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Beriicksichtigung der Gitterperiodizitit bei der Elektron-Plasmon-Streuung. II.
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Herrn Prof. Dr. K. MOLIERE zu seinem 60. Geburtstag gewidmet

Consideration of Lattice Periodicity at the Electron Plasmon Scattering. 1.

It is shown that the existence of the additional inelastic scattering processes described in part 1
is caused by lattice periodicity and depends upon the form of the Fermi surface. An estimate of
that part of the anomalous absorption resulting from this scattering process is given.

Einleitung

In TeilI wurde durch Untersuchung einer
speziellen Zwei-Teilchen-Green-Funktion bzw. ihrer
Matrix-Elemente ein Ausdruck fiir den verallge-
meinerten Strukturfaktor der unelastischen Streu-
ung und fir den Integranden des die Absorption
beschreibenden Integrals hergeleitet. Aus diesen
Ausdriicken lassen sich der differentielle Wirkungs-
querschnitt fiir unelastische Streuung und die
Koeffizienten der anomalen Absorption berechnen.
Sie liefern eine Aussage dariiber, wann und wie weit
solche zusétzlichen Streuprozesse (Abb. 1, I) und
die daraus resultierende anomale Absorption auf-
treten.

1. Der Fall b;=bx=0

Fir diesen Spezialfall erhdlt man sofort aus
Gl. (3.16),I den Wirkungsquerschnitt fir Streuung
von Elektronen am Plasma, der von FERRELL! fur
homogenes Elektronengas angegeben wurde. Er ist
im wesentlichen proportional dem Quotienten
hwpl/]hklz Aus Impulssatz und Energiesatz er-
hilt man die Bedingung, dal der Vektor %k, der
Plasmonenimpuls, nicht verschwinden kann. Sein
Minimalwert ist

=~ h
|5 kryin | = 2“]:,” |7 ke|. (1.1)
Hier bedeuten E, die Energie und %k, den Impuls
des einfallenden schnellen Elektrons. Die Dispersion
von wp; (k) wird nicht beriicksichtigt. Die Energie-
flichen werden naherungsweise durch Kugel-

flichen ersetzt (vgl. hierzu Howie2). Durch Ein-
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fuhrung des Streuwinkels @ wund der GroBe
O = hop/2E), die durch den Minimalimpuls ge-
geben ist, erhdlt man den Wirkungsquerschnitt
nach Ferrell :

0(0) = Og/(0} + 67?).
2. Der Fall b;=0,bx =0

Zur Abschitzung des Wirkungsquerschnittes und
der anomalen Absorption muf} das in Gl. (3.14),1
vorkommende Verhiltnis

(1.2)

v(bs, bx, k) (2.1)
unbes. bes. -
) Z 9,,+k,,(bz)@'}"+,:,,( )AE;LP
= unbes bei S
S o,

berechnet werden. Entsprechend der angegebenen
Summationsvorschrift kennzeichnen alle Vektoren
p besetzte Zustande, die um k verschobenen Vek-
toren p 4 k unbesetzte Zustédnde. Aullerdem ist
zu unterscheiden zwischen Ubergéingen von be-
setzten Zustdnden eines Bandes n in unbesetzte
Zustédnde und Uberginge aus besetzten Zustinden
im tieferen Band in nichtbesetzte Zustinde im
hoheren Band. Die Grenze zwischen besetzten und
unbesetzten Zustinden ist die Fermi-Fliche
Er = El3)(p). Da k Kkleiner als der kritische
Wert * k, ist, kommen nur solche Bloch-Funktionen
in Betracht, die Elektronen in der Nahe der Fermi-
Flache beschreiben. Die in Gl. (2.1) enthaltenen
Integrale, die mit den Bloch-Funktionen u,, ,(r) zu
bilden sind,

n . A =B
Q?Hr—lk,p(bK) = [ un'p+i:(r) k=i
2

Upp (r) d3r (2.2)

