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The symmetry selection rules for the mixing of states by spin orbit interaction are known to
cause unequal population of the three electronic levels of excited triplet states in aromatic
molecules. It is shown here that the same selection rules, when combined with the hyperfine inter-
action, can also produce a selective population and depopulation of the nuclear sublevels. This
mechanism is proposed to be responsible for the large optical nuclear polarisation (ONP) in low

fields observed experimentally.

I. Introduction

The optical nuclear polarization (ONP) produced
by optically excited triplet states and triplet
excitons in molecular crystals was discovered in
19671. More detailed experimental and theoretical
investigations2:3 have shown that this ONP can
be produced in high magnetic field by relaxation
interactions analogous to the Overhauser effect
which transfers the optical electronic polarization
caused by the selective population of the electronic
triplet substates to the nuclei. However, this
mechanism cannot explain the observed large
enhancement of the nuclear polarization of the
order of 104 as compared to its static value in low
fields (Ho ~ 100 G) and even less so its marked
field and orientation dependence.

In this paper we propose a different mechanism
which can explain the experimental results in
principle. We intend to show with the simple
example of two electrons and two protons that the
symmetry selection rules for the mixing of states
by spin orbit interaction, which are responsible for
the selective population and depopulation of the
three electronic triplet levels, can also produce, in
combination with the hyperfine interaction, a
selective population and depopulation of the nuclear
substates.

For a better understanding of the relations be-
tween the calculated quantities and the experi-
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1 G. Maier, U. HaesBerrLeEx, H. C. Worr, and K. H.
HAvusseR, Phys. Lett. 25 A, 384 [1968].

2 G.Martera. H.C.Worr, Z. Naturforsch. 23 a, 1068 [1968]

mental results it is necessary to describe briefly the
measuring process.

The protons of a molecular crystal are polarized
by optical excitation of triplet states in a polarizing
field Ho. The field strength was varied in a range of
0.01 G < Hy < 11 kG, and a preset orientation of
the crystal (and molecular) axes with respect to the
field Hy can be chosen.

After termination of the light irradiation the
magnetic field H, is changed adiabatically to a
fixed measuring field Hp. The nuclear polarization,
i.e. the distribution of the nuclear levels in Hy, is
transferred to a distribution over the Zeeman-levels
in Hp, which then can be detected under always
constant conditions by a suitable NMR-technique3.

If the polarizing field Hy is large compared to the
local dipolar nuclear field Hy, &~ 1 G, the generated
polarization is given by the expectation value of
the total nuclear spin component (1) in the field
direction Hyl| z. After an adiabatic change to the
field Hy, the measured NMR signal Sy, is propor-
tional to this (/). In an external field Hy € Hy, the
expectation value {(I,) becomes zero. Nevertheless,
the optical irradiation can result in a non-equilib-
rium distribution on the nuclear dipolar states.
In a time of several 7's’s the spin system reaches an
internal equilibrium, which can be described by a
spin temperature 7's.

It was shown in an early experiment by ABRAGAM
and ProcTor? that this spin temperature can be

3 K. H. HAUuSSER, O. LAUER, H. ScHucH and D. STEHLIK,
Proc. XVI. Coll. Ampere, Bucharest 1970; H. ScaucH,
D. StenLik and K. H. Hausser, Z. Naturforsch., in
print.

4 A. ABracam and W. G. ProcTor, Phys. Rev. 109, 1441
[1968].
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measured by adiabatically turning on a large
magnetic field Hp, in which the NMR signal Sp, is
given by

O o T
Sm x ?: V(H6 + H%) .

In the whole field range given above more or less
large deviations of 7's from the thermal equilibrium
Ty, (lattice temperature) were observed.

Therefore a mechanism able to explain the
observed ONP results has to produce large expecta-
tion values (I,) oc Ho/T's in fields Hy > Hry, and a
non-thermal equilibrium distribution on the nuclear
dipolar levels in “zero” field (Ho € Hy).

