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The symmetry selection rules for the mixing of states by spin orbit interaction are known to 
cause unequal population of the three electronic levels of excited triplet states in aromatic 
molecules. It is shown here that the same selection rules, when combined with the hyperfine inter-
action, can also produce a selective population and depopulation of the nuclear sublevels. This 
mechanism is proposed to be responsible for the large optical nuclear polarisation (ONP) in low 
fields observed experimentally. 

I. Introduction 

The optical nuclear polarization (ONP) produced 
by optically excited triplet states and triplet 
excitons in molecular crystals was discovered in 
19671. More detailed experimental and theoretical 
investigations2-3 have shown that this ONP can 
be produced in high magnetic field by relaxation 
interactions analogous to the Overhauser effect 
which transfers the optical electronic polarization 
caused by the selective population of the electronic 
triplet substates to the nuclei. However, this 
mechanism cannot explain the observed large 
enhancement of the nuclear polarization of the 
order of 104 as compared to its static value in low 
fields (Ho 100 G) and even less so its marked 
field and orientation dependence. 

In this paper we propose a different mechanism 
which can explain the experimental results in 
principle. W e intend to show with the simple 
example of two electrons and twro protons that the 
symmetry selection rules for the mixing of states 
by spin orbit interaction, which are responsible for 
the selective population and depopulation of the 
three electronic triplet levels, can also produce, in 
combination with the hyperfine interaction, a 
selective population and depopulation of the nuclear 
substates. 

For a better understanding of the relations be-
tween the calculated quantities and the experi-
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mental results it is necessary to describe briefly the 
measuring process. 

The protons of a molecular crystal are polarized 
by optical excitation of triplet states in a polarizing 
field HQ . The field strength was varied in a range of 
0.01 G < HQ < 1 1 kG, and a preset orientation of 
the crystal (and molecular) axes with respect to the 
field HQ can be chosen. 

After termination of the light irradiation the 
magnetic field HQ is changed adiabatically to a 
fixed measuring field HM. The nuclear polarization, 
1.e. the distribution of the nuclear levels in HQ, is 
transferred to a distribution over the Zeeman-levels 
in HM, which then can be detected under always 
constant conditions by a suitable NMR-technique3 . 

If the polarizing field HQ is large compared to the 
local dipolar nuclear field HL % 1 G, the generated 
polarization is given by the expectation value of 
the total nuclear spin component </ z> in the field 
direction HQ\Z. After an adiabatic change to the 
field H m the measured NMR signal $ m is propor-
tional to this </ z>. In an external field HQ HL the 
expectation value </ z> becomes zero. Nevertheless, 
the optical irradiation can result in a non-equilib-
rium distribution on the nuclear dipolar states. 
In a time of several TVs the spin system reaches an 
internal equilibrium, which can be described by a 
spin temperature Ts . 

It was shown in an early experiment by ABRAGAM 
and P R O C T O R 4 that this spin temperature can be 
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measured by adiabatically turning on a large 
magnetic field HM, in which the NMR signal SM is 
given by 

SM oc -±R]/(HL + H I ) . 

In the whole field range given above more or less 
large deviations of Ts from the thermal equilibrium 
TL (lattice temperature) were observed. 

Therefore a mechanism able to explain the 
observed ONP results has to produce large expecta-
tion values </ z> oc Ho/Ts in fields Ho > HL and a 
non-thermal equilibrium distribution on the nuclear 
dipolar levels in "zero" field (HQ HL). 

II. Nuclear Polarization Caused by Singlet-
Triplet Intersystem Crossing 

In this section we will show that intersystem 
crossing from a singlet to a triplet state contributes 
to the nuclear polarization. We consider a system 
with two electrons and two protons. We assume that 
the electronic intersystem crossing is due to first 
order spin orbit interaction, an interaction which 
does not affect the nuclear spin states. The hyper-
fine interaction may in principle also contribute to 
electronic singlet triplet transitions5. The matrix 
elements of the hyperfine operator, however, are 
much smaller than the matrix elements of the spin 
orbit coupling operator FSL and we assume that 
the contribution of the hyperfine terms to the inter-
system crossing is negligibly small compared with 
the contribution due to spin orbit coupling. Con-
sequently we neglect the matrix elements of the 
hyperfine coupling operator between electronic 
singlets and triplets. We take into account, how-
ever, the matrix elements of this operator between 
the electron nuclear sublevels which belong to the 
same electronic triplet manifold. The differences in 
the energies of these magnetic sublevels are so 
much smaller than all other energy differences 
between the levels of a molecular or crystalline 
system that despite the smallness of the matrix 
elements of the hyperfine operator they give some 
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important perturbation effects6 within a given 
electronic triplet. 

