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Beriicksichtigung der Gitterperiodizitit bei der Elektron-Plasmon-Streuung. I.
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Herrn Prof. Dr. K. MOLIERE zu seinem 60. Geburtstag gewidmet

Consideration of Lattice Periodicity at the Electron Plasmon Scattering. 1.

The scattering of electrons by solid-state plasmons is investigated, the system of valence elec-
trons being treated with Green’s function method. The lattice periodicity is taken into account for
the wave field of the incident electrons as well as for the plasma oscillations of the valence elec-
trons. Scattering processes which contain a reciprocal-lattice vector in the momentum balance ap-
pear in addition to the usual inelastic small-angle scattering. Their influence upon the imaginary
part of the complex scattering potential is discussed. In a following paper, the reason for the
additional scattering processes will be given in terms of the form of the Fermi surface of the solid.

Einleitung

Bei der Elektronenbeugung an Kristallen werden
neben den elastisch gestreuten Elektronen auch die
unelastisch gestreuten vornehmlich in die durch die
Bragg-Bedingung bestimmten Reflexionsrichtun-
gen gestreut. Diese unelastisch gestreuten Elek-
tronen haben vor oder nach der elastischen Streu-
ung am Gitter Energie durch Wechselwirkung mit
den Festkorperelektronen verloren. So fithrt die
Anregung von Plasmaschwingungen der Fest-
korperelektronen durch schnelle Elektronen zur
unelastischen Kleinwinkelstreuung. Der Wirkungs-
querschnitt fir den zuletzt erwihnten Prozell
wurde nach der Bohm-Pines-Theorie von FERRELL!
berechnet. Im wesentlichen basieren alle Er-
klairungen der Experimente auf der Theorie des
homogenen Elektronengases2. Dort wird zur Ver-
einfachung eine dielektrische Funktion eingefiihrt,
die von Wellenzahl und Frequenz der Stérung ab-
hingig ist. Es wurde jedoch zusitzlich von IsHIDA
* Jetzt Siemens AG., Berlin, MWB.
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u.a.3 und CuNxDY? experimentell eine schwache
Abhéngigkeit der freien Wegliange fiir Elektronen
von der Bragg-Bedingung festgestellt. Im Gegen-
satz dazu wurde von MEYERS und HirscH® keine
solche Abhéngigkeit angegeben. Ob und in welcher
Form bei der Elektron-Plasmon-Streuung eine
Abhéangigkeit von der Bragg-Bedingung und damit
von der Gitterstruktur des Festkorpers vorliegt,
soll in der vorliegenden Arbeit theoretisch geklirt
werden. Ausgegangen wird von KaiNnumas? Theorie
der Kikuchi-Linien und YosH1oKAs® Theorie der
anomalen Absorptionskoeffizienten. Es werden zu-
nachst zwei Probleme behandelt:

1. Es wird untersucht, ob zusitzlich zu der oben
beschriebenen e’astisch-unelastischen Zweifach-
streuung eine direkte unelastische Streuung in die
Reflexrichtung erfolgt. Eine schematische Dar-
stellung dieses Sachverhalts ist aus Abb. 1 zu ent-
nehmen (s. Diskussion).

2. Es wird eine Formel fir den Imaginéirteil des
komplexen Streupotentials angegeben, die die
wegen der zusidtzlichen Streuprozesse zu er-
wartende Anderung der Absorption beschreibt
(anomale Absorption).



396

Die direkte Elektronenstreuung in die Bragg-
Reflexe 1aBt sich nur dann erkldren, wenn der
inverse dielektrische Operator? 10 eine Matrix im
reziproken Gitterraum ist. In der vorliegenden
Arbeit wird jedoch dieser Operator nicht voll-
standig benotigt. Der Wirkungsquerschnitt nach
Ferrell ist natiirlich als Sonderfall in ihr enthalten.

0

Abb. 1. Schematische Darstellung der geometrischen Be-
ziehung zwischen den Plasmonenimpulsen k, den rezi-
proken Gittervektoren b;, b] und den Wellenvektoren der
Wellenfelder K{", K(”) K(" K(") (die ausgezogenen Li-
nien kennzelchnen 1nsgesamt 8 moghche Fille, u. a. den

Fall:
Normaler Prozef3

bi=0; k+KP-—K=0.
Zusétzlicher Prozef
bj=—by; k+KY K" +b;=0.

