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Table 1.
vi/MHz ro/MHz i
TIK m(+3/2) m(+5/2) " i b/
Zm(£1/2)  Tm(+3)2) MHz

7 45.248+0.005 83.478+0.005 0.2580%+0.0001 281.892+0.005
123 45.2471+0.005 83.561 £0.005 0.2562+0.0001 282.128+0.005
153 45.232+0.005 83.619+0.005 0.2544+0.0001 282.280+0.005
213 45.173+0.005 83.749%£0.005 0.2495+0.0001 282.581 £0.005
253 45.097%+0.005 83.850+0.005 0.2444+0.0001 282.789 £0.005
296 44.976 £0.005 83.960+0.005 0.2372+0.0001 282.977 +0.005
313 44.900£0.005 83.994+0.005 0.2334%+0.0001 282.992+0.005
363 44.616 £0.005 84.043+0.005 0.2204%+0.0001 282.838+0.005
398 44.327+0.005 83.994+0.005 0.2087+0.0001 282.401 £0.005
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The small influence of g(e) in periodates can be
understood from the fact that for a I"*-ion the
Sternheimer factor y. should be small compared
to I". Also for I in “ionic” crystals such as
NH,TII,-2 H,O or Me,Ptl;, the main contribution
of e2qQ/h is due to g(p).

The hydrogen bond plays an important role in
the intramolecular interactions within crystalline
H;I04. A comparison of the !?I-NQR spectra in
D;I04 and H;IO; will be quite interesting in this
respect.
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The present paper shows how to incorporate the correlation between successive nuclear jumps,
which are well known to play a role in defect mechanisms of self-diffusion in crystals, into the
calculation of the correlation functions describing the temperature dependence of the nuclear
spin relaxation in solids. The treatment is based on an extension of Torrey’s theory of nuclear
spin relaxation by randomly migrating nuclei. Explicit and detailed results are given for the mono-
vacancy mechanisms of self-diffusion in an isotopically pure face-centred cubic crystal.

I. Introduction

BrLoeEMBERGEN, PUrceLL and Pouxp (BPP)!
showed that the time dependent nuclear magnetic
spin-spin coupling is one of the most powerful
mechanisms for bringing about spin-lattice relaxa-
tion in liquids and solids. In monoatomic solids this
time dependence is due to atomic diffusion which
may be characterized by the (temperature depen-
dent) mean time of stay of a nucleus on a given
lattice site, 7, henceforth called the “mean jump
time”’.

Information about diffusional motions may be
obtained from the measurement of the tempera-
ture dependence of the spin lattice relaxation time
either in the laboratory frame, 7’1, where the split-
ting of the Zeeman-levels is due to the constant
external magnetic field Hp, or in the rotating
frame 7'1,, where — in resonance — this splitting
results from the rotating field with amplitude ;.
If relaxation is observed in relaxation fields Hy or

1 N. BLOEMBERGEN, E. M. PurcerLL and R. V. Pouxp,
Phys. Rev. 73, 679 [1948].

2 A. ABracam, The Principles of Nuclear Magnetism,
Clareedon Press, Oxford 1961.

H, that are large compared with the internal local
fields, the temperature variation of 7'y and 7’1, may
be interpreted by means of perturbation theory.
In this way one obtains for 7'; due to the magnetic
dipolar interaction of like spins?2

e = 5 VR I+ DT (00) + TO 2ag)].
(1.1)

Here J@(w) is the Fourier-transform of the
correlation function 2

GO @) =SFPOFPE+ 1> (12)
i
The F (@ (t) are functions depending on the relative
distance and orientation of two spins ¢ and j.
g may assume the values 0, 1, or 22.
For the spin-lattice relaxation time in the rotat-
ing frame, 7'1,, Loox and LowEe derived3

1

3 D)
7y, =g VIR 1) JoRer).  (13)

3 D. C. Look and I. J. Lowg, J. Chem. Phys. 44, 2995
[1966].
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w1 is the Larmor frequency due to the rotating
field Hy (w1 = y H;). As we see from Egs. (1.1) and
(1.3), the precise shape of the correlation functions
G@ (1) (¢ =0,1,2) enters into the relationship
between the nuclear spin relaxation times and the
mean jump time, 7. The shape of G(@ (7) depends
strongly on the mechanism by which nuclear
magnetization is carried from one lattice site to
another.

