
Table 1. 

c i / M H z »•2/MHZ 
e2 q Q/h T/K m ( ± 3/2) m ( ± 5/2) V 
e2 q Q/h 

= £ m ( ± l / 2 ) 3 = m ( ± 3 / 2 ) MHz 

77 45.248 ±0.005 83.478 ±0 .005 0.2580 ± 0.0001 281.892 ±0 .005 
123 45.247 ±0.005 83.561 ±0 .005 0.2562 ±0.0001 282.128 ±0 .005 
153 45.232 ±0 .005 83.619 ±0 .005 0.2544 ± 0.0001 282.280 ±0 .005 
213 45.173 ±0.005 83.749 ±0 .005 0.2495 ± 0.0001 282.581 ±0 .005 
253 45.097 ±0 .005 83.850 ± 0 . 0 0 5 0.2444 ± 0.0001 282.789 ±0 .005 
296 44.976 ±0.005 83.960 ±0 .005 0.2372 ± 0.0001 282.977 ±0 .005 
313 44.900 ±0 .005 83.994 ±0 .005 0.2334 ± 0.0001 282.992 ±0 .005 
363 44.616 ±0.005 84.043 ±0 .005 0.2204 ± 0.0001 282.838 ±0 .005 
398 44.327 ±0.005 83.994 ±0 .005 0.2087 ± 0.0001 282.401 ±0 .005 

The small influence of q{e) in periodates can be 
understood from the fact that for a I7+-ion the 
Sternheimer factor y s h o u l d be small compared 
to I~. Also for I - in " ionic" crystals such as 
NH4T1I4 • 2 HoO or Me2PtI c , the main contribution 
of e2qQ/h is due to <7(p). 

The hydrogen bond plays an important role in 
the intramolecular interactions within crystalline 
H 5 I 0 6 . A comparison of the 127I-NQR spectra in 
D 5 I0 6 and H5IOG will be quite interesting in this 
respect. 
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The present paper shows how to incorporate the correlation between successive nuclear jumps, 
which are well known to play a role in defect mechanisms of self-diffusion in crystals, into the 
calculation of the correlation functions describing the temperature dependence of the nuclear 
spin relaxation in solids. The treatment is based on an extension of Torrey's theory of nuclear 
spin relaxation by randomly migrating nuclei. Explicit and detailed results are given for the mono-
vacancy mechanisms of self-diffusion in an isotopically pure face-centred cubic crystal. 

I. Introduction 

BLOEMBERGEN, PURCELL a n d POUND ( B P P ) 1 

showed that the time dependent nuclear magnetic 
spin-spin coupling is one of the most powerful 
mechanisms for bringing about spin-lattice relaxa-
tion in liquids and solids. In monoatomic solids this 
time dependence is due to atomic diffusion which 
may be characterized by the (temperature depen-
dent) mean time of stay of a nucleus on a given 
lattice site, r, henceforth called the "mean jump 
time". 

Information about diffusional motions may be 
obtained from the measurement of the tempera-
ture dependence of the spin lattice relaxation time 
either in the laboratory frame, T i , where the split-
ting of the Zeeman-levels is due to the constant 
external magnetic field HQ , or in the rotating 
frame T i g , where — in resonance — this splitting 
results from the rotating field with amplitude H 
If relaxation is observed in relaxation fields HQ or 

1 X . BLOEMBERGEN, E . M . PURCELL a n d R . V . P O U N D , 
Phys. Rev. 73, 679 [1948]. 

2 A . ABRAGAM, The Principles of Nuclear Magnetism, 
Clareedon Press, Oxford 1961. 

Hi that are large compared with the internal local 
fields, the temperature variation of T i and TiQ may 
be interpreted by means of perturbation theory. 
In this way one obtains for Ti due to the magnetic 
dipolar interaction of like spins2 

^ = } / Ä2 7(7 + i ) [ j u ) ( ( 0 o ) + j (2) ( 2 c 0 o ) ] . 

(1.1) 

Here J (w) is the Fourier-transform of the 
correlation function2 

(?<*> (T) = 2 <*V<!) (« + * ) > ! • (1-2) 
j 

The F ^ ( t ) are functions depending on the relative 
distance and orientation of two spins i and j. 
q may assume the values 0, 1, or 2 2 . 

