space itself.

Therefore, one associates with § the set Q of all
operators (more exactly: with finite trace), mapping
$ onto itself, and provides this set & with a scalar
product by

(4] B) :=Tr(AtB) forall 4, BeQ. (1)

Elements of € will be characterized by capital let-
ters. One shows easily that the above defined scalar
product fulfils the usual axioms!4. By this proce-
dure, ¢ becomes a Hilbert space, the so-called
Liouville spacel2. The expectation value of an
operator 4 in an ensemble described by an density
matrix W is simply given by

(A>w=Tr(WA4)= (W] 4). @)
The scalar product implies a norm in & as usual:
[4]:=yd]4). (3)
The equation of motion for elements of the Liouville
space is the von Neumann equation:
. d
g W=2W. (4)
It is formally equivalent to the Schrodinger equa-
tion. The Liouville operator % is defined by
FLA:=[H,A] forall 4e8 (5)
where H is the Hamilton operator of the system.
Operators acting on elements of the Liouville space

will be characterized by script letters.
The von Neumann equation is solved by

W(t) =) W(0) (6)
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with the unitary operator
U () =exp(—1.ZLt). (7)

As is well known, its action on any element 4 of &
is connected with the Hamiltonian by

U(t) A = e~tHt 4 eiH?t (8)
The connection between H and % leads to

Theorem 1:
If H is hermitian in §, then % is hermitian in Q.

Proof: (4| # B) =Tr(AtH B — At BH)
= Tr([H, A]t B)= (£ 4| B),

whence follows: ## = #. All eigenvalues of % are
therefore real. The hermitian adjoint operator to an
operator ¢ will be denoted by 0.

In the following, the adjointing operator .7
definded by

T A=At forall AeQ (9)

will be useful. 7 is an antilinear operator 14 and has
the properties

TH=7, (10)
T2=¢. (11)

& denotes the identity operator on Q. Equation (11)
is the minimal polynomial of the operator .7, there-
fore its eigenvalues are ¢; = 1 and e¢3 = — 1. The
corresponding eigenmatrices are hermitian and
antihermitian respectively. This can be used in
proving the following theorem.

Theorem 2:

To every eigenvalue 4 + 0 of £ with correspond-
ing eigenmatrix W there corresponds an eigenvalue
— A with eigenmatrix Wt Hermitian and anti-
hermitian eigenmatrices correspond to the eigen-
value 1 = 0.

Proof: For all 4 € & one has
T LA=T[HA]=
=AtH —HAY'= —[H,At]= - %7 A

or stated generally:

LT +T ZL=0. (12)
Together with & W = 4 W, one obtains
IWt=2LIT W=—-TZLW=—1Wt (13)

which is the first proposition. Using 7 W = ¢ W
with ¢ = 4+ 1 the second part of the theorem
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follows from where

AW =ATW=T LPW=—LTW=—1cW. Ag="Tr(Wa4 ag@‘ /ga-  (25)
(14)

3. Coarse-graining and Irreversibility

Irreversible equations lika a master equation are
obtained from the reversible von Neumann equation
by constraining to that information which can be
controlled by macroscopic observations 15,16, In
analogy to classical statistical mechanics one con-
siders only those quantities which are averaged over
energetically adjacent states. The Hamilton opera-
tor H is divided into an unperturbed part H, and
a perturbation V9:

H=Hy+ V. (15)

This implies a corresponding separation of the
Liouville operator

L =%+ % (16)
with

P14 =V, 4]. (17)

The eigenstates |o) of the unperturbed Hamilton
operator Hy:

Ho |y = Eq |a) (18)

are collected in mutually orthogonal subspaces
according to their energy. To this end the energy
axis is divided into intervals AE, AEs, ..., AE,,

. AEy, ... . For every cell of the phase space a
projector is defined :

Ra=3 | <al.

aEA

(19)

Here, o« €a is an abreviation for E, € AE,. The
macroscopic state belonging to the density matrix
W is described by

W=>cuW (20)
a
with the following definitions
co=Tr(WRy), (21)
Wao= Ra[fa, (22)
and ga=Tr(Rg) . (23)

In the same way, a correspondence is established
between an observable A and the macroscopic
observable 4 by:

A= AuR, (24)

Aq is the expectation value averaged over the states
o € a. For the expectation value of 4 in an ensemble

W one gets:
Z caAqg .