A random walk model of self-diffusion, as treated
by TorrEY# (see Sect.II), is not quite realistic,
since in most crystalline solids diffusion involves
intrinsic point defects, e.g., vacant lattice sites.
Even when the vacancies migrate randomly in
direction and time, the nuclei do not, since the
vacancies correlate the directions of successive
nuclear jumps and the time interval after which
these jumps occur.

As pointed out qualitatively by EISENSTADT and
REDFIELDS, these correlation effects cause the
jumps of a given nucleus to be bunched into
groups. Since we are dealing with temporal correla-
tion functions the time scale for successive jumps
enters into the correlation function and this bunch-
ing effect must be taken into account.

In Sections ITI to VI we calculate the correlation
functions G@ () taking into account the correla-
tions between the jumps of a point defect and the
jumps of a nucleus. Our starting point is Torrey’s
random walk model4.

In Sect. VII the general considerations of the
previous sections are applied to self-diffusion by a
monovacancy mechanism in a face-centred cubic
lattice.

I1. Torrey’s Model for Lattice Diffusion
in Isotropic Bodies

Replacing the time average in Eq. (1.2) by an
ensemble average, we may write for the correlation
functions G@ (7) (e.g., for ¢ = 1) as follows4:

G (7) =2 (FP ) FP* (¢t + 1)
j
= [[f(ro) FP (ro) P(r, ro, t) FP* (r) drodr.

(1/N) f(ro) drg is the probability that at zero time
(¢t = 0) spin j is located in the volume-element rg,
ro + dro relative to spin ¢; thus f(r¢) is the initial
spin-density.

(2.1)

4 H. C. TorrEY, Phys. Rev. 92, 962 [1953].
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F(ro) is given by the equation (see e.g. 2)

F (ro) = sin @;; cos Dyj (e ?4[r}) . (2.2)

ri;, @i, and ¢y are the spherical coordinates of
spin j relative to spin ¢. When internal motions
occur, these coordinates are functions of the time.
P(r, ro, t) is the probability that, if spin j was at
zero time in the volume element rg, ro + dro, at
time ¢ spin j is located in the element r, r 4 dr
relative to spin .

For the calculation of P(r, ry, t) Torrey used the
following model: All spin-positions are assumed
to be statistically equivalent, i.e., at each position
the same probability P;(r) dr exists that after one
flight from this position the new position will be
in the volume-element r, r + dr relative to the
previous position. The corresponding probability
after » flights is designated by P, (r).

If spin ¢ and spin § move in a random manner,
spin ¢ may be assumed to be fixed at the origin
while spin j diffuses with double jump frequency.
For this model P (r, ro, t) is equal to P(r — ro, 2¢).
This quantity may be calculated from CHANDRA-
SEKHARS theory of random flights6.

With
A(p) = [Py(r)etemdr (2.3)
we may write
P(r —ro,2t) (2.4)
= %f exp [—ip(r— ro) — %(1 —A(p))]dp.

For isotropic diffusion [4 (p) = 4 (p) and f(r¢) = n,
i.e., the uniform spin-density is constant] Torrey’s
result ist

8ant 1— A(o) do
J1®) =g / T32@0) T2 + (@m2r ¢
2.5)

a is the lower limit of the integration over r and rg
and may be interpreted as the distance of closest
approach between two spins. J3/2(ap) is the Bessel
function of order 3/2.

All informations about the specific character of
the random walk underlying Eq. (2.5) must be
cast into 4 (o) [Eq. (2.3)].