For the spin-lattice relaxation time in the rotat-
i n g f r a m e , T\Q, LOOK a n d L O W E d e r i v e d 3 

s + i ) «M2o> i ) . ( i .3) 

3 D. C. LOOK and I. J. LOWE, J. Chem. Phys. 44, 2995 
[I960]. 



a>i is the Larmor frequency due to the rotating 
field Hi (mi = y H i ) . As we see from Eqs. (1.1) and 
(1.3), the precise shape of the correlation functions 
(t<«>(t) (q = 0 , 1 , 2 ) enters into the relationship 
between the nuclear spin relaxation times and the 
mean jump time, r. The shape of G^) (r) depends 
strongly on the mechanism by which nuclear 
magnetization is carried from one lattice site to 
another. 

A random walk model of self-diffusion, as treated 
by TORREY4 (see Sect. II), is not quite realistic, 
since in most crystalline solids diffusion involves 
intrinsic point defects, e.g., vacant lattice sites. 
Even when the vacancies migrate randomly in 
direction and time, the nuclei do not, since the 
vacancies correlate the directions of successive 
nuclear jumps and the time interval after which 
these jumps occur. 

As pointed out qualitatively by EISENSTADT and 
REDFIELD5, these correlation effects cause the 
jumps of a given nucleus to be bunched into 
groups. Since we are dealing with temporal correla-
tion functions the time scale for successive jumps 
enters into the correlation function and this bunch-
ing effect must be taken into account. 

In Sections I I I to V I we calculate the correlation 
functions G ^ ( x ) taking into account the correla-
tions between the jumps of a point defect and the 
jumps of a nucleus. Our starting point is Torrey's 
random walk model4 . 

In Sect. VII the general considerations of the 
previous sections are applied to self-diffusion by a 
monovacancy mechanism in a face-centred cubic 
lattice. 

II. Torrey's Model for Lattice Diffusion 
in Isotropic Bodies 

Replacing the time average in Eq. (1.2) by an 
ensemble average, we may write for the correlation 
functions G^(r) (e.g., for q — 1) as follows4 : 
G< 1) (T) = 2 FV* (t + T)>, (2.1) 

= J J / (ro) Flp (R0) P (R, R 0 , t) Fff* (R) DR0 DR. 

(1 J N ) /(RO) DRO is the probability that at zero time 
(it = 0) spin j is located in the volume-element R 0 , 
RO + DRO relative to spin i; thus / (RO) is the initial 
spin-density. 

FjV(ro) is given by the equation (see e.g. 2) 

F J P (R0) = sin (Pij cos & i } ( e ' w / r j ) . (2.2) 

ty , 0 i j , and cpij are the spherical coordinates of 
spin j relative to spin i. When internal motions 
occur, these coordinates are functions of the time. 
P ( R , RO, t) is the probability that, if spin j was at 
zero time in the volume element RO, RO + DRO, at 
time t spin j is located in the element R, R -j- DR 
relative to spin i. 

For the calculation of P(r, ro, t) Torrey used the 
following model: All spin-positions are assumed 
to be statistically equivalent, i.e., at each position 
the same probability P I ( R ) dr exists that after one 
flight from this position the new position will be 
in the volume-element R, R dr relative to the 
previous position. The corresponding probability 
after n flights is designated by Pn(r). 

If spin i and spin j move in a random manner, 
spin i may be assumed to be fixed at the origin 
while spin j diffuses with double jump frequency. 
For this model P(r, ro, t) is equal to P(r — ro, 21). 
This quantity may be calculated from CHANDRA-
SEKHARS theory of random flights6. 

With 
^ ( P ) = J P I ( R ) E » ' D R (2.3) 

we may write 

P(r-r0,2t) 

= e X P 

(2.4) 
21 

_ » P ( R - R 0 - — 1 - 4 ( P ) J DP. 