II. Nuclear Polarization Caused by Singlet-
Triplet Intersystem Crossing

In this section we will show that intersystem
crossing from a singlet to a triplet state contributes
to the nuclear polarization. We consider a system
with two electrons and two protons. We assume that
the electronic intersystem crossing is due to first
order spin orbit interaction, an interaction which
does not affect the nuclear spin states. The hyper-
fine interaction may in principle also contribute to
electronic singlet triplet transitions5. The matrix
elements of the hyperfine operator, however, are
much smaller than the matrix elements of the spin
orbit coupling operator Vs, and we assume that
the contribution of the hyperfine terms to the inter-
system crossing is negligibly small compared with
the contribution due to spin orbit coupling. Con-
sequently we neglect the matrix elements of the
hyperfine coupling operator between electronic
singlets and triplets. We take into account, how-
ever, the matrix elements of this operator between
the electron nuclear sublevels which belong to the
same electronic triplet manifold. The differences in
the energies of these magnetic sublevels are so
much smaller than all other energy differences
between the levels of a molecular or crystalline
system that despite the smallness of the matrix
elements of the hyperfine operator they give some

5 R.KaprEIN and L. J. O0oSTERHOFF, Chem. Phys. Lett. 4,
195 and 214 [1969]; G. L. Cross and A. D. TRIFUNAC,
J. Amer. Chem. Soc. 92, 2183 [1970].

6 C. A. HurcHison, J. V. Niceoras and G. W. Scorr,
J. Chem. Phys. 53, 1906 [1970].

7 J. H. vax pER WaaLs and M. S. bE Groot, The Triplet
State, Int. Symp. Beirut, 1967, ed.: A. B. ZAHLAN.
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important perturbation effectsé within a given
electronic triplet.

We consider a spin Hamiltonian (10), which is
the suitable operator within the restrictions
mentioned above. Under these conditions the
systems with a singlet nuclear spin function form a
separate set; they do not contribute to the nuclear
polarization and we leave these states out of con-
sideration.

We take as basis functions for the electron triplets
the functions 7'z(e), Ty(e), T-(e), and for the
nuclear triplets 7';(n), 7Ty(n), 7.(n) in which
Tz =212 — aa), Ty=2"12(8f + ax), and
T,=2"12(af + Ba). The products T4(e), T»(n)
form a complete set of spin functions for the system
under consideration. We introduce further the
function ¢r, the orbital part of the triplet state
wave function. The total W.F. for the triplet state

is given by the expression B
vr={3 ¢l Tule) Ty (n)} pr. (1)
uv

The index ¢ numbers the various magnetic sub-
states of the triplet; the coefficients cf,,, are functions
of the magnetic field strength H.

We consider now the same system in a singlet
electronic state. The orbital part of the W.F. is
denoted by ¢s, the electron spin function by S. The
total W.F. is of the form

vh=gsS3 ¢\ To(n). @)

The index j indicates the three nuclear magnetic
substates.

As mentioned before we assume that the crossing
from singlet to triplet state is caused by first order
spin orbit coupling; we denote the coupling
operator by Vgsr,. From both theoretical and experi-
mental evidence?:8:9 it is clear that the matrix
elements of Vgy, between a singlet and a triplet are
usually significantly different from each other, and
hence that there is a selective crossing to the
electron spin states. We assume now that only one
of the three components, 7';(e) say, gives a non-
zero matrix element for Vgi,. We now obtain the

8 a) M. Scawoerer and H. C. WoLr, Proc. XIV. Coll.
Ampere, Ljubljana 1966; b) H. S1xr. and M. SCHWOERER
Z. Naturforsch. 25a, 1383 [1970].

9 M.S.pE Groor, I. A. M. HESSELMANN, J. ScamipT, J. H.
VAN DER Waaws, Mol. Phys. 15, 17 [1968].
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following expression for such a matrix element:
W] Vs| v
=2 41l {g0S | Vsr| gr Tu(€)><{Ty(n) | Ty(n))
vivu

= {@oS|VsL| g1 Tz(e)> D> gick,
= VL2, 6 Ch - (3)

We introduce the symbol Vsy, , for
{@oS | VSLI ot Tu(e)).