We consider a spin Hamiltonian (10), which is 
the suitable operator within the restrictions 
mentioned above. Under these conditions the 
systems with a singlet nuclear spin function form a 
separate set; they do not contribute to the nuclear 
polarization and we leave these states out of con-
sideration. 

We take as basis functions for the electron triplets 
the functions Tx(e), Ty(e), Tz(e), and for the 
nuclear triplets Tx(n), Ty(n), T z (n ) in which 
Tx = 2 - 1 / 2 ( 0 0 - a a ) , Ty = 2~W(ßß + aa), and 
T 2 = 2-1/2(a0 + 0a) . The products Tß(e), T„(n) 
form a complete set of spin functions for the system 
under consideration. We introduce further the 
function cpT, the orbital part of the triplet state 
wave function. The total W.F . for the triplet state 
is given by the expression 

V T = { 2 C ^ T ^ T ^ N ) } ^ . ( 1 ) 

The index i numbers the various magnetic sub-
states of the triplet; the coefficients cl^v are functions 
of the magnetic field strength H. 

We consider now the same system in a singlet 
electronic state. The orbital part of the W.F. is 
denoted by cp s, the electron spin function by S. The 
total W.F. is of the form 

y i = < p s S Z q i ' T v , ( n ) . (2) 
v' 

The index j indicates the three nuclear magnetic 
substates. 

As mentioned before we assume that the crossing 
from singlet to triplet state is caused by first order 
spin orbit coupling; we denote the coupling 
operator by FSL • From both theoretical and experi-
mental evidence7«8 '9 it is clear that the matrix 
elements of FSL between a singlet and a triplet are 
usually significantly different from each other, and 
hence that there is a selective crossing to the 
electron spin states. We assume now that only one 
of the three components, Tx(e) say, gives a non-
zero matrix element for FSL- W e now obtain the 
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following expression for such a matrix element: 

<yS|FsL|vlT> 

= I qi' 4 <<?o^|Fsl| (f T ^ ( e ) > < TAn) | T,(n)> 
v'v/x 

= (<po S | F S L I <Pt Tx (e)> 2 qi cxv 
V 

= F S L , « 2 F L J 4 - ( 3 ) 

V 

We introduce the symbol FSL,, for 

(cpoS | FSL I qpi T ß (e)>. 
The matrix element on the right hand side of (3) 

is the same for all states j and i, hence the pro-
bability for crossing from yj]s to ip*T is proportional to 

qlcDepending on the magnetic field H, 
the nuclear W.F. of the singlet may be Tx(n), 
Ty(n), Tz(n), or any linear combination of these 
functions. The difference in energy of the nuclear 
spin states even in the presence of a moderately 
strong magnetic field is usually small compared 
with kT unless one measures at very low tempera-
tures. We assume that we are considering our 
system under such conditions that the initial 
probability for each of the nuclear spin states of the 
electronic singlet state is 1/3. This also means that 
the initial value for averaged over the three 
spin states is zero. When a molecule crosses from a 
singlet state to a triplet state, we find an average 
probability that the system crosses to a particular 
state \plT which is proportional to 

because of the orthonormality conditions for the 
coefficients gj, this expression reduces to J 2 clxv2. 

V 

The sum of this last expression over all states i 
equals one (due to the orthonormality of the 
coefficients cxv with v — x, y, z) which means that 
the proportionality constant equals one. We define 

n = l l 4 2 - (4a) 
V 

P\ gives the probability that when a singlet molecule 
from a reservoir with < / 2 ) = 0 crosses to a triplet 
state if T and when the spin orbit coupling is only 
effective between the singlet and the Tx component 
of the triplet, it crosses to a particular substate xplT. 
We define similarly 

^ d (4b, c) 
V V 

where the effectiveness for the crossing is only due 
to the Ty and Tz component respectively. 