For isotropic diffusion [A (P) = A (q) and / (RO) = n, 
i.e., the uniform spin-density is constant] Torrey's 
result ist 

Ji(co) = 
Snnr 
15 a 3 

l - ^ ( o ) d Q 
J3ß(a - A(o))Z + (u) t/2)2 Q 

(2.5) 

a is the lower limit of the integration over R and RO 
and may be interpreted as the distance of closest 
approach between two spins. Jzlz(aQ) is the Bessel 
function of order 3/2. 

All informations about the specific character of 
the random walk underlying Eq. (2.5) must be 
cast into A (q) [Eq. (2.3)]. 

For a nucleus walking randomly in direction but 
making jumps of equal length I Torrey assumed 

4 H . C. TORREY, Phys. Rev. 92, 962 [1953]. 5 M. EISENSTADT and A. G. REDFIELD, Phys. Rev. 132, 
635 [1963]. 



that P i (r) should be given by 

P1(r) = ö(r-1)I4TI P. (2.6) 

The corresponding A (o) is given by 

A(g) = sm(lg)llg. (2.7) 

As pointed out by Torrey this model is an excellent 
approximation for the interpretation of NMR-
measurements in powdered samples: In reality a 
nucleus may jump from each lattice site into one of 
the K equivalent nearest neighbour positions 
instead of the jumps to every point of a sphere 
underlying Torrey's model. But, for the application 
to powered samples, we would have to average the 
" t rue" correlation function for lattice diffusion in a 
single crystal with respect to the direction of the 
relaxation field. Because of mathematical difficulties 
this precise calculation may only be performed in the 
extreme case where COQX > 1. In Torrey's model 
[Eq. (2.7)] the angular average is performed in an 
imprecise way. But the results of this approxima-
tion differ from the precise calculation by less 
than 1 % . 

III. Spatial and Temporal Correlation 

In a defect mechanism of self-diffusion a wander-
ing nucleus does not carry out a random motion, 
though the point-defect which causes these atomic 
jumps may walk randomly from one lattice site to 
the other. The influence of the correlation between 
the jumps of the wandering atom and the jumps of 
a point-defect on N M R is different from the well 
known "spatial" correlation, the nature of wThich 
may be detected from radio-active tracer-diffusion 
measurements (see e.g. 7). 

I f a tracer-atom has just exchanged its site, say, 
with a vacancy, the probability that its next jump 
brings it back to its original position (which is now 
vacant) is larger than the probability that the next 
jump takes it to any other of the adjacent sites. 
A measure of the degree of this correlation is the 
correlation factor / defined by the relationship 

DT = f - D * v . (2.8) 

Z)T , the tracer self-diffusion coefficient, is defined as 
the diffusion coefficient of a tracer atom in the 

6 S. CHANDRASEKHAR, Revs. Mod. Phys. 15, 1 [1943]. 

absence of concentration gradients of defects or 
atoms, and of temperature gradients or electric field 
gradients. Z>SD is the macroscopic or "uncorrelated" 
self-diffusion coefficient. 

In nuclear magnetic resonance we deal with 
temporal correlation functions and the fact that 
the individual jumps of a spin do not occur at 
constant time intervals must be taken into account. 
Consider the motion of a single nucleus: The pro-
bability per unit time for a displacement of this 
spin caused by a point defect is relatively small; it is 
determined b y concentrations and jump frequencies 
of the defects. But after the initial jump a high 
probability exists that the same point-defect will 
cause one or two more jumps of the same nucleus 
shortly after the initial jump. After these correlated 
jumps of the nucleus a relatively long time will pass 
before the next point-defect causes jumps of this 
nucleus. 

Following the nomenclature of EISENSTADT and 
REDFIELD5 we call the individual displacements 
" jumps" while the series of jumps of a nucleus 
produced b y the same point-defect is called an 
"encounter" between the point-defect and the 
nucleus. This aspect o f the correlation between the 
random motion of the point defect and the motion 
of the nucleus is called "temporal correlation" 
analogous to the spatial correlation discussed 
above. 

As we are dealing with correlation functions for 
the time dependence of the dipolar interaction 
between pairs of spins we must distinguish two 
aspects of the temporal correlation: 

1. I f the distance TQ of the two spins i and j before 
an encounter is not more than a few jump distances, 
then the point defect is able to relate the jumps of 
the two spins. This effect is called "pair-correla-
tion". 