* Nach 3: k.~ (hAwpi)/2E¥)*+ Pr; Er = Fermi-Grenz-
energie, Pr = Wellenzahl der Elektronen an der Fermi-
Grenze.
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miissen zunidchst ermittelt werden. Es wird im
Anhang gezeigt, daB man im Fall n =»' und
| k| — 0 fiir die Integrale die Beziehung:

3En(p)
Vi

Opp (2.3)

herleiten kann. (Vg = Fourier-Koeffizient des
periodischen Potentials.) Daraus folgt, daBl die
GroBen nur dann einen wesentlichen Beitrag
liefern, wenn sich E,(p) mit Vg, dem als reell
angesetzten K-ten Fourier-Koeffizienten des Poten-
tials des Festkorpers, stark dndert. Das ist aber
gerade an den Stellen p des reziproken Gitterraums
der Fall, wo sich der Vektor p der Brillouin-
Zellenwand, deren Lage durch den reziproken
Gittervektor 1 bg gegeben ist, ndhert. Diese Stellen
sind leicht zu ermitteln, wenn die Energieband-
struktur und Fermi-Fliche des Metalls bekannt
sind. Nach der Methode von HarRrISON4 kann man
sich nach dem Modell der fast freien Elektronen
einen Uberblick iiber die Form der Fermi-Fliche
verschaffen. Die Abweichung des Bandes E,(p)
von der Parabel fiir freie Elektronen ist gerade an
den Brillouin-Zonengrenzen vorhanden, dort spaltet
das Band mit endlichem Energieabstand (Energie-
licke = 2 Vgk) auf. Die Fermi-Fliche weicht an
dieser Stelle von der Kugelgestalt ab und zerfallt
in zwei Teile. In dieser Arbeit werden nur solche
Metalle behandelt, bei denen die Fermi-Kugel von
den Brillouin-Zonenwéinden nur so geschnitten
werden, daB8 der Schnittkreis durch keine anderen
Zonenwiande hindurchgeht. Beispiele hierfiir sind
die zweiwertigen Metalle, z.B. Magnesium, dessen
Fermi-Flache von FALIKOVS berechnet wurde. Die
durch 002 charakterisierte Wand der Brillouin-
Zone ist fur Magnesium eine solche Fliche, an der
die Fermifliche in der oben beschriebenen Weise
zerfallt. Aber auch in den Punkten des p-Raumes,
in denen die Fermi-Kugel den Zonengrenzen nur
sehr nahe kommt, tritt eine starke Abweichung von
der Kugelgestalt auf, so z.B. bei Kupfer und den
Edelmetallen.

Man braucht zur Abschitzung der Ausdriicke
Gl. (2.1), (2.2) die Bloch-Zustéinde der Elektronen
in der Niahe dieser Brillouin-Zonenwand in einer
guten Naherung, dafl wenigstens die Energie £, (p)
und damit die Form der Fermi-Fliche an diesen
Stellen richtig wiedergegeben wird. Fur die Bloch-
Funktionen wird ein Ansatz mit orthogonalisierten
ebenen Wellen gemacht (OPW-Verfahren). Die
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einfachste Naherung, die die erwdhnten Verhilt-
nisse z. B. fiir Magnesium beschreibt, ist eine Nahe-
rung mit zwei ebenen orthogonalisierten Wellen.
Nun geniigt die Uberlagerung der ebenen Wellen,
aus denen diese orthogonalisierten ebenen Wellen
entstehen, nach PrILLIPS und KLEINMAN4 einer
Gleichung, die der Schrodinger-Gleichung &dhnelt.
Das Potential ist hierin jedoch durch ein Pseudo-
potential zu ersetzen. Die Uberlagerung der wenigen
ebenen Wellen ist die Pseudowellenfunktion. In der
Néherung mit zwei OPW hat die Pseudowellen-
funktion die Form:

Upp(r) = An(p) €7 + By (p) €P~20°7. (24)