Each of the states xp\ has associated with it a 
particular expectation value <iz>* for the 2 com-
ponent of the nuclear spin. (We assume the magnetic 
field in the z direction as defined by the fine struc-
ture tensor.) 

We finally define the "crossing polarizations" 

p* = 2 **,</,>«, (5a) 
i 

Py = 2 P i < h y , (5b) 
i 

Pz=2Pi<izy- (5c) 
i 

These functions give the average value for </ z> in 
the triplet state and hence for the absolute nuclear 
polarization, when a molecule crosses from a 
singlet to a triplet state (with Tx(e), Ty(e), Tz(e) 
functions respectively effective for the crossing). 
This is an initial value for the polarization, un-
modified by relaxation and other processes. 

It may be, of course, that state iplT gets populated 
because more than one element FSL,, IS non-zero. 
For such a case the formulae we have derived have 
to be generalized. Instead of (3) we get a matrix 
element 

2 & 4 < ? S 8 I F S L | cfT Tß (e)> = 2 qi 4 F S L , , . 
UV pv 

The probability for crossing to state tplT is now pro-
portional to 

{ 2 ^ 4 F S L , , } 2 . ( 6 ) 

When we carry out the summation over j and v as 
we did before and normalize the total probability 
to 1, we find a probability to cross to a particular 
state f7T which is given by 

£ 2 ^ 2 4 7 ( 2 v*LIcU2) 
n V \fi vi J 

= 2 V$L piJ2 VsL-

We define a quantity 

fu=VsU2 F s l V (7) 
ß 

This quantity indicates the relative effectiveness of 
the Tu component for the intersystem crossing. 
Obviously the relation 2 / , = 1 holds. The total 

propability for crossing to a particular substate tplT is 



now given by Pl = ^fßPlß • This gives a polariza-
tion " 

When fn — 1/3 for ju — x, y and z, the polariza-
tion (8) becomes 1 /3 2 Pn • 

Using again the orthogonality relations for the 
coefficients it can be shown that 

Px + Py + Pz = h 2 < 1 * > i = ° ( 9 ) 
i 

holds for all field strengths. It follows from (8) and 
(9) that when the crossing is equally effective for 
the Tx(e), Ty(e), and Tz(e) component, no nuclear 
polarization occurs. When the three fß's are different, 
however, the expression (8) gives usually a non-
zero result. 

1. The "Crossing Polarizations''' and their Dependence 
on Field Strength, Orientation and Hyperfine Para-

meters 

W e consider the spin Hamiltonian 

jfT = DS2z + E(S2x- S2y) + ge/xeSzHz 

+ Hää-gn^nIzHz + SÄI (10) 

in which all quantities have their usual meaning; 
Had is the dipolar coupling operator for the protons. 
In our calculations we assumed that the principal 
axes of the fine structure, the hyperfine structure 
and the dipolar coupling tensor coincide. Further-
more we assume that the two protons are in equi-
valent positions and have the same hyperfine 
tensor, so that SÄI + SÄ 2 / 2 = SÄI. The 
situation is for instance like that for the 9 and 10 
proton in anthracene. The term H^a appears to 
have little influence on the final results, we neglect 
this term in most of our calculations. A similar 
Hamiltonian has been considered by HUTCHISON 
et al.6 who considered mainly the energy eigen-
values and not the nuclear polarizations as we want 
to do. W e found, similar to Hutchison, that the 
diagonalization of (10) is greatly facilitated by the 
high symmetry of the Hamiltonian. 

The Hamiltonian (10) can be diagonalized easily 
when ^ 4 = 0 . The W.F. 's so obtained are a single 
product of an electron spin function and a nuclear 
spin function. When one substitutes the coefficients 
so obtained in (4) and (5) one finds px = py = pz = 0 
for all field strengths. 