<A>VV = TI‘ IVA
The derivation of a master equation could be
simplified a lot by regarding the coarse-graining as
operation in Liouville space11.16:

W=2W= zTr(WRa) Ru/ga .

(26)

(27)

Z is a projector onto that subspace of & which
contains the macroscopically relevant information.
It has already been mentioned that the usual

derivations of a master equationl®16 are not

applicable to chemical problems. There are three

essential differences in the case of an intramolecular

rearrangement process?:

(I) The system under consideration has a finite

number of degrees of freedom;

Non-diagonal elements of the density matrix

contain relevant information;

(ITII) The density matrix at time ¢ = 0 does not
commute with the unperturbed Hamiltonian
Hy.

Because of (I), the master equation to be derived
is only valid on a certain time scale (cf. the detailed
argumentation in 9). (III) gives rise to a somewhat
more complicated derivation than usuall2.16, (II)
can be handled by the introduction of a new coarse-
graining projector #. Consider the following set of
elements of <:

Pay=(gago) 12> > |ay<B].

aea peb

(IT)

(28)

The following equations turn out to be very useful:

Pap= Puat, (29)

Pop Porvy = 0ar b Pav (30)
T Pan== 345 (31)
(Pap || Parv’) = Saar dpv* - (32)

Equations (29)—(32) can easily be proved.
The set { Pqp} consists of orthonormal elements17.
The new coarse-graining operator Z is given by

PA = Y Tr(PaptA) Pap
a.b
= | Pab) (Pap|| A) for all 4.

a.b

(33)



MASTER EQUATION FOR INTRAMOLECULAR RELAXATION

By an obvious extension of Dirac’s formalism,
Eq. (33) reads:
P =2 | Puv) (Pas| - (34)
ab
Theorem 3:

The operator 2, defined by Eq. (34) is a pro-
jectorl4, i.e.

a) P2=2, (35)
b) P — P (36)
Proof: a) #2 =2 Z | Pav) (Pab||

Ly Z”Pcd) Pcd’] Pab) (Pab“
b

= Z Z”PCd) OacOpa(Pan| =

ab cd
(4] 2 B) :zb:(A”Pab) (Pas || B)

S

Il

(Pav | 4)* (Pas | B)
b

=(szab(Pab”A)” B)

— (PA| B).

The coarse-graining introduced above is completely
equivalent to that used by HoFACKER?. There, the
coarse-graining of the perturbation V e.g. is carried
out by

VP =3 3| Var<B| (37)
ab aca
Beb
with
Vav =V (Ea, Ev) = (gage)™! > x| V|B>. (38)
feb
Taking into account that
(Pav | V) = (9age)/? Vas (39)
one recognizes immediately
V=2V. (40)

Definition (30) unifies the treatment of observables
and density operators [cf. Egs. (20), (24)]. The ori-
ginal coarse-graining projector & can be retained
through restriction of Z to diagonal elements which
is allowed for macroscopic observables A:

(Pap| A) = Tr(PaptA)=0 for a+b (41)

and

DA =73 |Pus)(Paa| 4). (42)
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For operators 4 which are diagonal in the {|«)}-re-
presentation one has

(Pav | 4) = (9agb) 1/92<°‘|A|°‘>6aﬁ

aea
Beb

=ga18ap D x| Aoy . (43)
oEa
For 4 = Hy, this yields:
Q’Ho = Z Ea Paa (44)
with &
Ei= 3 Eulga. (45)

aEa

Two assumptions will be stated now which under-
lie the derivation of the master equation given in
the next section:

PLyP =P %y (A1)
This equation holds only approximately; both of

its sides are calculated separately to estimate the

error. Here use is made of the identity
P[A, P B]=[PA,P B] (46)
which can be proved using Egs. (29)—(32):