Die Konstanten A4,(p) und B, (p) werden durch
Einsetzen dieses Ansatzes in die Phillips-Kleinman-
Gleichung bestimmt. Unter den Fourier-Koeffizien-
ten des Potentials Vi ist jetzt stets der Fourier-
Koeffizient des Pseudopotentials zu verstehen, der
als bekannt vorausgesetzt wird. Sein Wert kann,
wenigstens der GroBenordnung nach, angegeben
werden fir verschiedene Metalle, deren Band-
struktur und Fermi-Fliche bekannt sind. Eine
numerische Abschiatzung hat gezeigt, daf die-
jenigen Teilintegrale von g;‘,’i i,p(bK), die unter Ver-
wendung der OPW fiir die Bloch-Funktionen mit
den Rumpffunktionen zu bilden sind, einen Bei-
trag von maximal 29, zum Gesamtwert von
o™ i p (bg) liefern. Sie werden im folgenden stets
vernachlédssigt. Es ergab sich weiterhin, dafl die
mit dem Ansatz Gl. (2.4) erhaltenen Summanden
der Summen iiber p und 7 in Gl. (2.1) mit wachsen-
dem Abstand der Variablen p von der Brillouin-
Zonenwand stark abnehmen. Die Phillips-Klein-
man-Gleichung liefert dann mit dem Ansatz
Gl. (2.4) fiir die Wellenfunktionen auch die Energie
E1(2) (p) der beiden Bénder. Ebenso lassen sich die
Integrale g;‘,'ii,, p(bx) elementar berechnen. Sie
werden jedoch zur Vereinfachung nach dem
Vektor k entwickelt. Da die Plasmaschwingungen
nur fir Werte von | k|, die wesentlich kleiner als
der Grenzwert k. sind, stabil sind, wird die Taylor-
Entwicklung nach k als zulédssig angesehen. Man
erhélt dann sowohl fiir den Zéhler als auch fiir den
Nenner von v(b;, bk, k) eine Entwicklung nach
Potenzen von £k, die jeweils bis zur zweiten Potenz
in k gefithrt wird. Zur weiteren Auswertung von
Gl. (2.1) muBl die Summation tber die Vektoren p
in der ersten Brillouin-Zone durch Integration er-
setzt werden. Die Integrationsgrenze ist die Fermi-
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Fliche Ex = E;) (p), die an der Brillouin-Zonen-
wand 1bg in schon beschriebener Weise von der
Kugelgestalt abweicht, und die Flache

~

Erx=Eie (p+ k).

Da die Funktion E; (p), E2(p) Rotationssymmetrie
um eine zu bk parallele Achse aufweist, laB3t sich
die Rechnung durch Einfihrung von Zylinder-
koordinaten (pr, pz, ) im reziproken Raum ver-
einfachen, wobei p, die Koordinate parallel zu bg
ist. Die Integrationsvolumina im reziproken Raum
fiir Ubergéinge aus besetzten Zustinden im Band 2
bzw. 1 in unbesetzte Zustinde im tieferen Band in
unbesetzte Zustinde des hoheren Bandes sind in
Abb. 1, 2 und 3 skizziert- Abb. 1 und 2 stellen die
Verhiltnisse dar, falls k nur eine r-Komponente
hat, Abb. 3, falls k nur eine z-Komponente hat.
Den allgemeinen Fall erhilt man durch Uber-
lagerung der beiden Fille.

Pr E(Z)(pr,px) =Ep

b

kp d3p

o

EF=E(2)( Pr+kr,Py)

Pt Px

2k
2
Fig. 1. Zur Integration im p-Raum, Gl. (2.1). Schnitt der
Fermi-Fliache und einer um k, senkrecht zur p,-Achse ver-

schobenen Fliche mit einer Ebene, die die p;-Achse ent-
halt.

Man bekommt damit eine qualitative Abschét-
zung fir v (0, bk, k), mit deren Hilfe dann auf die
Winkelverteilung im differentiellen unelastischen
Wirkungsquerschnitt mittels Gl. (3.14)I, (3.16)I ge-
schlossen werden kann und mit deren Hilfe die
Imaginérteile des komplexen Fourier-Koeffizienten
Cox GIl. (1.7)I, (3.17)I berechnet werden koénnen.
Nach einer liangeren jedoch elementaren Aus-
wertung der Impulsraumintegrale ergibt sich
schlieBlich fir v (0, bk, k) das folgende Resultat:

pri? ) (py oky)

W.MUNCHMEYER

pr(z),“) ky cos ¢ d¢

Fig. 2. Schnitt der Fliachen aus Fig. 1 mit einer Ebene,
die senkrecht zur p.-Achse steht.