For a nucleus walking randomly in direction but
making jumps of equal length ! Torrey assumed

5 M. ErsExsTapT and A. G. REDFIELD, Phys. Rev. 132,
635 [1963].
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that P;(r) should be given by

Pi(r)=0(r—1)/4m12. (2.6)

The corresponding 4 (p) is given by

A(e) =sin(lo)/lo. (2.7)

As pointed out by Torrey this model is an excellent
approximation for the interpretation of NMR-
measurements in powdered samples: In reality a
nucleus may jump from each lattice site into one of
the K equivalent nearest neighbour positions
instead of the jumps to every point of a sphere
underlying Torrey’s model. But, for the application
to powered samples, we would have to average the
“true” correlation function for lattice diffusion in a
single crystal with respect to the direction of the
relaxation field. Because of mathematical difficulties
this precise calculation may only be performed in the
extreme case where wot > 1. In Torrey’s model
[Eq. (2.7)] the angular average is performed in an
unprecise way. But the results of this approxima-
tion differ from the precise calculation by less
than 19%,.

III. Spatial and Temporal Correlation

In a defect mechanism of self-diffusion a wander-
ing nucleus does not carry out a random motion,
though the point-defect which causes these atomic
jumps may walk randomly from one lattice site to
the other. The influence of the correlation between
the jumps of the wandering atom and the jumps of
a point-defect on NMR is different from the well
known ‘‘spatial” correlation, the nature of which
may be detected from radio-active tracer-diffusion
measurements (see e.g. 7).

If a tracer-atom has just exchanged its site, say,
with a vacancy, the probability that its next jump
brings it back to its original position (which is now
vacant) is larger than the probability that the next
jump takes it to any other of the adjacent sites.
A measure of the degree of this correlation is the
correlation factor f defined by the relationship

DT = f- DSD, (2.8)
DT | the tracer self-diffusion coefficient, is defined as
the diffusion coefficient of a tracer atom in the

6 S. CHANDRASEKHAR, Revs. Mod. Phys. 15, 1 [1943].
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absence of concentration gradients of defects or
atoms, and of temperature gradients or electric field
gradients. DSD is the macroscopic or ‘“‘uncorrelated”
self-diffusion coefficient.

In nuclear magnetic resonance we deal with
temporal correlation functions and the fact that
the individual jumps of a spin do not occur at
constant time intervals must be taken into account.
Consider the motion of a single nucleus: The pro-
bability per unit time for a displacement of this
spin caused by a point defect is relatively small; it is
determined by concentrations and jump frequencies
of the defects. But after the initial jump a high
probability exists that the same point-defect will
cause one or two more jumps of the same nucleus
shortly after the initial jump. After these correlated
jumps of the nucleus a relatively long time will pass
before the next point-defect causes jumps of this
nucleus.

Following the nomenclature of E1SENSTADT and
REDFIELD® we call the individual displacements
“Jjumps” while the series of jumps of a nucleus
produced by the same point-defect is called an
“encounter’” between the point-defect and the
nucleus. This aspect of the correlation between the
random motion of the point defect and the motion
of the nucleus is called “temporal correlation”
analogous to the spatial correlation discussed
above.

As we are dealing with correlation functions for
the time dependence of the dipolar interaction
between pairs of spins we must distinguish two
aspects of the temporal correlation:

1. If the distance 7 of the two spins 7 and j before
an encounter is not more than a few jump distances,
then the point defect is able to relate the jumps of
the two spins. This effect is called “pair-correla-
tion”.

2. If ro is large compared with the lattice constant,
then the point-defect is not able to relate the
jumps of spin ¢ to those of spin j.

There is always correlation between the successive
jumps of a single spin if these jumps are caused by
the same point-defect.