When not all components of A are zero it appears 
that px, py, and pz are usually non-zero and 
strongly dependent on field strength and orienta-
tion. To show this two approaches are being tried, 
a perturbation theory approach and exact diagona-
lization by computer calculations10. In the first 
approach the eigenfunctions of (10) for the case 
.4 = 0 were chosen as basis functions, the effect of 
Axx, Ayy, and Azz was calculated by perturbation 
theory. It appears that px, py, and pz are second 
or higher order functions of Axx, Ayy, Azz and their 
products. It can be shown that a simultaneous 
change in sign of Axx and Ayy does not change the 
polarization, it depends, however, on the sign of 
Azz. The perturbation theory expressions are 
however fairly complex. 

For the computer calculations we transformed 
(10) into a matrix, using basis functions of the 
type Tß(e) ^ ( n ) so that diagonalization of the 
matrix gave us directly the coefficients c1^. In the 
Tables 1 and 2 we summarize some of our results 
for px. For both tables the columns 2, 3 and 4 
refer to a C—H fragment with a spin density Qc of 
about 0.1 at the carbon atom, Axx = — 3 • 106 sec - 1 , 
Ayy = — 9 • 106 sec-1 and Azz = — 6 • 106 sec"1 ; the 
columns 5, 6 and 7 refer to a C—H fragment with a 
spin density gc of about 0.5 at the carbon atom and 
with hyperfine tensor components Axx— — 15 • 106 

sec - 1 , Ayy= — 45 • 106 sec"1 and Azz=— 30 • 106 

sec - 1 . In the columns 1 the field strength is given 
in gauss. For Table 1 wre used the D and E values 
for the fluorene localized triplet D — 3 - 10° sec - 1 

and E = - 9 • 107 sec-1 (see 8 b ) , for Table 2 we 
used the D* and E * values one can calculate for 
fluorene triplet excitons, D* = 1,65 • 109 sec - 1 and 
E* = — 6 - 108 sec - 1 . The px values are given in 
units lO^6. We transformed our formulae so that 
we could calculate the polarizations for fields in the 
y and x direction. The columns 3 and 6 give strictly 
speaking ^ P x ( l y ) 1 ' the columns 4 and 7 give 

i 

2 Plx < I x T h e columns 2, 3 and 4 and also the 
i 

the columns 5, 6 and 7 refer to the same situation 
for the molecular system, the only difference being 
in the orientation of the magnetic field. As will be 
noticed, the anisotropy of the polarization is remark-
able. 

1 0 E . CALLAGHAN, E . COLBOURN a n d J . P . COLPA, u n p u -
blished results. 



Table 1 

p c - 0.1 p c = 0.5 
Hz Hy Hx Hz Hy Hj 

5 + 1.9 + 251 205 — 73 + 1507 + 109 
10 + 0.9 + 275 288 — 24 + 2782 + 220 
25 + 1.0 + 270 227 + 21 + 4600 + 445 
50 + 0.7 + 216 16 + 40 + 4498 + 5 
75 + 0.3 + 179 - 179 + 38 + 4070 - 1615 

100 — 0.1 + 158 - 395 + 30 + 3820 - 4403 
200 — 1.2 + 110 - 3852 — 4 + 3138 - 3730 
250 — + 89 - 38970 — + 2594 - 143074 
300 — + 71 - 329 — + 2030 - 142240 
500 — 5 + 28 — — 117 + 716 — 

750 — 21 + 11 - 66 — 440 + 260 - 1627 
1000 — 450 + 4.9 - 25 — 5610 + 120 - 611 
1500 — 5.4 + 1.6 - 6.8 — 303 + 38 - 167 

px in units 1 0 - 6 for localized fluorene triplets. See the main text for further explanation. 