A

Pr(Z)(Px) e

N

o

.

Px  Px*kx Pfx Px

N

bk
7
Fig. 3. Dasselbe wie in Fig. 1. Verschiebung erfolgt hier
parallel zur p;-Achse um Fk,. Schraffierter Bereich fiir
erginge aus besetzten Zustinden des tieferen Bandes in
unbesetzte Zustinde des hoheren Bandes.

= Tcrz f;zz
0,bg, k)=4 —=— 1+ B——
v(0, by, k) HE + i
%r];z (PF'];I)
C——+4+D——F—. 2.5
+ k]2 + i (2.5)

Die Koeffizienten A, B, C, D hidngen in uniiber-
sichtlicher Weise von der Fermi-Grenzenergie Ey,
dem Fourier-Koeffizienten Vi des Pseudopotentials
und der GroBe ex = h?|bg/2[2/2m ab*. Eine
numerische Auswertung wurde fiir Magnesium,
Beryllium und Kupfer durchgefiihrt. Dazu wurden
die Werte fiir Vg fiir Magnesium aus einer Arbeit
iiber die Bander und Form der Fermi-Fliache von
FaLicov® entnommen. Fir Be wurden fiir die Er-
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mittlung von Vx Werte aus einer experimentellen
Arbeit von Warrsé tiber die Form der Fermi-
Fliache und fiir Er ein Wert aus einer Arbeit von
Loucks und CuTLER? entnommen. Fir Kupfer
wurden Werte aus einer Rechnung von SEGALS ver-
wendet. Die fiir die Berechnung der Koeffizienten
A, B, C, D benutzten Zahlenwerte sind in Tab. 1
zusammengestellt. Die damit numerisch berechne-
ten Werte der Koeffizienten A, B, C, D fur die ver-
schiedenen Metalle, die Werte fir k, und die
Plasmonenenergien % wp; sind in Tab. 2 angegeben.

Tab. 1. Zahlenwerte der firr die Berechnung der Koeffizien-
ten 4, B, C, D benutzten Konstanten.

K [aE] EF VK EK PF
€eV) (eV) (eV) [aE]
Mg [002] h.c.p. ¢=9,7840 9,30 0,70 5,60 0,825
a = 6,026
Be [002] h.c.p. ¢=6,7715 12,36 3,74 11,70 0,955
a = 4,2319
Cu [111] f.c.c. a=6,83082 6,92 1,96 8,63 0,715

_Fiir Eg=30keV, Eo=500eV wurde v(0, bg, k),
(ky=Fk,,,)? in Abhangigkeit von k; >0 dar-
gestellt, siehe Abbildung4. Der Verlauf von
v (0, bg, k) wird im wesentlichen durch das 1. und
4. Glied der Gl. (2.5) bestimmt. Da der Zéhler des
4. Gliedes in Gl. (2.5) linear in k ist, ist die Funk-
tion v (0, bx, k) wegen Vorzeichenidnderung von k,
nicht symmetrisch. Hier kénnte die Erkldrung fur
die von IsHIDA10 gefundene schwache Abhéngig-
keit der mittleren freien Weglidnge fiir Plasma-
schwingungen von der Abweichung von der Bragg-
Bedingung gesehen werden. Es ist zu bemerken,
dafl die Rechnung fiir niedrige Elektronenenergien
wie 500 eV nur eine sehr grobe Abschétzung liefern
kann, da bei der Berechnung der Ubergangs-
wahrscheinlichkeiten in Teil T Stérungstheorie bis
zur ersten Ordnung angewendet wurdell. Fir
kyr =k, und ky ~ 0 ergibt sich ein sehr schwacher
Abfall von v(0, bx, k) mit wachsendem k. Der
Nenner |k — bk |2 in Gl. (3.6)I fithrt dann zu einem
etwas starkeren Abfall. Damit ist das Verhalten
von v (0, bg, k) in Abhéngigkeit von k skizziert.
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Eo =30 keV

Be : kpmin =1.47-10 2 {a.E.)