7 A. D. LE CLAIRE in Physical Chemistry, An Advanced
Treatise, Vol. X, Academic Press, W. Jost, ed., New
York 1970, Chapter 5.
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IV. A Model for Diffusion in Isotropic Bodies

In the high field region, to which this paper is
restricted, perturbation theory may be applied to
relate nuclear jumping to spin lattice relaxation, as
long as the mean jump time 7 is much smaller than
the spin-lattice relaxation time due to processes
other than diffusion, i.e., for v < 7% (rl for
“rigid lattice’’). In physical terms this condition
means that many nuclear jumps, or — in our
model — many encounters must occur during the
decay of a longitudinal non-equilibrium magnetiza-
tion. Hence a single jump or encounter cannot be
very effective in causing relaxation.

To estimate the details of the effect of an en-
counter between a point-defect and a pair of
nuclei on the relaxation process we use the fact
that the individual jumps within an encounter
occur very rapidly after oneanother; i.e., the corre-
lation time of these fluctuations within one en-
counter is much shorter than the time between two
encounters. Hence all that enters into the correla-
tion function is the change in relative orientation
and distance of two spins due to an encounter with
a point-defect.

Not all encounters result in a net displacement of
the two spins relative to oneanother (e.g., if the last
jumps of the encounter bring the nuclei back to
their positions before the encounter). Because of the
shortness of the time between these jumps we
assume that these encounters do not cause relaxa-
tion and hence do not enter into the correlation
function. The probability of the occurence of such
encounters is denoted by P (0).

Thus the number of jumps per second (in
Torrey’s model) must be replaced by the number
of encounters per second which contribute to rela-
xation.

We denote the mean number of relative jumps of
two spins during an encounter by Z and the mean
time between two encounters by txmr. Then the
number of encounters per second is given by

~ ot — P

INMR T Z

(4.1)

In the following we neglect pair correlations and
assume the jumps of the two spins of a pair to be
independent of one-another. (How pair-correlations
may be introduced into our model of diffusion will
be pointed out in Sect. VI.)
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This restriction permits us to assume spin ¢ to be
fixed in the origin while spin j diffuses with double
jump-frequency. An encounter of spin j with a
point-defect may result in different possible dis-
placements I; of spin j after the encounter relative
to its position before the encounter. We further
assume the single displacements to occur with
different probabilities P (l;), which are the same
ones for every lattice site.

For the calculation of P(r, ro,t) entering into
the correlation functions G(@ (t) we use the follow-
ing model for the diffusion process as seen in
nuclear magnetic resonance in a high relaxation
field:

We assume the diffusion process to be composed
of encounters, the result of which is a displacement
of spin j relative to its position before the encounter.
The directions of the total displacements per en-
counter, l;, are assumed to be random, while the
occurence of a certain value of /; is governed by the
probabilities P (;).

This model is very similar to Torrey’s where all
displacements are “jumps”, while we are dealing
with “encounters”. The single steps of this random
walk model result all in the same displacements ,
while in our model different displacements may
occur with different probabilities.

The present model approximates diffusional
effects, observed by relaxation measurements in
powdered samples, better than Torrey’s model:
e.g., in a face-centred cubic lattice the 12 possible
jumps to the 12 nearest neighbour positions are
replaced by jumps to random directions in Torrey’s
model, i.e., jumps may occur to any point of a
sphere with radius equal to the nearest neighbour
distance. In our model a spin may be displaced by
more than only one nearest-neighbour distance as
the result of an encounter, so that now more than
only 12 directions may occur and therefore the
model of random directions should even be a
better approximation for a point-defect mechanism
than for a random walk model.

V. Application of the Theory of Random Flights

CHANDRASEKHAR's “‘theory of random flights™ 6
may be applied to the model for the calculation of
P(r,ro,t) described above. For the probability
Wy (r — ro) dr that after » encounters spin j is
in the volume-element r, r 4+ dr relative to the
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starting point of the random walk we then have®

+o0
1 .
Walr —ro) = g5 [ =" Aa(p)dp, (5.1)

where A4, (p) is given by

n
Anl@) =T [Pyirpeiendr,. ()
=

P;(r;) denotes the probability that in the j-th
encounter spin § is displaced by a vector r; from its
position before this encounter.