Table 2 

gc = 0.1 pc = 0.5 
Hz Hy Hx Hz Hy H 

5 2 5 1.6 — 34 + 69 + 15 
10 1.5 4.1 2.3 — 13 + 64 32 
25 0.6 3.2 5 + 21 + 89 - 129 
50 0.1 3.9 9.8 + 49 + 141 - 256 
75 0.3 5.0 - 15 + 59 + 179 - 383 

100 0.9 6.0 - 20 + 56 + 203 - 518 
250 10 8.4 - 72 — 133 + 217 - 1802 
500 - 618 5 - 1300 — 7890 + 119 - 29700 
550 - 42200 4.3 - 7480 — 53440 + 103 - 130800 
600 - 613 3.7 - 39970 — 16270 + 89 - 239750 
750 - 40 2.4 - 349 — 1052 + 57 - 8315 

1000 - 7.7 1.2 - 52 — 197 + 30 - 1284 
1500 - 1.0 0.4 - 9.3 — 38 + to - 231 

p x in units 1 0 - 6 for fluorene excitons. See the main text for further explanation. 

Other calculations have shown that px, py, and 
pz are also non-zero when Axx = Ayy = Azz. 

In the Tables 1 and 2 the very high values of px 

at 100 and 550 gauss respectively for a field HZ and 
at 250 and 600 gauss respectively for HX occur in the 
regions where one expects a crossing of the energy 
levels in case one neglects the hyperfine interaction. 
This interaction gives rise to a non-crossing rule for 
the magnetic substates, in the "crossing region", 
however, the W.F. 's behave anomalously and give 
high nuclear polarizations. Even though the experi-
mental results are still scarce, the ONP in anthra-
cene and fluorene crystals2-3 shows only smooth 
curves at relatively low values in the whole field 
range where crossing could occur. A discussion of 
this point seems premature, because the theoretical 
result might be due to the particular choice of the 

field direction being parallel to a principal axis of 
the molecular fine structure tensor. However, this 
could not be realized in the experiments where the 
field was oriented with respect to the crystalline 
axes rather than with respect to the molecular 
axes. 

In crystals one has also to consider the interaction 
of the triplet electrons with protons of neighbouring 
molecules (in a singlet state). This gives different 
values for the hyperfine tensor components, the 
situation may be less symmetrical also. What we 
meant to show here is in the first place that px 4= 0 
etc., and what orders of magnitude are to be ex-
pected. For a larger number of protons in a molecule 
we expect the values of px to be considerably higher 
than the ones in the tables. Further work along 
these lines is in progress. 



2. Nuclear Polarization Caused by Triplet-Singlet 
Decay 

In the previous section we described how the 
creation of a triplet state may be accompanied by 
nuclear polarization. We will now briefly discuss 
the reverse process. We assume again that only the 
Tx component of the triplet function gives non-zero 
matrix elements of FSL- Matrix elements are then 
given again by expression (3). 

If crossing occurs between xplT and ipj& this happens 
with a probability proportional to 

{24 
The probability constant is in this case 

[ ^ { S ^ ^ } 2 ] - 1 = { 2 4 . 2 } - 1 = 

in which we have used the orthogonality relations 
for qi and the definition (4a). 

Hence if crossing occurs between and xp s 
there is a probability 

3 P « { 2 4 ? j }
2

 (ii) 

that this is a crossing to a particular nuclear sub-
state ^s • 

W e assume now that the nuclei of the singlet 
state are in a magnetic field strong enough to give 
nuclear spin states 

(aa) = l/\/2{Ty-Tx}, ßß = l/]/2{Ty + Tx) 

and Tz, with <(/2> = -(-1, —1, and 0 respectively. 
For nuclei in a singlet state this is a very good 
approximation already at fields of a few gauss. 
This determines the coefficients qi in (11). When 
we take the products of (11) and </2> ( + 1 , — 1, or 
0) and sum these products over the substates j 
we obtain after some algebraic manipulations 

- 2 4 4 / 3 P i . (12) 

This quantity gives the average value of </2> for 
molecules in a singlet electronic state to which a 
triplet xplT decayed via spin orbit coupling with the 
Tx component of the triplet. Simultaneously the 
</2> f of the triplet disappears, so that the total 
polarization created by such a triplet decay is 

- 2 4 4 / 3 P * . (13a) 

When instead of the component Tx the Ty or Tz 

component is effective, we get similarly 

A i t i = - < I z y - 2 c i v c l x l 3 P i x . (13b) 

in which fj, is y or z. 