The matrix element on the right hand side of (3)
is the same for all states j and ¢, hence the pro-
bability for crossing from % to ¥ is proportional to
{Z q ci,}z. Depending on the magnetic field H,

the nuclear W.F. of the singlet may be 7(n),
Ty(n), T,(n), or any linear combination of these
functions. The difference in energy of the nuclear
spin states even in the presence of a moderately
strong magnetic field is usually small compared
with k7' unless one measures at very low tempera-
tures. We assume that we are considering our
system under such conditions that the initial
probability for each of the nuclear spin states of the
electronic singlet state is 1/3. This also means that
the initial value for (I,) averaged over the three
spin states is zero. When a molecule crosses from a
singlet state to a triplet state, we find an average
probability that the system crosses to a particular
state yy which is proportional to

SHFLIE

because of the orthonormality conditions for the
coefficients ¢J, this expression reduces to % Z 2
v

The sum of this last expression over all states ¢
equals one (due to the orthonormality of the
coefficients ¢;, with v = z, y, z) which means that
the proportionality constant equals one. We define

Foed 3 ol (4a)

P! gives the probability that when a singlet molecule
from a reservoir with (I, = 0 crosses to a triplet
state w1 and when the spin orbit coupling is only
effective between the singlet and the 7', component
of the triplet, it crosses to a particular substate .
We define similarly

Pi=13c? and P,=13c? (4bo)
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where the effectiveness for the crossing is only due
to the 7'y and T', component respectively.

Each of the states yi has associated with it a
particular expectation value (I;)¢ for the z com-
ponent of the nuclear spin. (We assume the magnetic
field in the z direction as defined by the fine struc-
ture tensor.)

We finally define the “crossing polarizations”

pe =2 P, (5a)
py =2 PyIt, (5b)
P =2 P (5¢)

These functions give the average value for (I, in
the triplet state and hence for the absolute nuclear
polarization, when a molecule crosses from a
singlet to a triplet state (with 7'z (e), T'y(e), T';(e)
functions respectively effective for the crossing).
This is an initial value for the polarization, un-
modified by relaxation and other processes.

It may be, of course, that state  gets populated
because more than one element Vgr, , is non-zero.
For such a case the formulae we have derived have
to be generalized. Instead of (3) we get a matrix
element

> gici, (psS|Vsi| grTule)) = gicly Vsr,u-
uy v

The probability for crossing to state % is now pro-
portional to

{%qf Chy VSL,u}z. (6)

When we carry out the summation over j and » as
we did before and normalize the total probability
to 1, we find a probability to cross to a particular
state w7} which is given by

3 Z st,u Z waz/ (Z VSLQ,;; Z waz )
I v 122 vy
= Z VSE,I‘ P:‘/Z VSf,y .
“ Iz
We define a quantity
fu=Vst.u 2 Vstu- (M)
u

This quantity indicates the relative effectiveness of
the T, component for the intersystem crossing.
Obviously the relation Zf,l =1 holds. The total

“ .
propability for crossing to a particular substate 7 is
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now given by Pi = > f, Pi,. This gives a polariza-
tion #

D IuPudID = fupu. 8)
780 bw

When f, = 1/3 for u = z,y and z, the polariza-
tion (8) becomes 1/3> py.
i

Using again the orthogonality relations for the
coefficients cfw, it can be shown that

Pz+py+Pz:%Z<Iz>i:0 9)

holds for all field strengths. It follows from (8) and
(9) that when the crossing is equally effective for
the 7', (e), Ty (e), and 7', (e) component, no nuclear
polarization occurs. When the three f,’s are different,
however, the expression (8) gives usually a non-
zero result.

1. The “‘Crossing Polarizations’ and their Dependence
on Field Strength, Orientation and Hyperfine Para-
meters

We consider the spin Hamiltonian
H = DS? s E(Si = Ss) + gepeS:H,

+Hdd—gn,unIsz+Sfii (10)

in which all quantities have their usual meaning;
H 44 is the dipolar coupling operator for the protons.
In our calculations we assumed that the principal
axes of the fine structure, the hyperfine structure
and the dipolar coupling tensor coincide. Further-
more we assume that the two protons are in equi-
valent positions and have the same hyperfine
tensor, so that SA;I; + S4sI,=S84I. The
situation is for instance like that for the 9 and 10
proton in anthracene. The term Hgaq appears to
have little influence on the final results, we neglect
this term in most of our calculations. A similar
Hamiltonian has been considered by HurcHIsoN
et al.6 who considered mainly the energy eigen-
values and not the nuclear polarizations as we want
to do. We found, similar to Hutchison, that the
diagonalization of (10) is greatly facilitated by the
high symmetry of the Hamiltonian.