E:+AE

Uaf—oof |/ Ey

Hierin ist S die folgende Funktion:

), (V) (u) (/4)

S(gnn qqgq’> ®) Z HOn Huo(R

wobei 2 = Kristallvolumen.
Darin sind die Abkiirzungen eingefiihrt:

qn = K — K7

"Yexp {i (qnn - R)

W.MUNCHMEYER

1. Der Wirkungsquerschnitt fiir unelastische
Streuung und der anomale Absorptions-
koeffizient

Aus dem Elektron mit der Energie Ey entsteht
im Kristall das Bloch-Wellenfeld %%, (R). Das
Kristallelektronensystem befinde sich im Grund-
zustand ag (r1, r2, ..., ry). Durch Coulombwechsel-
wirkung des schnellen Elektrons mit den Fest-
korperelektronen werden im Kristall elektronische
Prozesse angeregt, wodurch das Wellenfeld Energie
verliert. Gitterschwingungen werden nicht be-
trachtet. In einem Streuprozell erster Ordnung ent-
steht ein Wellenfeld ¥%.(R) mit der Energie
E, < Ey, das sich im Vakuum in dem unelastisch
gestreuten Elektron fortsetzt. Das Kristallelektro-
nensystem befindet sich im angeregten Zustand
ap(ry, re, ..., ry). Die Entwicklung eines Wellen-
feldes sei gegeben durch:

V(R Z}’O(’)EXP{L (K™ - R)}.

Darin bedeuten: K,?‘”)-—- 0 L by der Wellen-
vektor eines Feldes mit der Energie Eq, der zur
Dispersionsfliche (v) gehort, by ein reziproker
Gittervektor, »9® die Amplituden des Bloch-
Wellenfeldes.

Die gleiche Entwicklung wird fiir das Wellenfeld
Pk (R) durchgefithrt. Die dazugehérigen Ampli-
tuden und Wellenvektoren werden im folgenden
durch Uberstreichen gekennzeichnet. Analog zu
Kaixumas Theorie der Kikuchi-Linien?:11, jedoch
unter Mitfilhrung der Abhéngigkeit von Zw =
Ey — E, erhilt man fur den differentiellen Wir-
kungsquerschnitt in erster Néherung fiir die un-
elastische Streuung von Elektronen in den Energie-
bereich E¢ mit der Energiebreite 2AE das folgende
Ergebnis:

(1.1)

D=0 O(E)* = Ey—E
Z XO()7( D* 0U* )S<q7m a2 ) (1.2)
Jexp{—i(qgey - R)}d3Rd3R"- 6 (0 — wno), (1.3)
qee = K2 — K\ (1.4)
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Hyp (R) sind die Matrixelemente der Wechselwirkung
Hw(ry,rs,...,r5, R) = e?/|r; — R| (1.5)
i

der einfallenden Elektronen mit den Festkorperelektronen:

Huym(R)= [[an(r1,r2,....,r8) Hw(r1,r2, ..., Tn, R)am(ri, re, ..., ry) d3r1 d3rs ... d3ry. (1.6)
a0

Die GroBe S(qnn', qqq’, w) ist der verallgemeinerte Strukturfaktor, der die Eigenschaften des streuenden
Systems beschreibt. Er ist, abgesehen von der Variablen , eine Funktion der beiden unabhingigen
Impulse gpp und qgq- .

Die Ermittlung von S(qpn’, qg¢, ®) fiihrt zur Losung des ersten Problems.

Die Wirkung der unelastischen Felder auf das elastische Wellenfeld wird in niedrigster Naherung be-
schrieben durch ein komplexes Potential 8. Die Fourier-Koeffizienten dieses Potentials sind nach YosHIokA
[siehe 8, Gl. (20)]:

Chg = &I%Q.fG(K}:— K' K)— K',ho(K')d3K’, (1.7)
7
wobei G die Funktion: o
K’)- R}exp{i(K,

0__ K’ KO ’ / n exp{— (K3 — ) —K')-R} 13p 13p:
G(K)— K',K) — K',ho(K")) z Ho,,, (R) Hyo(R') T G P d3Rd3R
(1.8)

K2 K"

und h (,()(K’) = E() i é*m—“ (19)

ist. Die Imaginéirteile von Cpg (k +g) sind die sogenannten anomalen Absorptionspotentiale der Elek-
tronenbeugungstheorie.