P[A,PBl= > > Pas(Pab|[4, Po'v) (Pa v | B)

ab a’b’
*Zpab{ (Pac|| A) (Pev || B) — (Pac| B) (Pep| 4)}
ab.c
= Z z(aa'bpab’_(Sab’Pa’b)(PabHA Pa b’ ‘B)
a,b a’ b’
=[2A,#B]. (47)

Taking into account Eqs. (38)—(40) and (43)—(45)
and putting 4 = Hy, one obtaines:

PLyP B =2 Pup(Pas| B) (Ba— Ep). (48)
ab
On the other side of relation (A1), one has
PLyB =72 Pap(Pas| [Ho, B]). (49)
ab

To arrive at Eq. (A1), the following equation
must hold for every B e &:

(Pav| B) (Ba — Ep) =~ (Pay | [Ho, B]). (50)
This is equivalent to:
—Ey) 2 <a| 4| = 2 (Ba—Ep) x| A|f).
Beb feb (51)

If the respective coarse-graining intervals AE, and
AE}p are small enough and the number of states
within them, i.e. g, and g, are large enough, and
if there are no correlations between E,— Ez and
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{o| A| B> — which seems reasonable for all non-
pathological 4 € & —, then Eq. (51) may be a good
approximation and relation (A1) should hold.

The second essential assumption concerns the
initial state W (t = 0):

PW(0)=W(0). (A2)

To justify this assumption, consider the following
relation among the relevant time scales0:

Bl o o L 7 € Ty«

The symbols have the following meaning: K}
atomic time, 7, measuring time available for the
preparation of W (0), 7, chemical relaxation time,
T4y translational time.

(52)

The width of the coarse-graining intervals AE,
has been chosen as to meet the constraint?

AE, € AEqq < 77t (53)
According to Eq. (52) one has a fortiori:
AEqq < 13t . (54)

Therefore, the coarse-graining intervals AE, can
never be resolved by an initial measurement with
an uncertainty 7, i.e. no measurement can
distinguish Z W (0) from W (0). Relation (A2) cor-
responds to the random phases approximation of
statistical mechanics15, more exactly to the as-
sumption of a macroscopic initial statel6. If one
defines

2:=—-2, (55)

2 is also a projector and relation (A2) may be
written as

2W(0)=0. (56)

The projector 2 measures the fluctuations around
the average of the different cells of phase space. As
an example, take the expectation value of an ob-
servable 4 in the state 2 W :

(2W|4)=(W|A)— (PW|2A4)
=Dy — (Dw. (57)

The abreviations 4 = 24 and £ = 2% 2 will be
used subsequently [cf. Eq. (20) and (24)].

4. Derivation of a Master Equation

As a starting point for the derivation of a master
equation for an intramolecular rearrangement re-
action the damping form of the von Neumann equa-
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tion will be used8-10. The operator equivalent of
Eq. (4) is

San=—izuw (58)
with the initial condition
U0)= & . (59)
The Laplace transform of Eq. (58) is
2R —E=—iLRE). (60)
Here,
R() =1z +i2) (61)

is the resolvent of % (t) = exp(—1-Zt). This re-
solvent is connected with the resolvent

Zo(2) = 1](z +120) (62)
of the unperturbed evolution operator
U (t) = exp(— t Lot)
by the operator identity [cf. Eq. (16)]:
R() = Ro(2) — Ro(2) i L1 R(G) . (63)

The application of this identity to the right hand
side of Eq. (60) yields:
Zﬂ(z)——gz—Zfo%—lgl.@o—ylﬂofl.%

(64)
If one performs the inverse Laplace transform, one
obtains:

Su) = —iLow () — i L1 (0)
(A B Ue) LU —T).  (65)
0

Out of this equation the damping form of the von
Neumann equation results if one applies it to
W (0) [cf. Eq. (6)]:

d

G W= —iLoW —i L1 (0)

t
— [dr Zre L W(t—1).
0

(66)