The Hamiltonian (10) can be diagonalized easily
when 4 = 0. The W.F.’s so obtained are a single
product of an electron spin function and a nuclear
spin function. When one substitutes the coefficients
so obtained in (4) and (5) one finds p; = py =p,=0
for all field strengths.
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When not all components of A4 are zero it appears
that pz, py, and p, are usually non-zero and
strongly dependent on field strength and orienta-
tion. To show this two approaches are being tried,
a perturbation theory approach and exact diagona-
lization by computer calculations10. In the first
approach the eigenfunctions of (10) for the case
A = 0 were chosen as basis functions, the effect of
Az, Ayy, and A4,, was calculated by perturbation
theory. It appears that p., p,, and p, are second
or higher order functions of Az, 4,y, A;; and their
products. It can be shown that a simultaneous
change in sign of A4;; and 4,, does not change the
polarization, it depends, however, on the sign of
Az;. The perturbation theory expressions are
however fairly complex.

For the computer calculations we transformed
(10) into a matrix, using basis functions of the
type Tu(e) Ty(n) so that diagonalization of the
matrix gave us directly the coefficients c,. In the
Tables 1 and 2 we summarize some of our results
for pz. For both tables the columns 2, 3 and 4
refer to a C—H fragment with a spin density p, of
about 0.1 at the carbon atom, A,; = — 3 - 106 sec™1,
Ayy=—9-108sec ! and 4,,= — 6 - 108 sec™!; the
columns 5, 6 and 7 refer to a C—H fragment with a
spin density o, of about 0.5 at the carbon atom and
with hyperfine tensor components 4,, = — 15 - 106
sec™l, Ayy=—45-1086sec”! and A,,=—30- 108
sec™l. In the columns 1 the field strength is given
in gauss. For Table 1 we used the D and E values
for the fluorene localized triplet D=3 - 109 sec™!
and E=—9-107sec! (see 8P), for Table 2 we
used the D* and E* values one can calculate for
fluorene triplet excitons, D* =1,65 - 109 sec—! and
E*= —6-108sec™1. The p, values are given in
units 10-6. We transformed our formulae so that
we could calculate the polarizations for fields in the
y and « direction. The columns 3 and 6 give strictly
speaking > P (I,>%, the columns 4 and 7 give

> PL{Iz)i. The columns 2, 3 and 4 and also the

?
the columns 5, 6 and 7 refer to the same situation
for the molecular system, the only difference being
in the orientation of the magnetic field. As will be
noticed, the anisotropy of the polarization is remark-
able.

10 E. CarracHAN, E. CoLBOURN and J. P. CoLpa, unpu-
blished results.
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Table 1
0c=0.1 0c = 0.5
H, H, H, 2z H, H,

5 + 19 + 251 205 — 73 + 1507 + 109
10 + 09 + 275 288 - 24 + 2782 + 220
25 + 1.0 + 270 227 + 21 + 4600 + 445
50 + 0.7 + 216 16 + 40 -+ 4498 + 5
75 + 03 + 179 — 179 + 38 + 4070 — 1615

100 — 01 + 158 — 39 + 30 -+ 3820 — 4403

200 — 1.2 + 110 — 3852 — 4 + 3138 — 3730

250 — + 89 — 38970 — + 2594 — 143074

300 — + 71 - 329 — + 2030 — 142240

500 — 5 + 28 — — 117 + 716 —

750 — 21 + 11 — 66 — 440 + 260 — 1627
1000 — 450 + 49 — 25 — 5610 + 120 — 611
1500 — 54 + 1.6 — 6.8 — 303 + 38 — 167

Pz in units 10-6 for localized fluorene triplets. See the main text for further explanation.
Table 2
0c=0.1 0c=0.5
H, H, H, H, H, H,