The probability Plx gives the distribution over the 
levels i at the moment of crossing. When this 
distribution does not change before the molecules 
decay, we get a contribution from the decay which 
equals 

I 4 = - 2 p i < / , > « - § 2 c W . 
i i i 

= -2i«<tigy = - p s . 
i 

This would just cancel the polarization px created 
by the crossing to the triplet. When the triplet 
disappears, however, via L. S. coupling with a Ty 

or Tz state, there is certainly a resulting polariza-
tion. 

In Table 3 we give values for Alx together with 
Px and <1 2 ) f for the 9 magnetic substates for a 
field of 50 gauss in the z direction; the parameter 
values are Z> = 2.8 • 109 sec - 1 , E = 2.8 • 108 sec-1 , 
Axx =z 3 * 106 sec-"1, Ayy= — 9 • 106 sec - 1 , and 
^42 2= — 6 • 106 sec - 1 . The states in Table 3 are 
given in the order of decreasing energy. 

Table 3. 

Px A'x 

- 0 .99999830 0.01888527 - 0.00000179 i = 1 
+ 0.00000135 0.01759668 - 0.00000002 2 
+ 0.99999965 0.01632881 + 0.00000027 3 

0.05281076 
+ 0.99996589 0.31700227 + 0.00000747 4 
- 0 .00000195 0.31573238 + 0.00000195 5 
- 0 .99996786 0.31444605 - 0.00000507 6 

0.94718070 
- 0 .99829305 0.00000208 + 0.99829305 7 
+ 0.00000070 0.00000247 + 0.02966362 8 
+ 0.99829376 0.00000220 - 0.99829376 9 

0.00000855 

See the text for the meaning of the symbols. 

3. Role of Relaxation 

So far wre have discussed the ONP due to selective 
population and depopulation of nuclear substates 
neglecting relaxation completely, i.e. setting the 
relaxation rates Wy between all 9 states equal to 
zero. W e have seen that if population and de-
population are governed by the same spin orbit 
matrix element the polarizations produced by the 
two processes cancel each other yielding a net zero 
polarization, and we have also seen in Section II 



under which condition the selection rules yield a 
finite polarization. 

Now, let us consider the influence of relaxation, 
and for simplicity let us begin with the other 
extreme of very fast relaxation. In this case we can 
assume that the distribution of our system over 
the 9 states follows a Boltzmann equilibrium; hence 
the selectivity when populating the triplet state is 
wiped out and we expect a nuclear polarization 
which results exclusively from the selectivity of the 
depopulation. 

In actual fact, we have to deal with neither of 
these limiting cases, but with a mixed case where 
the rate constants of relaxation and of depopulation 
are of comparable order; if we know all these rate 
constants the resulting ONP can be calculated. 
We want to emphasize that in this manner relaxa-
tion plays an important role in the mechanism 
of ONP. 

In addition to the effect of relaxation discussed 
above, any ONP can be destroyed by relaxation 
processes. If we neglect nuclear spin lattice re-
laxation in the absence of light which can be done 
to a very good approximation in most cases3, the 
following contributions must be considered both for 
intramolecular and intermolecular electron nuclear 
coupling. 

1. Pure electronic relaxation. 

The usual selection rules prohibiting a change in 
the nuclear quantum number is partly lifted by the 
mixing of states introduced by the hyperfine 
coupling. 

2. Relaxation by time dependent electron 
nuclear coupling. 

3. Cross relaxation. 

One process should be mentioned in particular. 
In a certain range of the magnetic field strength 
and orientation some electron levels can become 
close to be degenerate ("crossing region"). Overlap 
of the energy differences among different pairs of 
hj'perfine levels allows cross relaxation equalizing 
the populations on the involved levels. 

This cross relaxation could also destroy the high 
polarization which was predicted in Section II for 
the "crossing region", but which was not observed 
experimentally. 