It seems evident after the discussions of the last
section that one must concentrate only on that part
of the density matrix accessible by measurement.
The aim of this section is therefore to derive an
equation that governs the time development of ZW.
If one applies the projector Z to Eq. (64) and
considers the relations (A1) and (55), one gets:

PR —E)=—1PLPR—1PL1P Ry
— 1P L12%R

—PLRL P - DR, (6])
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Multiplying Eq. (60) by 2 from the left yields12:
2R —6)=—i2%R

. 2R =2—12%2R. (68)
If one adds : 2.2 2% on both sides, one obtains
24+i2F212% =2 — 1 2L PR. (69)
so that
Q2R =2F)[2—12L12Z%(2)] (70)
where & (z) is the resolvent of
V() =exp(—t 2% 2t). (71)

Now, 22 in the last term of Eq. (67) can be re-
placed:

PR —E)= —iPLPR—iP PP Ry
i PLLIRI
— PL P RP LR
— PLLIRIDL PR
PP LRFL12F 2
LiPPLRL DS DL\ PR .

(72)

The last term of this equation is of third order in
the perturbation V and can be regarded as a small
renormalization of the unperturbed Hamiltonian Hy.
It shall be neglected henceforth, because it does not
contribute to the relaxation. The inverse Laplace
transform of the equation above is:

L PUN) = —iPLPUN) — i P LLPUN)
—iP LU 2

t
— [P L1P U (1) P L1 P Ut — 7)
0
t
— [P L1 2U (1) 2L\ P U — 7)
0

== J{dt.@.?l%o(r)glﬂy(t— T).@ (73)
0

Operating with this equation on W (0) and taking
into account relation (A2) one obtains:

SPW) = —iPLeP W —iP L1 P24 (0)

t
— ‘[drﬂfl.@e‘”’""g’ﬁflﬂ Wt — 7)
0

¢
— (At P L1\ P ET2 L1 2W(t— 7).
0
(74)
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This is the generalized master equation for the
density matrix W which was sought; it is a
closed equation in Z W and contains memory effects
because of the integral terms.

This equation can be simplified8-10 if one ob-
serves the underlying time scales (52). Under the
first integral % is of the order of E4; so that the
integration can be continued to infinity as one
recognizes by changing the integration variable to
7 Eqt. Moreover, it can be shown?, that Z W (t — 1)
can be replaced by Z W (). The series expansion of
the exponential function together with relation (A1)
gives:

Pexp(— i Lot) = Pexp(— iP Lo Pt) P . (15)

Taking all this into account, the first integral can
be carried out formally to yield:

1

© —1Pot — 1 SR, S—
6[dr§"e .9”—11?3@ CLiPPP P (76)
=ngfa(@$0@)gj—igpv(@—;;ﬁ)9’.

Pv stands for Cauchy’s principal value. The imagi-
nary part of the integral will be neglected furtheron?;
the real part allows for a simplification because of
Eq. (48):
PP LP)P B
= > Pos(Pas|| B)6(Ba— Ep) =2 B. (77)
ab

The master equation (74) now reads

LPW=—iP L PW —iP L1P =2 (0)
—n?.?l@,g’lg’W (78)

¢
— [ArP L1 2e L 2L, PW(t—7).
0

This is the relaxation equation which has been
derived previously by other methods8.9 — if one
neglects the integral term. For larger molecules
with a nearly continous distribution of states on the
energy scale terms of the form 29,2 and .21 2
should cause no drastic effects.

To show the claimed identity of master equations
explicitly remember Eq. (46) and the statement
made after Eq. (57), and note the identity

D=DP=PD=PDP. (79)
Then Eq. (78) can be rewritten as
EW = —iPoW —i Pre=iZa W (0)
—nP192PW (80)
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or more explicitly : Proof:
H(it IV - i[Ho, W] _ Z[V, e—-i_Hol IV (0) eiHot] The identity
— [V, 2[V, w1]. (81) (4,2 B]=0 forall A4, BeQ (86)
This equation is identical to Eq. (18) of Ref.9. yields for 4 = H and arbitrary B
DPD =2 Py=Py2 =0 (87)
5. Character of the Solutions andfor A=V and B—= 2, W
The master Eq. (80) has the form of a von Neu- 2L 2P, W=0. (88)
mann equation with an inhomogeneous term:
3 These equations can be combined to
= e e — 3 Ple—iZot . 2
a W (Lot W—1Pre—i W(O) (82) D L= 0. (89)
The effective Liouville operator Zest is given by: Together with Eq. (84) one has
Lar=Lr—inZ192:. (53} 0= Lot Wo=1q@ Wo=1qgWq.  (90)