5 2 5 — 1.6 - 34 + 69 + 15
10 1.5 4.1 - 2.3 - 13 + 64 —_ 32
25 0.6 3.2 — 5 + 21 + 89 — 129
50 0.1 3.9 — 9.8 + 49 + 141 — 256
75 — 0.3 5.0 — 15 + 59 + 179 — 383

100 — 0.9 6.0 - 20 + 56 + 203 — 518

250 — 10 8.4 - 72 — 133 + 217 — 1802

500 — 618 5 — 1300 — 7890 + 119 — 29700

550 — 42200 4.3 — 7480 — 53440 + 103 — 130800

600 — 613 3.7 — 39970 — 16270 + 89 — 239750

750 = 40 2.4 — 349 — 1052 + 57 — 8315
1000 - 7 1.2 — 52 — 197 + 30 — 1284
1500 — 1.0 0.4 — 93 — 38 + 10 — 231

Pz in units 106 for fluorene excitons. See the main text for further explanation.

Other calculations have shown that p;, p,, and
p; are also non-zero when 4,, = Ayy=A4,,.

In the Tables 1 and 2 the very high values of p,
at 100 and 550 gauss respectively for a field H, and
at 250 and 600 gauss respectively for H; occur in the
regions where one expects a crossing of the energy
levels in case one neglects the hyperfine interaction.
This interaction gives rise to a non-crossing rule for
the magnetic substates, in the “crossing region”,
however, the W.F.’s behave anomalously and give
high nuclear polarizations. Even though the experi-
mental results are still scarce, the ONP in anthra-
cene and fluorene crystals2:3 shows only smooth
curves at relatively low values in the whole field
range where crossing could occur. A discussion of
this point seems premature, because the theoretical
result might be due to the particular choice of the

field direction being parallel to a principal axis of
the molecular fine structure tensor. However, this
could not be realized in the experiments where the
field was oriented with respect to the crystalline
axes rather than with respect to the molecular
axes.

In crystals one has also to consider the interaction
of the triplet electrons with protons of neighbouring
molecules (in a singlet state). This gives different
values for the hyperfine tensor components, the
situation may be less symmetrical also. What we
meant to show here is in the first place that p; + 0
ete., and what orders of magnitude are to be ex-
pected. For a larger number of protons in a molecule
we expect the values of p; to be considerably higher
than the ones in the tables. Further work along
these lines is in progress.



OPTICAL NUCLEAR POLARIZATION

2. Nuclear Polarization Caused by Triplet-Singlet
Decay

In the previous section we described how the
creation of a triplet state may be accompanied by
nuclear polarization. We will now briefly discuss
the reverse process. We assume again that only the
T, component of the triplet function gives non-zero
matrix elements of Vgsr,. Matrix elements are then
given again by expression (3).

If crossing occurs between i and 3/ this happens
with a probability proportional to

{ 2. o qi}z :
The probability constant is in this case
[Z {Z c:iv 91}2]—1 = {z c;f}‘l =3 P};)—l
i U ,.

in which we have used the orthogonality relations
for ¢7 and the definition (4a).

Hence if crossing occurs between i and s
there is a probability

1 o
3 Pt {Z Cov Qi}z

that this is a crossing to a particular nuclear sub-
state yj.

(11)

We assume now that the nuclei of the singlet
state are in a magnetic field strong enough to give
nuclear spin states

(@) = 1/)2{Ty — Tz}, BB=1/y2{Ty+ T4}

and T, with {I;)=-+41, —1, and 0 respectively.
For nuclei in a singlet state this is a very good
approximation already at fields of a few gauss.
This determines the coefficients ¢/ in (11). When
we take the products of (11) and {I,> (+1, —1, or
0) and sum these products over the substates j
we obtain after some algebraic manipulations

e Dty 5B P (12)

This quantity gives the average value of (I,) for
molecules in a singlet electronic state to which a
triplet ¢} decayed via spin orbit coupling with the
Tz component of the triplet. Simultaneously the
{I,>% of the triplet disappears, so that the total
polarization created by such a triplet decay is

(13a)

A;: === <IZ>Z = 20;110;::0/3});'

When instead of the component 7', the 7'y or 7T,
component is effective, we get similarly
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Ai, = — Iyt — 2, ¢l |3 PL. (13Db)

in which y is y or z.