III. Conclusion 

The main assumptions we made for the singlet 
triplet crossing are that the operator responsible for 
the crossing does not contain the nuclear spin 
operators and that its matrix elements with the 
electronic triplets Tx(e), Ty(e) and Tz(e) are not 
all equal (which means primarily a selective cross-
ing to electronic spin states). The term I AS is not 
responsible for the crossing but gives within the set 
of magnetic sublevels of an electronic triplet a 
mixing of the electronic nuclear spin configurations. 
Under these assumptions one gets a certain pro-
bability Pl for intersystem crossing to a particular 
substate ipj, such that in general ^ P i ^ z ) 1 + 0, 

i 

so that the combination of selective crossing for 
the electron spin states and hyperfine coupling 
leads to a selective nuclear population. 

The mechanism we propose here gives according 
to our calculations a nuclear polarization which 
depends strongly on both the strength and the 
direction of the polarizing field Ho; positive as well 
as negative polarizations occur and for the lower 
field regions an order of magntide 10~6 to 10~4 is 
found. Moreover, the mechanism is able to predict 
a non-thermal equilibrium distribution on the 
nuclear dipolar levels at zero external field. All 
these characteristics are in agreement with the 
experimental findings. We finally remark that 
changes in the values for the hyperfine tensor 
components (not necessarily changes in sign) may 
give changes in sign and order of magnitude of the 
polarization. 

Appendix I 

We consider in somewhat greater detail the eigen-
functions of (10). Symmetry considerations greatly 
facilitate the problem of diagonalization of the spin 
Hamiltonian. In zero field one finds 4 sets of func-
tions, each set belonging to a different irreducible 
representation of the group -02h- One of those sets 
contains only the functions Tx(e) Ty(n), and 
Ty(e) Tx{n). In zero field and with neglect of the 
hyperfine interaction each of the two product 
functions is a proper solution of the Hamiltonian. 
When we introduce hyperfine interaction in the zero 
field case, second order perturbation theory gives 
the following linear combinations as approximate 



solutions: 

11 - - \ 4 f ) TvMT*W> 
( A L ) 

11 - T W " j Ty T* (n) + ! 4 f 1 T x (e) Ty (n) • 
(A2) 

[There are no second order terms in the correction 
terms in ( A l ) and (A2).] For Azz = — 6 • 106 sec"1 

and E = — 9 • 107 sec - 1 (see Section II) one finds 
AzzßE = —0.066. In triplet states one may find 
protons with an Azz value 4 or 5 times as high as the 
one used in our example, giving (A2) a coefficient 
- 0 . 3 3 . Even if VSL,y = <<psS| FSL| = 0 
the state described by (A 2) may have a non-zero 
probability to get occupied when 

FSL ix = <>s$| FSL I <pi Txy 0 . 

When A zz =f= 0 it follows that cxy 4= 0 and hence 
Plx=1=0 for state (A 2) although this state is nearly 
a Ty(e) state. 

When one sums the Pl fßPß over the 
ß 

nuclear substates of a particular electronic level, 
one gets the relative probabilities for population of 
this electronic level through intersystem crossing. 
In zero field we define the relative population 
probabilities for the three electronic energy levels 
Ex = D — E, Ey — D E, Ez = 0 by summing 
over all i's belonging to the same electronic level Eu 

(u = x, y, z) 

Pu = 2fuK-

These are the relative population probabilities, 
which can be extracted from the experiment 
designed to determine the optical electronic spin 
alignment or polarisation (OEP) 8>9. 

It should be emphasized that the actually 
measured Pu can be different from the fu, the 
population probabilities for the Tß(e) components 
by spin orbit intersystem crossing, if hyperfine 
interaction is present. Even if the proton hyperfine 
coupling is too small to produce a splitting of the 
electronic levels (as in all experiments with optically 
detected ESR), it still mixes the Tß(e) Tv(n) 
functions. Consequently in a special case, when 
only Tx(e) is effective in intersystem crossing, i.e. 
fß = 1 for ju, = x, fß — 0 for // =t= x, other Pu besides 
u = x can be non-zero. 

In the example discussed with the Eqs. ( A l , 2) 
Py would amount only to the order of 10~2 if only 
Tx is assumed to be effective (fx = 1). Nevertheless, 
the influence of hyperfine coupling cannot be 
neglected in all cases when interpreting the experi-
mentally determined Pu in terms of population 
probabilities for the Tß(e) components. 
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