2. If ro is large compared with the lattice constant, 
then the point-defect is not able to relate the 
jumps of spin i to those of spin j. 

There is always correlation between the successive 
jumps of a single spin if these jumps are caused by 
the same point-defect. 

7 A. D. LE CLAIRE in Physical Chemistry, An Advanced 
Treatise, Vol. X , Academic Press, W . Jost, ed., X e w 
York 1970, Chapter 5. 



IV. A Model for Diffusion in Isotropic Bodies 

In the high field region, to which this paper is 
restricted, perturbation theory may be applied to 
relate nuclear jumping to spin lattice relaxation, as 
long as the mean jump time r is much smaller than 
the spin-lattice relaxation time due to processes 
other than diffusion, i.e., for r < T\(rl for 
"rigid lattice"). In physical terms this condition 
means that many nuclear jumps, or — in our 
model — many encounters must occur during the 
decay of a longitudinal non-equilibrium magnetiza-
tion. Hence a single jump or encounter cannot be 
very effective in causing relaxation. 

To estimate the details of the effect of an en-
counter between a point-defect and a pair of 
nuclei on the relaxation process we use the fact 
that the individual jumps within an encounter 
occur very rapidly after oneanother; i.e., the corre-
lation time of these fluctuations within one en-
counter is much shorter than the time between two 
encounters. Hence all that enters into the correla-
tion function is the change in relative orientation 
and distance of two spins due to an encounter with 
a point-defect. 

Not all encounters result in a net displacement of 
the two spins relative to oneanother (e.g., if the last 
jumps of the encounter bring the nuclei back to 
their positions before the encounter). Because of the 
shortness of the time between these jumps we 
assume that these encounters do not cause relaxa-
tion and hence do not enter into the correlation 
function. The probability of the occurence of such 
encounters is denoted by P(0) . 

Thus the number of jumps per second (in 
Torrey's model) must be replaced by the number 
of encounters per second which contribute to rela-
xation. 

We denote the mean number of relative jumps of 
two spins during an encounter by Z and the mean 
time between two encounters by TNMR- Then the 
number of encounters per second is given by 

- ^ — = - 4 - ( 1 - P ( 0 ) ) . (4.1) 
TNMR T Z v " v ' 

In the following we neglect pair correlations and 
assume the jumps of the two spins of a pair to be 
independent of one-another. (How pair-correlations 
may be introduced into our model of diffusion will 
be pointed out in Sect. VI. ) 

This restriction permits us to assume spin i to be 
fixed in the origin while spin j diffuses with double 
jump-frequency. An encounter of spin j with a 
point-defect may result in different possible dis-
placements Ij of spin j after the encounter relative 
to its position before the encounter. We further 
assume the single displacements to occur with 
different probabilities P{lj), which are the same 
ones for every lattice site. 

For the calculation of P{r, ro,t) entering into 
the correlation functions G ^ ( t ) we use the follow-
ing model for the diffusion process as seen in 
nuclear magnetic resonance in a high relaxation 
field: 

We assume the diffusion process to be composed 
of encounters, the result of which is a displacement 
of spin j relative to its position before the encounter. 
The directions of the total displacements per en-
counter, Ij, are assumed to be random, while the 
occurence of a certain value of Ij is governed by the 
probabilities P (Ij). 

This model is very similar to Torrey's where all 
displacements are " jumps" , while we are dealing 
with "encounters". The single steps of this random 
walk model result all in the same displacements I, 
while in our model different displacements may 
occur with different probabilities. 

The present model approximates diffusional 
effects, observed by relaxation measurements in 
powdered samples, better than Torrey's model: 
e.g., in a face-centred cubic lattice the 12 possible 
jumps to the 12 nearest neighbour positions are 
replaced by jumps to random directions in Torrey's 
model, i.e., jumps may occur to any point of a 
sphere with radius equal to the nearest neighbour 
distance. In our model a spin may be displaced by 
more than only one nearest-neighbour distance as 
the result of an encounter, so that now more than 
only 12 directions may occur and therefore the 
model of random directions should even be a 
better approximation for a point-defect mechanism 
than for a random walk model. 