The motion of spin j is assumed to be isotropic,
hence

Ay (p) = An (o)

In the j-th encounter several total displacements/;
may occur with their respective probabilities P (I;).
Hence we assume that

Py =>P)°

>0

and  Pj(rj) = Py(ly).

(rs — 1)

e (5.3)

The sum goes over all /; which are greater than zero
and which can be achieved in one encounter. It
converges very rapidly since the probabilities P (I;)
become very small for values of /; which are greater
than about two jump distances (see Sect. VII).

With this form of P;(l;) and Eq. (5.1) we obtain

+ o0
1 3
Wa(r — ro) = 4 3.[6-”('_"’)[11(@)]"(19 (5.4)
with B
P sin gli) 5.5
0 =2 B5)

Now we are able to calculate

P(r—ro,2t) = > Wu(r — ro) pa(2t), (5.6)

where p, (2t) is the probability that the “jumping”
nucleus j undergoes 7» encounters during the
time 2¢.

If we assume a Poisson distribution for p, (2¢),

Pn(2t) = nl.( "21"'*> exp{— 2t/txmr}, (5.7)

™~NM
then we obtain from Eq. (5.4), (5.5), and (5.6)
P(r,ro,t)

1 -
= Bud) 5P

21— 4(0))|dp.

- lp(r - rO) - TNMR
(5.8)
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Eq. (5.8) has the same form as Torrey’s Eq. (2.4).
The difference of the two results is due to the fact
that we replaced the mean time between successive
nuclear jumps, 7, by the mean time between two
successive encounters, Tnyr, and that 4 (p) has a
different form (see Eqs. (5.5) and (2.7)).

With the same modifications we may take over
Torrey’s result for the Fourier-transform of the
correlation function G (7):

Snnn\mm
J(l)( =S 15(13 fJSIZ aQ)

1—4(o) do
"H—4@P+ Gornmr)? o

A (p) and Tymr are given by the Eqs. (5.5) and (4.1),
respectively. n denotes the spin density.

(5.9)

For the application of (5.9) to lattice diffusion in
powdered samples the lower limit of integration
over ro and r, a, must be determined from the
normalization of the correlation function?. It may
be derived easily that the value of a is the same for
the two different models, namely a=0.743358.

VI. Pair Correlation

If the initial distance ro between the two spins
of a pair before an encounter is comparable with
the nearest-neighbour distance /, then the number
of relative jumps per encounter is given by

Z =Z(0) + Z(rg). (6.1)

Z(0) denotes the number of jumps of a single spin
during an encounter, while Z (r¢) is the number of
jumps of the other spin, a distance ry apart, which
was assumed to rest in the origin (cf. Sect. IV and
V). What we observe in a relaxation experimentis an
average of the number of relative jumps and of the
probabilities P (I;) over the initial distance rg, since
many encounters of a pair of nuclei with different
point defects occur during the relaxation process
(see Sect.IV). Hence the value of ry varies con-
siderably during the relaxation process.

The average of Z and P (/;) may be performed as
follows:

0)+3 Z(ro), (62

Pl) = (N (ro)/N) (P, (ro). (6.3)

8 H. C. TorrEy, Phys. Rev. 96, 690 [1954].
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N (r¢) denotes the number of spins a distance 7
apart from a given reference spin, N the total
number of spins, and depends thus on the lattice
structure. By Pj, (ro) we denote the probability
that the change of the relative distance of a pair
of spins due to an encounter is /;, if the initial
distance was ro. Py, (ro) approaches the probabilities
P (l;) with increasing rg.

The calculation of Z(rg) and P;,(ro) would be a
formidable task. Since, however, the value of IV (r¢)
increases strongly with increasing 7o, while Z(ro)
decreases to zero and P, (ro) approaches the pro-
babilities P (I;), we do not make a great mistake
if we write

7Z =27(0) (6.4)
and

P(l)=P(l). (6.5)

Eqgs. (6.4) and (6.5) are equivalent to neglecting
pair correlation.