2. Zusammenhang mit der Zweiteilchen-Green-Funktion

Es lassen sich die Funktionen S und G auf eine Zweiteilchen-Green-Funktion GII zuriickfiihren, die man
angendhert berechnen kann. Um den Zusammenhang zu erhalten, wird die Wechselwirkung in eine
Fourier-Reihe entwickelt und das Matrixelement Hyy, (R) folgendermafBen umgeschrieben:

47 e2 1 a- X
— (R—r) 3
Hon(R) = (0| [¢+n) 45" 5 oy 0 @0 () d3r | m). 2.1)

q+0

Darin sind |0) der Grundzustand des N-Elektronensystems, |n) der n-te angeregte Zustand des N-Elek-
tronensystems. Beides sollen die exakten Zustdnde unter Beriicksichtigung der Coulomb-Wechselwirkung
sein. ¢t (r), @(r) sind die Erzeugungs- und Vernichtungsoperatoren eines Elektrons am Ort r. In dieser
Darstellung erhélt man fir S und G+ nach Einfithrung des Dichteoperators o (r) = ¢*(r) ¢ (r) und nach
Integration sowohl iiber die Ortskoordinaten des Elektronenwellenfeldes der schnellen Elektronen R, R’
als auch iiber die Koordinaten r der Festkorperelektronen die folgenden Ausdriicke:

1 1

R = ey ,,Zq,mf o da—am)old — ) A@d\0),  (22)

G(K) — K',K? — K',ho(K') = (47 e?) Z IZ |q|2 6(q — K+ K')

0(—q' + K] — K')G*(q, 4, o(K")). (2.3)

Es bedeuten:
A(‘L‘I',w)=2<0[Q(Q)|n><n|9 0> 6(w — wao), (24)
g s Z 0le(q)[n><n|e(q)]| 0> 2.5)

th’)—hwno—l—@e)

0(q) ist die Fourier-Transformierte von p(r).
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Die Fourier-Transformierte der Zweiteilchen-Green-Funktion GX(ry, re, ) beziiglich der Orts- und
Zeitkoordinaten sei G11(q, q’, ). Da die Invarianz gegeniiber kontinuierlichen Koordinatentransforma-
tionen nicht mehr besteht, hingt GII von den beiden Koordinaten ry, rs bzw. den beiden Impulsen q, q’
ab. Die Lehmannsche Spektraldarstellung der Zweiteilchen-Green-Funktion G1I(q, ¢’, ») ist12:

+ oo
f o= [ (Ale9.5) _ A(q,9d) ),
GII(q, q, CU) = E;t‘f ( w— CER P o+ 5:7:) dw. (26)

Das erste Integral von Gl. (2.6) ist identisch mit (%/2x) G*(q, q’, ) aus Gl. (2.5). Kennt man G1I(q, q’, )
so auch A(q, q’, w) und umgekehrt. Nach einem zum homogenen Fall13.14 analogen Vorgang erhilt man
fiir den inhomogenen Fall nach Zerlegung von GII in seine symmetrischen and antisymmetrischen Anteile
G1Is und G112 mit Hilfe der Spektraldarstellung den folgenden Zusammenhang:

A(q,q', w) = —2Im(G11s(q, q', w)) + 2 Re (G2 (q, q’, ®)) (w0 >0). (2.7)

3. Berechnung von G''(q, q’, »)

Fir das dichte Elektronengas liefert die Aufsummierung der Polarisations-Graphen-Reihe, die im
homogenen Fall moglich ist, ein konvergentes Ergebnis fir g — 015. Beschrankt man sich weiterhin auf
den Fall des dichten Elektronengases, laf3t aber die Beschrankung der Homogenitét fallen, so erhilt man,
wie fiir den homogenen Fall, fiir den nicht homogenen Fall zur Bestimmung von G (r1, ra, ») die Integral-
gleichung:

(ry,ro, w) = G{)I(rl, ro, )+ 2n fL(rl, r3, w)G(r3, re, o) d3rg, (3.1)
2

die man durch Fourier-Transformation beziiglich der Zeit aus der Integralgleichung:

1
Gl (ry, t1, 12, t2) = Ggl (r1, b1, r2, t2) + 5 /L(rl,tl, r3,t3) 0(ty —t3) G (r3,t3, ra2, t) d3rzdts  (3.2)
Q2

bekommt. Darin sind:
Gl(r1,t1,re, ) = — i GY(r1, b1, ro, ta) G(re, b2, 71, 1), GR(ri,ty,ra, ) (3.3)

die Einteilchen-Green-Funktion und
L(ry,t1,ra,t) = *;‘fG(I)(rl,h, r3, t3) GY(rs, ts, ri,t)v(|rs — ra|) 0(t3 — to) d3r3dis (3.4)

der Kern der Integralgleichung. Die Integralgleichung (3.2) ist das Analogon zu der Integralgleichung fiir
G (ry — rg, t) im homogenen Fall, die man durch die Ricktransformation in die (r, t)-Darstellung der
durch die Aufsummation der Polarisations-Graphen-Reihe entstehenden Beziehung im (q, w)-Raum er-
halten kann. Analoge Integralgleichungen haben HuBBARD 16 sowie ABE, Osaka und MoriTal? fiir die
modifizierte Wechselwirkung und FarLx? fir den inversen dielektrischen Operator e~1(k, o, by, bs) her-
geleitet. Eine Naherung fir die Fourier-Transformierte des inversen dielektrischen Operators im nicht
homogenen Fall hat ENGELSBERG 18 auf anderem Wege gefunden. Nach HusBarD 16 (II1,4) benutzt man
zur Abschéitzung der Losung der Integralgleichung (3.1) die Eigenschaft der vorderen und hinteren Kern-
funktionen @@ und y @ der homogenen Integralgleichung von Gl. (3.1).

p () 7D (r1k, @) = 220 [ L(r1, ra, 0) 70 (ry k, ) dPr (3.5a)
Q2
EO (@) DO* (s, k, 0) = 27 [ L(r1, ra, 0)DO* (1, k, ) dry . (3.5b)
Q

Da der Kern, Gl. (3.4) der Integralgleichung gitterperiodisch ist, d.h., da gilt:
L(ri+ Ry, rs+ Ry, )= L(ry,r2, ) (R, = bel. Gittervektor) (3.6)
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miissen die Eigenfunktionen @@, ¥ den Charakter von Bloch-Funktionen haben. Die Eigenwerte ,ug)(w)
miissen Bandstruktur besitzen. Der Index (¢) kennzeichne das Band. Nachdem man alle gitterperiodischen
Funktionen, die als Faktoren in den Eigenfunktionen @, ), in dem Kern und in Gél auftreten, in
Fourier-Reihen entwickelt hat, erhdlt man nach einer einfachen Zwischenrechnung den folgenden Aus-
druck fiir G (r1, ra, ®) bzw. fir die in Abschnitt 2 eingefithrte Funktion G (q, q’, w):

ZG”(" , br, bs) p®* (ke by) 1D (k, ©, by)

GII(rl, rz,w) qj(j)*(,: -
3 s > ), b @ k, w, b
Gl(q, q', w) i,i,j,zn,m a— '“(l:) (@) ) X9 ( m)

exp{— 7 k — by) - ri}exp{i( k — bp) - r2}

8(—k+by—q)-0(k—bu+ q).
Darin sind G{! (k, ®, b,, b;) die Entwicklungskoeffizienten von G3!(ry, ra, ), i 4 (@) der oben eingefiihrte
Eigenwert der homogenen Integralgleichung (im allgemeinen komplex), @® (k w, by), xP (k, , by) die
Entwicklungskoeffizienten der oben eingefiihrten Eigenfunktionen der homogenen Integralgleichung.