V. Application of the Theory of Random Flights 

CHANDRASEKHAR'S "theory of random flights"6 

may be applied to the model for the calculation of 
P(r,ro,t) described above. For the probability 
Wn(r— ro) dr that after n encounters spin j is 
in the volume-element r, r + dr relative to the 



starting point of the random walk we then have6 

+ 00 
Wn(r~r0) = - ^ Je-*'('-»> An (p) dp , (5.1) 

where A n ( p ) is given by 

A n ( 9 ) = U S P ^ r j ) e i p r i d r j . (5.2) 
;=1 

Pj (r j ) denotes the probability that in the j-th 
encounter spin j is displaced by a vector rj from its 
position before this encounter. 

The motion of spin j is assumed to be isotropic, 
hence 

An (p) = An (q) and Pj(rj) = P} {lj). 

In the /-th encounter several total displacements I] 
may occur with their respective probabilities P(lj). 
Hence we assume that 

m ) = l P { k ) i < £ = i i > . 
li>0 

(5.3) 

The sum goes over all li which are greater than zero 
and which can be achieved in one encounter. It 
converges very rapidly since the probabilities P(k) 
become very small for values of li which are greater 
than about two jump distances (see Sect. VII). 

With this form of Pj(lj) and Eq. (5.1) we obtain 
+ 00 

Wn(r-r0) = ~ J e~ l p ( r ~ r o ) [A (@)]w dp (5.4) 
— 00 

with 

A ( e ) = 2 P ( k ) S ' m { f i ) • (5.5) 
li> 0 SH 

Now we are able to calculate 

P (r - r0 , 21) = J Wn (r - r0) pn (2t), (5.6) 
n 

where pn(2t) is the probability that the "jumping" 
nucleus j undergoes n encounters during the 
time 21. 

If we assume a Poisson distribution for pn(2t), 

pn(2t) = ) N E X P { - 2 * / T N M R } , (5.7) 

then we obtain from Eq. (5.4), (5.5), and (5.6) 

P(r, r0,t) 

= 8 ^ / e x p 
- / p ( r - r 0 ) - dp. 

Eq. (5.8) has the same form as Torrey's Eq. (2.4). 
The difference of the two results is due to the fact 
that we replaced the mean time between successive 
nuclear jumps, r, by the mean time between two 
successive encounters, T N M R , and that A(Q) has a 
different form (see Eqs. (5.5) and (2.7)). 

With the same modifications Ave may take over 
Torrey's result for the Fourier-transform of the 
correlation function (?<1>(r): 

JW(co) -
87m TNMR 

15 a3 J Jliz(aQ) 

l-A(e) dg 
T l — A ( g ) ] 2 + ( J co TNMR) 2 O 

(5.9) 

A (q) and T N M R are given by the Eqs. (5.5) and (4.1), 
respectively, n denotes the spin density. 

For the application of (5.9) to lattice diffusion in 
powdered samples the lower limit of integration 
over r0 and r, a, must be determined from the 
normalization of the correlation function4. It may 
be derived easily that the value of a is the same for 
the two different models, namely a = 0.74335 s . 

VI. Pair Correlation 

If the initial distance ro between the two spins 
of a pair before an encounter is comparable with 
the nearest-neighbour distance I, then the number 
of relative jumps per encounter is given by 

Z = Z(0)+Z(r0). (6.1) 

Z(0) denotes the number of jumps of a single spin 
during an encounter, while Z(r0) is the number of 
jumps of the other spin, a distance ro apart, which 
was assumed to rest in the origin (cf. Sect. IV and 
V). What we observe in a relaxation experiment is an 
average of the number of relative jumps and of the 
probabilities P(li) over the initial distance ro, since 
many encounters of a pair of nuclei with different 
point defects occur during the relaxation process 
(see Sect. IV). Hence the value of ro varies con-
siderably during the relaxation process. 

The average of Z and P(k) may be performed as 
follows: 

Z =Z(0)+ 2 (N(roW)(Z(ro), (6.2) 
ro 

PW) = I(N(r0)IN)(Pli(r0). (6.3) 

( 5 . 8 ) 8 h . C . TORREY, P h y s . R e v . 9 6 , 6 9 0 [ 1 9 5 4 ] . 