As one recognizes, Lo is no longer a hermitian
operator on . To assure the completeness of the
set of eigenmatrices of Pepr in Q, it is assumed sub-
sequently that Zeg is at least similar to a normal
operator on <.

Because of the discussion following relation (A2),
one may expect W (0) to be sufficiently smooth, so
that the inhomogeneous term in Eq. (82) vanishes
according to the Riemann-Lebesgue Lemma?®. The
general case can be treated analogously to Ref.9.

The eigenvalue problem

LettWog=2qWq, |[Wq| =1 (84)

has been treated previously9:10. The results of that
discussion are summarized for completeness. The
proofs of the following theorems are given here in a
“coordinate-free’ manner using the techniques of
Liouville space. The assumption made in Ref.9.10,
that the perturbation V is represented by a real
matrix can be avoided here.

The operator relation [cf. Eq. (46)]

PLett? = Lent (85)

shows that the eigenvalue problem (84) can be re-
stricted to the subspace of € onto which Z projects.
All elements of the orthogonal complement of that
subspace are trivial eigenmatrices of P cor-
responding to the eigenvalue 4, = 0; they are of no
interest in the subsequent discussion.

Theorem 4:

Diagonal matrices W, =2 W, are the only
eigenmatrices of Z e which belong to the eigenvalue
Ag=0.

Therefore, diagonal matrices belong to the eigen-
value 1, = 0. To prove that they are the only ones,
one starts with

Lett Wqg=0. (91)
This leads to
0= (Wq| LoWy) —ia(Wy| £12 L1 W,)
= (Wq| LoWo) —in|2Z1W,|2. (92)
Hence, one obtains
DP1Wy=0 (93)
and combined with Eq. (91):
PoWy=0. (94)

Therefore Ay and W, commute and can be diagona-
lized together.

Theorem 5:

Eigenvalues different from zero have a negative
imaginary part; the diagonal part of the correspond-
ing eigenmatrices vanishes.

Proof: According to Eq. (84), one has

ha= Wq|ZLoWy) —in(We| L12 L1 Wy). (95)
Py and 12 P are hermitian; this implies:
Imi,= — 7|22 W,|2<0. (96)

Because of Eq. (89), the application of the operator
2 to Eq. (84) yields:

0= 12,2 W,,
whence 2 W, =0 for A4+ 0.

(97)
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Theorem 6:

If 1,4 is an eigenvalue with corresponding eigen-
matrix Wg, then so is — 4; with eigenmatrix WE.

The proof runs as that of Theorem 2 if one takes
into account the antilinearity of .7~ and the relation

T Let=T (Lo—inPr12P1) = — PenrT . (98)

With these theorems in mind the discussion of
the time evolution for the general solution of the
master Eq. (82) is performed easily. Because of
Eq. (89), one has

oW = —iD LW =0 (99)

whence:

W)= W(0). (100)

The non-diagonal part of W (0) may be expanded
by the eigenmatrices of ZLe:

(E—D)W(O0)= D> dW,. (101)
2q#0
From this follows:
(E—D)W(t)= D dge ™t W,. (102)

Ag#0

Because of Theorem 5, the non-diagonal part of the
density matrix decays exponentially, and W (t)
relaxes to W(co) = 2 W (0). The density matrix
W (t) stays hermitian through all times as W and
WT obey the same differential equation.

6. Conclusion

Using projection operator techniques in Liouville
space a generalized master Eq. (74) for intramole-
cular relaxation could be derived. Relations (A1)
and (A2) are necessary assumptions for that deri-
vation and should hold for large enough molecules
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