The probability P: gives the distribution over the
levels 7 at the moment of crossing. When this
distribution does not change before the molecules
decay, we get a contribution from the decay which
equals

ZP;A::: —ZP}:<IZ>': - %Zc;yc‘iz
i i 7
= — S Py = —pu.
i

This would just cancel the polarization p; created
by the crossing to the triplet. When the triplet
disappears, however, via L. S. coupling with a 7',
or T, state, there is certainly a resulting polariza-
tion.

In Table 3 we give values for A together with
Pi and (I,)t for the 9 magnetic substates for a
field of 50 gauss in the z direction; the parameter
values are D=2.8-10%9sec™l, F=2.8"-108 sec™1,
Azz=—3-108sec™l, A,,=—9-106sec”1, and
Azz=—6-108sec™l. The states in Table 3 are
given in the order of decreasing energy.

Table 3.
It Pe A
— 0.99999830  0.01888527 — 0.00000179 =1
-+ 0.00000135  0.01759668 — 0.00000002 2
+ 0.99999965 0.01632881 -+ 0.00000027 3
0.05281076
+ 0.99996589  0.31700227 -+ 0.00000747 4
— 0.00000195  0.31573238 -+ 0.00000195 5
— 0.99996786  0.31444605 — 0.00000507 6
0.94718070
— 0.99829305  0.00000208 -+ 0.99829305 7
+ 0.00000070  0.00000247 + 0.02966362 8
+ 0.99829376  0.00000220 — 0.99829376 9
0.00000855

See the text for the meaning of the symbols.

3. Role of Relaxation

So far we have discussed the ONP due to selective
population and depopulation of nuclear substates
neglecting relaxation completely, i.e. setting the
relaxation rates w;; between all 9 states equal to
zero. We have seen that if population and de-
population are governed by the same spin orbit
matrix element the polarizations produced by the
two processes cancel each other yielding a net zero
polarization, and we have also seen in Section I1
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under which condition the selection rules yield a
finite polarization.

Now, let us consider the influence of relaxation,
and for simplicity let us begin with the other
extreme of very fast relaxation. In this case we can
assume that the distribution of our system over
the 9 states follows a Boltzmann equilibrium ; hence
the selectivity when populating the triplet state is
wiped out and we expect a nuclear polarization
which results exclusively from the selectivity of the
depopulation.

In actual fact, we have to deal with neither of
these limiting cases, but with a mixed case where
the rate constants of relaxation and of depopulation
are of comparable order; if we know all these rate
constants the resulting ONP can be calculated.
We want to emphasize that in this manner relaxa-
tion plays an important role in the mechanism

of ONP.

In addition to the effect of relaxation discussed
above, any ONP can be destroyed by relaxation
processes. If we neglect nuclear spin lattice re-
laxation in the absence of light which can be done
to a very good approximation in most cases3, the
following contributions must be considered both for
intramolecular and intermolecular electron nuclear
coupling.

1. Pure electronic relaxation.

The usual selection rules prohibiting a change in
the nuclear quantum number is partly lifted by the
mixing of states introduced by the hyperfine
coupling.

2. Relaxation by time dependent electron
nuclear coupling.

3. Cross relaxation.

One process should be mentioned in particular.
In a certain range of the magnetic field strength
and orientation some clectron levels can become
close to be degenerate (“‘crossing region’). Overlap
of the energy differences among different pairs of
hyperfine levels allows cross relaxation equalizing
the populations on the involved levels.

This cross relaxation could also destroy the high
polarization which was predicted in Section II for
the ““crossing region”, but which was not observed
experimentally.