VII. Monovacancy Diffusion in fce-Crystals

In the following we shall neglect pair correlation
(see the previous section) and demonstrate the
principles of the calculation of the diffusion quan-
tities needed for the evaluation of the Fourier
spectrum of the correlation function [Eq. (5.9)] for
an encounter between a monovacancy and a
nucleus. For simplicity this nucleus will be called
“tracer”’, though it is identical with the other nuclei
of the sample.

VII.1. Calculation of Z(0)

The following definitions will help us to calculate
the mean number of jumps per encounter, Z (0):

By A, we denote the probability that — within
an encounter — the n-th jump of the tracer does
(still) occur, while by B(n) we denote the pro-
bability that an encounter consists of precisely
7 jumps.

We assume that 4; = 1, i.e., the initial jump of
the encounter is to occur surely, otherwise there is
no encounter.

After the first jump of the tracer the vacancy
continues its random walk through the crystal.
With a certain probability it causes another jump
of the tracer. This probability is given by the pro-
bability 4; and by the probabilities W (j) of the
vacancy sitting on one of the neighbouring sites j
of the tracer some time after the initial jump.
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Hence

Ar= A1+ SWo). (7.1)
The sum runs over all lattice sites which are neigh-
bours of the tracer after its first jump. K is the
number of nearest neighbours of the respective
lattice (e.g. K = 12 for fcc lattice).

After the second tracer jump again the same
probabilities W (j) exist, provided equivalent sites
are given the same numbers as after the initial
jump. Hence

As = A14:(1/K) 3 W () = [(1/K) 2 W2, (7.2)
7 2

In this way we may write for the probability 4,
A =[(1/K) 2 W (j)]"~1. (7.3)
J

The probability B(n) that an encounter consists of
precisely n jumps is given by

B(n)=Aa[1— (/K)S W@ (14)
7

This relationship means that the n-th jump must

still occur, but then the encounter must be finished.

As an encounter must consist either of one or

two... or » jumps, the condition

S By =1 (

n=1

=1
(%3]
-~

must hold.
Eqgs. (7.4) and (7.3) anable us to calculate Z(0)
from the equation

Z(O):f[nB(n)].

n=1

(7.6)

The sum (7.6) converges so strongly that we extend
it to infinity, though in practice the encounter does
not consist of more than two or three jumps. The
result is

Z(0)=1/[1 — (1/K) 2 W (§)]. (7.7)

7

Hence by calculating the probabilities for the stay
of a vacancy on the neighbouring sites of the tracer
we are able to calculate Z (0).

VII.2. Calculation of P(l;)

For the probability P (I;) that after an encounter
between the tracer and a vacancy the tracer is a
distance /; away from its lattice site before the
encounter we can write

Pl)=2 Pal)[1 — (1K) 2 W(H]. (1.8)
n 7



Table 1. The quantities occuring in this table are defined in Sect. VII.

n =3

l;
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Pa(ly) - P3,1(L)
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(1) W(5)
(5) W(2)
(5) W(3)

(5) W(4)
W(5))2

RRERER

o~ o~

(1/K2
(4/K>
(2/K>
(4/K2
(1/K2) (

P, (L;) is the probability that n tracer jumps occur
within an encounter and that after these » jumps
the tracer is at a distance /; from its starting point.
The second term in the sum is the probability that
after these » jumps of the tracer the encounter is
finished. The probabilities P (l;) decrease strongly
with increasing n (see Table 1). Therefore the sum
over n converges very well.

In Fig. 1 we show three planes of an fec lattice.
After its initial jump the tracer, initially sitting on
site 1, is on site 0, while the vacancy, initially on
site 0, now is on site 1. The 12 neighbouring sites of
the tracer after the initial jump are denoted by 1
to 5. Because of the symmetry of all possible
vacancy paths with respect to the direction 1—0,
the probabilities for the vacancy sitting, say, on
either one of the two sites 3 are the same ones.