.. CU:Kemin =0.59-107 (@.E.)

o2 Mg krmin =05 107 (a.E.)

E, =500 eV
______ Be : krmin =0114 (a.E.)
e CUtkpmin=0144  (a.E.)

N Mg: krmin =76 107 (a.E.)

Fig. 4. Die Funktion V (0, bk, k), Gl. (2.5), in Abhingigkeit
von kg fir kr = krmgn.

3. Abschitzung des Imaginirteils von Cy,

Das Integral Gl. (1.7)I zerfillt in ein Volumen-
integral, welches den Realteil liefert und in ein
Oberflachenintegral, welchesden Imaginarteil liefert.
In der Plasmafrequenz wird wieder die Dispersion
vernachlissigt. Da k beschrinkt ist auf den Be-
reich 0 < |7sl < | k|, ist als Integrationsgebiet nur
ein bestimmtes Volumen im Impulsraum zuge-
lassen, was durch die beiden §-Funktionen (Impuls-
erhaltung) erzwungen wird. Mit der Beschrinkung
auf den Fall b; = 0; by;=0 erhdlt man fir die
Integration im Impulsraum die aus Abb.5 er-
sichtlichen Zusammenhédnge. Das Integrations-
volumen ist eine Kugel um den Endpunkt des
Vektors K§ mit dem Radius k. Aus der Kugel-
fliche, die nach Abb. 5 jhren Mittelpunkt im Ur-

Tab. 2. Zahlenwerte der Koeffizienten 4, B, C, D fur die Berechnung von GI. (2.5).

fi wpy ke A B c D

(eV) [aE]
Mg 10,9 0,50 -+ 25,9-102 — 6,7-10°2 —10,3-10-2 —1,58-102
Be 18,8 0,72 -+ 64,7102 +40,0-10-2 -+ 76,4102 — 13,6102
Cu 7.5 0,386 +42,3-102 +20,7-10-2 +29,2-10-2 —3,07-102
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sprung des Vektors KJ und den Radius
|Kp1| =}/ (2m/[A2) (E — hop)

hat, schneidet die schon erwihnte Kugel mit dem
Radius k. einen bestimmten Teil (¢) heraus. Auf
dieser Fliche (o) ist der Energiesatz erfiillt. Diese
Schnittfliche hat den Abstand | kymin| vom Mittel-
punkt der Kugel k.. Die Schnittfliche (o) ist die
Integrationsflache, iiber die bei der Berechnung des
Imaginérteils von Cog4 zu integrieren ist. Da fiir die
Absorption nur der Imaginirteil interessiert, soll
nur dieses Flachenintegral abgeschitzt werden. Es
lautet:

Im C 0g =

me? _ v(0, by, k)
4m k2 f 2 do
Bty |E— bl K|

(2.6)

Die Integrationsfliche kann fiir schnelle Elektronen
mit guter Nédherung durch eine Kreisscheibe er-
setzt werden. Fir langsame Elektronen wiirde

0a-=k

OR =k OP=Kmin Pa=k, PR=k
Fig. 5. Zur Integration im Impulsraum. Fir die Integra-
tion iiber die Flache ¢ wird das aus der Figur ersichtliche

System eingefiihrt:

2= k;mn + kﬂ, 3 IE, = l;m cos @; I::y = ];;-q sin @
B = (kz—kfm ); kZ=k% sin2p+ k2

do = krodp dkrs.

diese Naherung natiirlich nur noch eingeschrinkt
giiltig sein. Solange jedoch der Durchmesser der
Kugel, die zur Energie E, gehort, noch erheblich
groBer ist als der der ersten Brillouin-Zone, kann
man zur Abschitzung diese Ndherung machen. Die
Integrationsgrenzen sind aus Abb. 5 zu entnehmen.