J.P. COLPA, K. H. HAUSSER, AND D.STEHLIK

II1I. Conclusion

The main assumptions we made for the singlet
triplet crossing are that the operator responsible for
the crossing does not contain the nuclear spin
operators and that its matrix elements with the
electronic triplets 7'z(e), 7y (e) and T',(e) are not
all equal (which means primarily a selective cross-
ing to electronic spin states). The term A4S is not
responsible for the crossing but gives within the set
of magnetic sublevels of an electronic triplet a
mixing of the electronic nuclear spin configurations.
Under these assumptions one gets a certain pro-
bability Pt for intersystem crossing to a particular
substate Wir’ such that in general ZPi<Iz>i *=0,

1

so that the combination of selective crossing for
the electron spin states and hyperfine coupling
leads to a selective nuclear population.

The mechanism we propose here gives according
to our calculations a nuclear polarization which
depends strongly on both the strength and the
direction of the polarizing field Hy; positive as well
as negative polarizations occur and for the lower
field regions an order of magntide 10-6 to 10-4 is
found. Moreover, the mechanism is able to predict
a non-thermal equilibrium distribution on the
nuclear dipolar levels at zero external field. All
these characteristics are in agreement with the
experimental findings. We finally remark that
changes in the values for the hyperfine tensor
components (not necessarily changes in sign) may
give changes in sign and order of magnitude of the
polarization.

Appendix 1

We consider in somewhat greater detail the eigen-
functions of (10). Symmetry considerations greatly
facilitate the problem of diagonalization of the spin
Hamiltonian. In zero field one finds 4 sets of func-
tions, each set belonging to a different irreducible
representation of the group Dsy. One of those sets
contains only the functions 7';(e) 7(n), and
Ty(e) Tz(n). In zero field and with neglect of the
hyperfine interaction each of the two product
functions is a proper solution of the Hamiltonian.
When we introduce hyperfine interaction in the zero
field case, second order perturbation theory gives
the following linear combinations as approximate
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solutions:

-2 re 1o — 5] Ty Tatm),
(A1)

(1= 3o Tv© T + | 55| T=@Tyim).
(A2)

[There are no second order terms in the correction
terms in (A1) and (A2).] For 4,,= —6- 106 sec—1
and E=—9-107 sec! (see Section II) one finds
A;|2E = —0.066. In triplet states one may find
protons with an A, value 4 or 5 times as high as the
one used in our example, giving (A2) a coefficient
~0.33. Even if Vgr,, = <(psS| VSLI grTy> =0
the state described by (A2) may have a non-zero
probability to get occupied when

Vsi,z = {@ps8|VsL| g1 Tz) + 0.

When A4,,+0 it follows that c;y =0 and hence
Pi+0 for state (A2) although this state is nearly
-a Ty(e) state.
When one sums the Pi=> f,Pi over the
H“

nuclear substates of a particular electronic level,
one gets the relative probabilities for population of
this electronic level through intersystem crossing.
In zero field we define the relative population
probabilities for the three electronic energy levels
E,=D—E, E,=D+E, E,=0 by summing
over all ¢’s belonging to the same electronic level E,
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(u=u2,¥,2)

Pu = z fu P:‘ .
w5 (Eu)
These are the relative population probabilities,

which can be extracted from the experiment
designed to determine the optical electronic spin
alignment or polarisation (OEP) 8.9,

It should be emphasized that the actually
measured P, can be different from the f,, the
population probabilities for the 7',(e) components
by spin orbit intersystem crossing, if hyperfine
interaction is present. Even if the proton hyperfine
coupling is too small to produce a splitting of the
electronic levels (as in all experiments with optically
detected ESR), it still mixes the 7',(e) T»(n)
functions. Consequently in a special case, when
only 7'z (e) is effective in intersystem crossing. i.e.
fu = 1for u = x, fy = 0 for u + x, other P, besides
u=2x can be non-zero.

In the example discussed with the Egs. (A1, 2)
P, would amount only to the order of 10-2 if only
T ; is assumed to be effective (f; = 1). Nevertheless,
the influence of hyperfine coupling cannot be
neglected in all cases when interpreting the experi-
mentally determined P, in terms of population
probabilities for the 7', (e) components.

One of us (J.P.C.) wants to thank the Max Planck In-
stitut in Heidelberg for its hospitality during the summer
months of 1971 and the National Research Council of
Canada for a research grant. We also want to thank EL1za-
BETH CoLBOURN for her very valuable assistance with
the computer calculations.