N(ro) denotes the number of spins a distance ro 
apart from a given reference spin, N the total 
number of spins, and depends thus on the lattice 
structure. By Plt (ro) we denote the probability 
that the change of the relative distance of a pair 
of spins due to an encounter is li, if the initial 
distance was ro. P^ (ro) approaches the probabilities 
P(li) with increasing ro. 

The calculation of Z (ro) and Pu (ro) would be a 
formidable task. Since, however, the value of iV(ro) 
increases strongly with increasing ro, while Z[TQ) 
decreases to zero and Plt (ro) approaches the pro-
babilities P(li), we do not make a great mistake 
if we write 

Z = Z{0) (6.4) 
and 

P(k) = P(li). (6.5) 

Eqs. (6.4) and (6.5) are equivalent to neglecting 
pair correlation. 

VII. Monovacancy Diffusion in fee-Crystals 

In the following we shall neglect pair correlation 
(see the previous section) and demonstrate the 
principles of the calculation of the diffusion quan-
tities needed for the evaluation of the Fourier 
spectrum of the correlation function [Eq. (5.9)] for 
an encounter between a monovacancy and a 
nucleus. For simplicity this nucleus will be called 
"tracer", though it is identical with the other nuclei 
of the sample. 

VII.l. Calculation of Z(0) 

The following definitions will help us to calculate 
the mean number of jumps per encounter, Z (0): 

By An we denote the probability that — within 
an encounter — the %-th jump of the tracer does 
(still) occur, while by B(n) we denote the pro-
bability that an encounter consists of precisely 
n jumps. 

W e assume that A\ — 1, i.e., the initial jump of 
the encounter is to occur surely, otherwise there is 
no encounter. 

After the first jump of the tracer the vacancy 
continues its random walk through the crystal. 
With a certain probability it causes another jump 
of the tracer. This probability is given by the pro-
bability A i and by the probabilities W (j) of the 
vacancy sitting on one of the neighbouring sites j 
of the tracer some time after the initial jump. 

Hence 

A2 = A1 (7-1) 
ft 

The sum runs over all lattice sites which are neigh-
bours of the tracer after its first jump. K is the 
number of nearest neighbours of the respective 
lattice (e.g. K = 12 for fee lattice). 

After the second tracer jump again the same 
probabilities W(j) exist, provided equivalent sites 
are given the same numbers as after the initial 
jump. Hence 

A3 = AiAtWZWti) = [ ( l / * ) 2 W W - ( 7 - 2 ) 
i 

In this way we may write for the probability A n 

A n = [ ( l l K ) Z W ( j ) ] n - K (7.3) 
j 

The probability B(n) that an encounter consists of 
precisely n jumps is given by 

B(n)=An[l -(l/K) J Wm- (7-4) 
j 

This relationship means that the n-th jump must 
still occur, but then the encounter must be finished. 
As an encounter must consist either of one or 
t w o . . . or n jumps, the condition 

oo 

2 B ( n ) = 1 (7.5) 
n = 1 

must hold. 
Eqs. (7.4) and (7.3) anable us to calculate Z{0) 

from the equation 
oo 

Z(0) = 2 [ » £ ( » ) ] . (7-6) 
n = 1 

The sum (7.6) converges so strongly that we extend 
it to infinity, though in practice the encounter does 
not consist of more than two or three jumps. The 
result is 

Z(0) = ll[l-(llK)2W(j)]. (7.7) 
j 

Hence by calculating the probabilities for the stay 
of a vacancy on the neighbouring sites of the tracer 
we are able to calculate Z(0). 

VI 1.2. Calculation of P ( l { ) 

For the probability P(k) that after an encounter 
between the tracer and a vacancy the tracer is a 
distance li away from its lattice site before the 
encounter we can write 

P(li) = 2 Pn(W ~ ( W 2 • ( 7 - 8 ) 
n j 
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Pn{h) is the probability that n tracer jumps occur 
within an encounter and that after these n jumps 
the tracer is at a distance li from its starting point. 
The second term in the sum is the probability that 
after these n jumps of the tracer the encounter is 
finished. The probabilities Pn{h) decrease strongly 
with increasing n (see Table 1). Therefore the sum 
over n converges very well. 