___________________ -
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Fig. 1. Three planes of an fcc lattice. The nearest-neighbour
distance is /2 a. Points (@) denote lattice sites in the plane
of the paper. Circles (®) denote sites in planes a distance
=+ ag apart from the plane of the paper (see also Sect. VII).

If we denote the cube edge of a unit cell of the
fee lattice by 2ag, the nearest neighbour distance
is I =)/2ag. After the initial tracer jump only
li = ‘/2 ao may occur, the respective probability is
P 1([/2(1,0) = 1.

After its second jump the tracer may sit on one
of the sites 1 to 5. The respective values of ;,
referred to the initial tracer site, 1, are [;'= 0,
|/2 ao, 2a9, /6 ag, and 2 - }/2 ag. The probabilities
Py (l;) are listed in Table 1.
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The probabilities Ps(l;) depend on the pro-
babilities Ps(l;), that after two jumps the tracer
was a distance /; apart from its starting point:

P3(l;) = IZ Py (ly) Py, (L) - (7.9)
)

P, (l;) denotes the probability that after three

jumps the tracer is a distance /; away from its

starting point, if, after two jumps, it was a distance

l; away.

For the calculation of Pj;, (I;) we make use of the
fact that after each jump of the tracer its neigh-
bouring lattice sites may be denoted with respect
to the previous jump direction in the same manner
as after the initial tracer jump; i.e., if we denote
the vacant lattice site after the first tracer jump
by 1, then the vacant site will have the number 1
after all further tracer jumps. Hence the pro-
babilities Pa(l;) and P (I;) may be reduced to
the calculation of the probabilities W (j) of the
vacancy sitting on one of the neighbouring lattice
sites of the tracer after its initial jump (see Table 1).

VIII. Numerical Results

The probabilities W(j) (j =1, 2,...,5) were
calculated along the lines outlined by BARDEEN
and HERRING (see, e.g. 7) for the calculation of
directional correlation factors. In these calculations
the tracer-site may be treated as a centre of sym-
metry. In our problem paths of the vacancy
through the tracer site are not allowed to contribute
to W (j), and therefore the tracer site is not a centre
of symmetry.

The accuracy of the values of the W (j) depends
on the boundary of random return of the vacancy
(dashed line in Figure 1). By defining the boundary
in such a way that the vacancy must make at least
five jumps to cross the boundary we obtained an
accuracy of a few percent for the values of W (j).
Within the boundary we have 97 different lattice
sites and the calculation of the W (j) requires the
inversion of a 97 X 97 matrix.

The results are shown in Table 2:

Table 2

Z(0) =1.26,
P(O) =007,
P(y/2a0) = 0.897,

P(2a0) = 0.013,
P(/6ay = 0.018,
P(2y2a0) = 0.0028.

9 H. MEHRER, Private Communication.
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Hence an encounter consists of an average of
1.26 jumps. If the boundary of random return is
drawn at a larger distance from the vacancy, the
value of Z(0) may increase by a few percent. For
the evaluation of the correlation function we used
the value Z(0) = 1.32 which was calculated by
Mehrer by the computer simulation of the random
walk of a vacancy (Monte Carlo method)9.

For not more than about 40 random jumps
Mehrer obtained the value Z(0) = 1.26 which is in
good agreement with our approximation where the
vacancy must make at least 10 jumps to cross the
boundary and return to the tracer-site randomly,
i.e., on the average the vacancy will make about
30 to 40 jumps before its random return. Mehrer’s
value was calculated from the simulation of
300 random jumps of the vacancy.

By a different method of calculation, EIsEx-
sTADT and REDFIELDS obtained a value of 1.347
for Z (0) which is in fair agreement with the value
used in our calculations.

Our results for P (/;) show that about 89,7 percent
of all encounters end with unit-displacements while
7,7% do not contribute to relaxation.