Das Ergebnis Gl. (3.7) soll jetzt ausgewertet werden. Die Bestimmungsgleichung fiir die Eigenwerte der
homogenen Integralgleichung ist:

Det (270 L (K, , by, by) — 4l (w) 8r) = 0. (3.8)

3.7)

Die L (7:, w, by, bs) sind die Matrixelemente des Kernes, sie werden im Anhang I angegeben. Die niedrigste
Niherung fiir die ‘u(’.‘i) (w) sind die Diagonalelemente von L, d.h.:

#9(0) = 21 L(k, w, by, by) . (3.9)

Die einzelnen Eigenwerte (d.h. die Indices (¢)) werden jetzt durch die b, charakterisiert. Dann sind in
niedrigster Naherung die dazugehérigen Eigenfunktionen im Impulsraum:

D0 (k, 0, by) = 0i; 1D (k, @, bs) = 5. (3.10)
Damit erhilt man aus Gl. (3.7) den vereinfachten Ausdruck:
GII(q’q’ CO) —— z Gy (k, 0, by, by) 6(— k (?+bi)6(k+q, —7b!) . (311)
kg 1—g; (o)

Die Niaherung GI. (3.11) fiir GIT enthélt qualitativ sowohl die Anregung des Festkorpers als auch den Ein-
flu der Gitterperiodizitdt, so daB man hiermit die Stirkefunktion berechnen kann. Man erkennt an
Gl. (3.11), daB G'(q, q’, ®) zusitzlich zu den Polen der Greenschen Funktion G{'(q, ¢, ) noch einen
weiteren Pol wp; (k) besitzt, der durch die Gleichung:

1— ﬂg.?(w) =0 (3.12)

bestimmt wird. Das hei3t, es existiert eine zusétzliche Anregung mit der Energie i wp;, vorausgesetzt, dafl
die Bedingung Re(wp1) > Im(wp1) erfiillt ist. Nun ist der Realteil der linken Seite von GI. (3.12) fiir
b, = 0 jedoch identisch mit dem Realteil der Frequenz- und Wellenzahl abhéngigen dielektrischen Kon-
stanten des Festkorpersl?, wie sie z.B. aus der Random-Phase-Néherung gewonnen wird. Somit stellt
Gl. (3.12) die Dispersionsgleichung fiir Plasmaschwingungen dar. Setzt man die Existenz dieser Plasma-
schwingungen voraus, so kann man mit Gl. (2.7) die Spektraldichte (Stirkefunktion) in Analogie zum
homogenen Fall in zwei Anteile zerlegen14,20, Fiir den Pol von G (q, q’, ) an der Stelle wp; erhilt man
nach einer Zwischenrechnung fiir b; = 0 oder b; = 0 oder b; = b; = 0 das folgende Ergebnis20:

Api(k, 0, q,9q")

O(w — wp1) | k|2 Z{unbes bes 9p+kp(b‘)9p+kp(bf)A 1l’+kp/lm%es bgs |9p+kp(0| AE, p+kp

ron” Saa Pl (e — (4B, )Y Wonp (B w?— (AE)

P+" p)2)

“ (80 + 00) 0(— k — q + b)) 6(k + q' — bj)} (3.13)
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bzw. mit der Annahme % wp, > E% den vereinfachten Ausdruck?2!:

P+kp
unbes. bes. e i
~ z 9p+kp(bl)».p+kp(b1)AEp+l;p
Api (K, w, by, bj) = Bio & Bjo) - L EIZRm ¥ — . @M
Arp1(k, w, b, bj) = 6 (0w — op1) (d:0 + djo) 8o e uTﬂJes.bes. . n-~ — . (3.14)
N

Der zweite Anteil 4. fiir die Einzelanregungen wird in Anhang IT angegeben. Mit dem Ausdruck fir 4p;
(und 4.) erhélt man schlieBlich mittels Gln. (2.2), (2.3) die Funktionen S und @G. In dieser Arbeit soll nur
der Anteil Ap; behandelt werden. Der Anteil A, erfordert eine besondere Behandlung, da dazu eine Be-
rechnung von /Z,; (w) fiir den Festkorper nétig ist. Mit Gl. (3.14) ergeben sich sofort die entsprechenden
Anteile von S und @, die von den Plasmaschwingungen herriihren, nachdem man die Summation tiiber g
und ¢’ in Gln. (2.2), (2.3) ausgefithrt hat:

SPl(qhh" 999’ C()) - Z SPI (k, qnh’ > 9gg’ > w) ) (315)
k

7 7 0(— k—i—bl—q ) (k_b;'f“Iyy)
Sp(k . . = (4me?)? ) Api(k, 0, by, b)) — = e , .16
ri(k, qrr, qg97, ©) (76)% pi(k, @, by, b)) i — b2 F— b2 (3.16)

Gp (K — K, KO— K', Ey — (h2 K'2|2m))

i i — K} K' — b+ K) — K’

S Zf An(ko.bib)do  5(—k+bi— Ki+ K) 5(k— b+ K§— K') .17
E—12 K?22m —ho+1 5) [lc—ln[2 ]k—bj!z
Diskussion

Die ¢-Funktionen in Gl. (3.16), (3.17) enthalten die Auswahlregeln fiir die Vektoren KJ® und K’ im
reziproken Gitterraum. Es soll hier nur die Bedeutung der bei Gl. (3.16) stehenden ¢-Funktion diskutiert
werden. Sie verkniipfen den Plasmonimpuls k mit den Wellenvektoren gpp = KJ® — K" der Wellen-
felder und den reziproken Gittervektoren b;. Zur Vereinfachung sei angenommen, dafl sowohl das Wellen-
feld mit der Energie E¢ als auch das mit der Energie Eo — hwp) jeweils im Zweistrahlfall angeregt ist.
Fiir einen dieser Beziehung geniigenden Wert von k lassen sich die moglichen Uberginge, die in Gl. (3.16)
enthalten sind, durch die Abb. 1 veranschaulichen. In welchem Mafle Streuvorgénge vorkommen, in deren
Impulsbilanz zusétzlich ein reziproker Gittervektor vorkommt, hingt von den Werten von Q;’ﬁ i p(bi) ab.
Eine numerische Abschétzung soll in einem zweiten Teil erfolgen. Dabei ergibt sich als Kriterium fir das
Auftreten eines solchen Streuprozesses, dafl die Fermi-Fliche des Festkorpers von der Kugelgestalt ab-
weichen muf}. Diese Streuvorgéinge haben dann zur Folge, dall zusitzliche Anteile zu den Fourier-Kom-
ponenten des Imaginérteils des komplexen Potentials erhalten werden.

Anhang I
Die Matrixelemente des Kernes der Integralgleichung (3.1)
262 unbes. bes. , . , , -
L(k’ , br: bs) = |k7—7) |2 ( nz Z ( ?p,nk-,w) —lQ?pflk-,w)) g;:—bit,p (bT) 97;'1’;,17 (bs)) > (II)
’ "’p
2AE"" ¢ ) .
Tk o) = = AR {19 AEp i p = Euw(p + k) + Eu(p); (I.3)
(B2 w2 — ABM" )
ey =m0k — AE T3 p) + 0 (ho + AER 3 p)); (L4)
0% p (b)) = [y pyr(r)exp{—i(k — b,)}uj p(r)d3r. (L5)
Qo

y, p(r) sind die Einteilchenwellenfunktionen des Elektrons im Zustand (n, p) (n = Bandindex, p = Pseudo-
impuls).
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Anhang II
Der Anteil A, fir die Einzelanregungen, fiir den Gl. 3.12 nicht erfiillt ist, hat fo]gende Form:
- unbes. bes. - 1
_ b,) 0" ™ (b (rn— ) w} 1.1
Ae(k, w, br,bs) Z z {Qp+kp T)Qp«}-k,p( 8) IE(",w)rrlz + ]e(k w)sslz Q(p,k ) ( )
&k, w)pr = 1 — p90 (). (IL.2)

Die Anregungsenergien sind die ungestérten Einteilchenenergiedifferenzen fiir die Ubergiinge aus be-
setzten Zustdnden (n, p) unterhalb der Fermi-Grenze in unbesetzte Zustédnde (n’, p + k) oberhalb der
Fermi-Grenze. Die Produkte der Matrixelemente g;ﬁ'f;‘, p(b7) Q"P’f:,, p(bs) fiir diese Uberginge werden durch

ek, o MIZ 4 1/| & (E, w)sslz) modifiziert. Fiir b, = bs = 0 erhilt man den schon be-
kannten Ausdruck fur den homogenen Fall (siehe z. B. Gl. (3.105) bei ScHULTZ 14).
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