In Fig. 1 we show three planes of an fee lattice. 
After its initial jump the tracer, initially sitting on 
site 1, is on site 0, while the vacancy, initially on 
site 0, now is on site 1. The 12 neighbouring sites of 
the tracer after the initial jump are denoted by 1 
to 5. Because of the symmetry of all possible 
vacancy paths with respect to the direction 1—0, 
the probabilities for the vacancy sitting, say, on 
either one of the two sites 3 are the same ones. 
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Fig. 1. Three planes of an fee lattice. The nearest-neighbour 
distance is yi ao. Points (•) denote lattice sites in the plane 
of the paper. Circles (©) denote sites in planes a distance 
± oo apart from the plane of the paper (see also Sect. VII) . 

If wre denote the cube edge of a unit cell of the 
fee lattice by 2ao, the nearest neighbour distance 
is £ = j /2ao - After the initial tracer jump only 
li = j/2 ao may occur, the respective probability is 
Pi(|/2a0) = l . 

After its second jump the tracer may sit on one 
of the sites 1 to 5. The respective values of li, 
referred to the initial tracer site, 1, are li' — 0, 
j/2 ao, 2ao, |/6a0> and 2 • j/2 a 0 . The probabilities 
P2{lj) are listed in Table 1. 



The probabilities Psik) depend on the pro-
babilities P2(lj), that after two jumps the tracer 
was a distance Ij apart from its starting point: 

P3(li) = ^P2(l})Pz,iJ(k). (7.9) 
ij 

P^jjik) denotes the probability that after three 
jumps the tracer is a distance li away from its 
starting point, if, after two jumps, it was a distance 
Ij away. 

For the calculation of P3 {} (U) we make use of the 
fact that after each jump of the tracer its neigh-
bouring lattice sites may be denoted with respect 
to the previous jump direction in the same manner 
as after the initial tracer jump; i.e., if we denote 
the vacant lattice site after the first tracer jump 
by 1, then the vacant site will have the number 1 
after all further tracer jumps. Hence the pro-
babilities P2(lj) and P^^jiU) may be reduced to 
the calculation of the probabilities W (j) of the 
vacancy sitting on one of the neighbouring lattice 
sites of the tracer after its initial jump (see Table 1). 

VIII. Numerical Results 

The probabilities W{j) {j = 1, 2 , . . . , 5) were 
calculated along the lines outlined by BARDEEN 
a n d HERRING ( see , e . g . 7 ) f o r t h e c a l c u l a t i o n o f 
directional correlation factors. In these calculations 
the tracer-site may be treated as a centre of sym-
metry. In our problem paths of the vacancy 
through the tracer site are not allowed to contribute 
to W [j), and therefore the tracer site is not a centre 
of symmetry. 

The accuracy of the values of the W (j) depends 
on the boundary of random return of the vacancy 
(dashed line in Figure 1). By defining the boundary 
in such a way that the vacancy must make at least 
five jumps to cross the boundary we obtained an 
accuracy of a few percent for the values of W{j). 
Within the boundary we have 97 different lattice 
sites and the calculation of the W ( j ) requires the 
inversion of a 97 x 97 matrix. 

The results are shown in Table 2 : 

Table 2 

Z( 0) = 1.26, P(2ao) = 0.013, 
P(0) = 0 . 0 7 7 , P([ /6a 0 = 0.018, 
P(j /2a 0) = 0.897, P(2y2a0) = 0.0028. 
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Hence an encounter consists of an average of 
1.26 jumps. If the boundary of random return is 
drawn at a larger distance from the vacancy, the 
value of Z (0) may increase by a few percent. For 
the evaluation of the correlation function we used 
the value Z(0) = 1.32 which was calculated by 
Mehrer by the computer simulation of the random 
walk of a vacancy (Monte Carlo method)9 . 

For not more than about 40 random jumps 
Mehrer obtained the value Z (0 ) = 1.26 which is in 
good agreement with our approximation where the 
vacancy must make at least 10 jumps to cross the 
boundary and return to the tracer-site randomly, 
i.e., on the average the vacancy will make about 
30 to 40 jumps before its random return. Mehrer's 
value was calculated from the simulation of 
300 random jumps of the vacancy. 