With these values of the diffusion parameters we
can evalute the Fourier-transform J®) (w) of the
correlation function [see Egs. (5.5) and (5.9)]. For
that purpose we write Eq. (5.9) in a slightly
modified form. For the spin density n» we introduce

n = noc/(2ap)? (8.1)

where n¢ is the number of spins in a unit cell with

cube edge 2ag and c the fraction of occupied lattice

sites. Defining a constant £ due to ToRrREY 8 by
k= all = a|)/2a¢ = 0.74335 (8.2)

and changing the variable of integration over p by

means of the relation

(8.3)

rx=ap,

we may write for the Fourier-transform of the
correlation function

JO (@) = 15‘;;—:6% -Int(w7) (8.4)
with
Int(w7) = j'J3/2 (8.5)
2 (0)
B G ),,,,1: PO) T
1' wT X
[1—‘4 ) +[1_p‘(6* T]
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and
sin (—— . u)
k1
z L === (8.6)
kol

A@)=>P(l)-

;>0

The integral Int(wT) was calculated by numerical
integration for various values of the parameter w 7.
In Fig. 2 the 7-dependence of Int(w7) for a given
value of w is compared with the values of the inte-
gral occuring in Torrey’s theory [see, e.g., Eq. (2.5)]
and with a Debye-spectrum 2%-w7/(1 4+ 0212)
describing the relaxation properties of a Markoffian
process and resulting from a simple exponential
correlation function. [The factor of £ in the Debye-
spectrum results from the separation of the pre-
factor similarly to equation (8.4).]

monovacancy mechanism

Bajw = random walk (Torrey) .
F% ‘”)1/3‘ Te 7 simple exponential carrelation function

o5 107 05 1 5 10

Fig. 2. Fourier spectra for a Markoffian process (simple

exponential correlation function), Torrey’s random walk

model, and for a monovacancy mechanism of self-diffusion
in a face-centred cubic lattice (see also Sect. VIII).

The values of the spectra J(©) (w) and J@ (w)
may be obtained from the values of J @) (w) (Fig. 2)
by means of the relationship2.4

JO () : JD(w): J@(w) =6:1:4. (8.7)

* Tt is to be noted that the maximum of the quantity ¥
listed in Torrey‘s papers4 8 occurs for a different value of
ot than the maximum of the correlation function shown
in Fig. 2 since the correlation function is proportional to
the product wz - ¥.
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IX. Discussion

The most significant difference between Torrey’s
and the present results for monovacancy diffusion
may be seen from Fig. 2: t-values determined from
the linear parts of the spectra differ about 30 per-
cent from oneanother. This difference is due to the
fact that the mean time between successive nuclear
jumps was replaced by the mean time between
different encounters.

In the present model the w 7-value for which the
Fourier spectrum has a maximum as well as the
shape of the spectrum depend on the diffusion
mechanism. For a monovacancy mechanism,
explicitly treated in this paper, the maximum
occurs for w7 ~ 1.3. The shape of the spectrum is
similar to the shape for Torrey’s random walk
model, the maximum of which occurs for w7 ~ 1.7,
however *.

Within the accuracy of our calculations the high-
temperature asymptote (w7 <€ 1) of the mono-
vacancy model coincides with the Debye spectrum.
Hence we may conclude that for very rapid
diffusion there are only small differences between
the influence of Markoffian processes and that of
monovacancy diffusion on nuclear magnetic relaxa-
tion. In the surroundings of the maximum (w7 =~ 1)
or at lower temperatures (w7 > 1), however, the
differences between the two models are considerable.

The application of the present results to the
analysis of self-diffusion in aluminium will be
treated in a separate paperl0.

Acknowledgements

I would like to thank Professor A. SEEGER, Dr. F. NOACK,
and Dr. H. MEERER for numerous helpful discussions.

10 A. SEEGER, D. WoLr, and H. MEHRER, Phys. Stat. Sol.,
to be published.