Es ist zweckmaBig, statt mit hk,mm und Fikc mit
den Energien zu rechnen, die die entsprechenden

W.MUNCHMEYER

freien Elektronen mit diesen Impulsen haben, d.h.
Bke2 E3/AEr = Eo, Fikrmin 2 Emin = E%/4E,.
Fiir b, = 0 folgt aus Gl. (2.6):

~

e2m k.2
Im C’oo 2% [K [ hwm In (]cr:,,.,) (2.7&)

Im Coo = 3 Ep1 |/ En/(Eo —
wobei Ex = e4m/2k2.
Mit dem schon berechneten Ausdruck fir

v(0, bk, k) Gl. (2.5) erhidlt man damit das folgende
Integral:

EPI) ln Eo/EF (27b)

_ Em
Ey— Epy
1 v(0, by, k) kro dkrs dg
I Oj (B2 + krssn + kro — 2| by | kro cos @)

1
Im Cog = ? EPI

kro Max 27

(2.8)

Da der Nenner des Integranden von GI. (2.8) nur
schwach von k abhéngt, im Gegensatz zur Funk-
tlon v(0, bK, k), wird er durch einen Mittelwert
(b7 + 3} (k2 e kz)) ersetzt. Mit dieser Verein-
fachung kann eine Integration durchgefiihrt wer-
den. Die Ergebnisse einer numerischen Auswertung
fiur die Verhéltnisse ImCog/ImCop sind fiir zwei
Werte von Ey und fir die drei Metalle in Tab. 3
angegeben.

Tab. 3. Die nach Gl. (2.7b) und Gl. (2.8) berechneten Ver-
hiltnisse der Imaginéarteile.

Ky B0keV) Im Co (500 eV)  Im Co,
kraa (AE]  Im Coo kryia [2E]  Im Coo

Mg [002] 0,5-102 0,534-10-2 7,6-10-2 1,10-10-2

Be [002] 1,47-102 2,70-10-2 0,114 6,30 - 10—2
Cu [111] 0,57 - 102 0,81 -10-2 0,144 1,60 - 10-2
Diskussion

Eine experimentelle Uberpriifung dieser zu-
sitzlichen unelastischen Streuprozesse muf3 durch
Energieanalyse der Beugungsreflexe erfolgen bzw.
durch eine sehr genaue Messung der anomalen
Absorptionskoeffizienten. Die Untersuchungen von
IsHIDA 10 und CuNDY 12 weisen auf einen schwachen
Effekt hin. Die hier berechneten numerischen Werte
fir die anomalen Absorptionskoeffizienten sind
groBenordnungsméBig vergleichbar mit den Werten,
die YosH1okAl3 fiir die durch Einzelelektronen-
anregung bedingte Absorption erhalten hat. Die
Ergebnisse fir Eo = 500 eV sind, wie schon er-
wéahnt, bei der Diskussion von v (0, bk, k) nur als
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grobe Naherung zu werten, die jedoch zeigt, dafl
der Effekt fur 500 eV grofler ist und fir LEED
interessant sein konnte. Das Verhéltnis

Im Cog/Im Coo

ist von dem Grenzwert l::c abhingig. Dieser Grenz-
wert liefert die Integrationsgrenze und damit die
Grofle von Im Cyp und Im Cy,. Die Abhingigkeit
ist jedoch bei dem Verhéltnis Im Co,/Im Cyp etwas
weniger stark als bei Im Co, selbst. Die Werte fiir
k¢, die aus der einfachen Abschétzung folgen (siehe
z.B. RAETHERS) sind vermutlich zu grof. Eine
Déampfung der Plasmonen, die nicht nur nach dem
Erreichen der Grenze k. eintritt, sondern stets
einen endlichen Wert hat, fiihrt zu einer effektiven
Verkleinerung von k.. Diese Dimpfung wird erst
durch eine Theorie, die iiber die Paarniherung
hinausgeht, geliefert. Die hier durchgefithrte Theorie
kann jedoch zur GroBenordnungsabschitzung des
Anteils vom Imaginérteil des komplexen Potentials
der von den Plasmaschwingungen herriihrt, dienen.