B y a different method of calculation, EISEN-
STADT a n d R E D F I E L D 5 o b t a i n e d a v a l u e o f 1 . 347 
for Z (0) which is in fair agreement writh the value 
used in our calculations. 

Our results for P (k ) show that about 89,7 percent 
of all encounters end with unit-displacements while 
7 ,7% do not contribute to relaxation. 

With these values of the diffusion parameters we 
can evalute the Fourier-transform JW(co) of the 
correlation function [see Eqs. (5.5) and (5.9)1. F ° r 

that purpose we write Eq. (5.9) in a slightly 
modified form. For the spin density n we introduce 

n = n0cl(2a0)
3

 (8.1) 

where UQ is the number of spins in a unit cell with 
cube edge 2«o and c the fraction of occupied lattice 
sites. Defining a constant Jc due to TORREY8 by 

k = ajl = A /| /2«o = 0 . 7 4 3 3 5 (8 .2) 

and changing the variable of integration over o by 
means of the relation 

x = aq, (8 .3) 

we may write for the Fourier-transform of the 
correlation function 

" " W - T l < 8 ' 4 > 
with 

oo 
Int(cor) = JVi / 2 ( z ) (8.5) 

o 

l ~ l - 4 ( X ) Z( 0) 
i - P ( 0 ) "£ÜT / A\a) 

Z( 0) 
i - P ( 0 ) "£ÜT 

Z(0) CO T 
o 

1 - P(0) 2 



and 

A(z)=][P(li) 
u> o 

(8.6) 

The integral Int(cor) was calculated by numerical 
integration for various values of the parameter co r. 
In Fig. 2 the r-dependence of Int(cor) for a given 
value of co is compared with the values of the inte-
gral occuring in Torrey's theory [see, e.g., Eq. (2.5)] 
and with a Debye-spectrum | • tor/ ( l + OJ2T2) 
describing the relaxation properties of a Markoffian 
process and resulting from a simple exponential 
correlation function. [The factor of § in the Debye-
spectrum results from the separation of the pre-
factor similarly to equation (8.4).] 

15k3 a^cu 
J ">(w)yj 

monovacancy mechanism 
random walk (Torrey) 
simple exponential correlation function 

0,05 10'' 50UUT 

Fig. 2. Fourier spectra for a Markoffian process (simple 
exponential correlation function), Torrey's random walk 
model, and for a monovacancy mechanism of self-diffusion 

in a face-centred cubic lattice (see also Sect. VIII) . 

The values of the spectra J^(co) and J(2~)(co) 
may be obtained from the values of J<D (co) (Fig. 2) 
by means of the relationship2-4 

J(o) (co) : J d ) (co): J<2> (co) = 6 :1 : 4 . (8.7) 

IX. Discussion 

The most significant difference between Torrey's 
and the present results for monovacancy diffusion 
may be seen from Fig. 2: r-values determined from 
the linear parts of the spectra differ about 30 per-
cent from oneanother. This difference is due to the 
fact that the mean time between successive nuclear 
jumps was replaced by the mean time between 
different encounters. 

In the present model the co r-value for which the 
Fourier spectrum has a maximum as well as the 
shape of the spectrum depend on the diffusion 
mechanism. For a monovacancy mechanism, 
explicitly treated in this paper, the maximum 
occurs for c o t ~ 1.3. The shape of the spectrum is 
similar to the shape for Torrey's random walk 
model, the maximum of which occurs for cor ^ 1.7, 
however *. 

Within the accuracy of our calculations the high-
temperature asymptote (cor 1) of the mono-
vacancy model coincides with the Debye spectrum. 
Hence we may conclude that for very rapid 
diffusion there are only small differences between 
the influence of Markoffian processes and that of 
monovacancy diffusion on nuclear magnetic relaxa-
tion. In the surroundings of the maximum (COT ^ 1) 

or at lower temperatures (cor 1), however, the 
differences between the two models are considerable. 

The application of the present results to the 
analysis of self-diffusion in aluminium will be 
treated in a separate paper1 0 . 
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