Anhang 4

Es wird folgende Beziehung hergeleitet:
[ thnp (r) €°% T Uy, (r) d3r = OB, (p)/0Vk .
20

Sei V(r) das Gitterpotential, so lautet die Schro-
dinger-Gleichung

(— (#2[2m) + V(r)) thpp (r) = EP upp (r)

und fiir ein Elektron in einem davon schwach ab-
weichenden Gitterpotential V(r) mit der gleichen
Symmetrie und Gitterkonstanten fiir die Wellen-
funktion @, (r)

(— (B2/2m) + V(r)) iup (r) = En () tlnp (r)-

1 R. A. FErrELL, Phys. Rev. 101, 554 [1955].

2 A. Howig, Proc. Roy. Soc. A 271, 268 [1963].
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Springer Tracts in Modern Phys. (Ergebnisse der exakten
Naturwissenschaften) 88, 85 [1965].

4 W. A. HarrisoN, Pseudopotentials in the Theory of

Metals, W. A. Benjamin Inc., New York 1966.

L. M. Faricov, Phil. Trans. A 255, (No. 1051) 55 [1962].

Warrts, Proc. Roy. Soc. A 282, 521 [1964].
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Daraus ergibt sich durch Multiplikation der ersten
Gleichung mit uy, und der zweiten mit u,p und
anschlieBender Subtraktion beider Gleichungen
voneinander und Integration

J = Tap (3[2m) g + iy (B2]2) ) A%
+[n) - V(r)) g p ttpp d3r
= [[Bn(P) = En(p)) ipp np .

Das erste Integral verschwindet und in dem
zweiten entwickelt man V(r) und V(r) in die
Fourier-Reihen. V(r) soll sich von V(r) in einem
Fourier-Koeffizienten: Vg = Vk 4 6 Vk unter-
scheiden. E,(p) und 7%,, werden ebenfalls nach
0 Vi entwickelt. Wegen der Bloch-Eigenschaft der
Wellenfunktionen kann man die Integration iiber
das Kristallvolumen Q durch die iiber die Einheits-
zelle Qy ersetzen. Da & Vg eine beliebige Variation
sein soll, und wegen der Normierung der Wellen-
funktion folgt die oben angegebene Behauptung.

Herrn Professor Dr. K. MoLIERE danke ich fiir die An-
regung zu den als Teil I und II veréffentlichten Arbeiten
und fir die Férderung bei der Durchfithrung.

Mein ganz besonderer Dank gilt Herrn Dr. K. KAMBE.
Seine Ratschlige und férdernde Kritik, zu der er jederzeit
bereit war, waren eine auBerordentlich wertvolle Hilfe.
Ebenfalls méchte ich mich bei Herrn Dr. E. H. WAGNER
fir seine Bereitschaft zu Diskussionen und Gesprichen be-
danken.

Fiir diese Arbeiten stellte die Max-Planck-Gesellschaft
ein Stipendium zur Verfiigung; weitere Mittel gewihrte
die Deutsche Forschungsgemeinschaft. Beiden Institu-
tionen bin ich zu Dank verflichtet.

* Eine ausfilhrliche Darstellung der Koeffizienten 4, B,
C, D enthilt die Dissertation des Verfassers, D 83 T.U.
Berlin 1969.

9 kr = krmia wegen Energie- und Impulserhaltung, siehe
Gl (1.1).

10 K. Isarpa, M. ManNam1i, and K. Tanvaka, J. Phys.
Sov. Japan 23, 1362 [1967].

11 Fiir noch niedrigere Energien als ~ 30 eV sind keine
Streuungen am Plasma mehr moglich, da krm. dann
groBer als k; werden wiirde.

12 S. L. Cunpy, A.J. F. METHERELL, and M. J. WHELAN,
6th Int. Conf. El. Micr. Kyoto Vol. 1, p. 87, Tokyo
1966.

13 H. YosHIOKA, J. Phys. Soc. Japan 12, 618 [1957].

14 K. KAMBE, private Mitteilung.



