
B A N D 26 a Z E I T S C H R I F T F Ü R N A T U R F O R S C H U N G H E F T XI 

Ein approximatives SCF-LCGO-Verfahren 

H . P R E U S S 

Institut für Theoretische Chemie der Universität Stuttgart 

( Z . Naturforsch. 26 a, 1779—1781 [1971] ; e ingegangen am 10. A u g u s t 1971) 

Ausgehend von den Hartree-Gleichungen wird durch Mittelung der Potentialfelder eine einzige 
SCF-Gleichung hergeleitet, die als eine Näherung für die HF-Gleichung aufgefaßt werden kann. 
Nadi Einführung der LCAO (STO) (GO) -Darstellung und der Mulliken-Approximation gelangt man 
zu einer sehr einfachen Form des SCF-Operators, die näher besprochen wird. 

1. Einleitung 

Bekanntlich ergeben sich im Hartree-Verfahren, 
wenn die Gesamtwellenfunktion rp in der Form 

y> = <pt(l) <p2(2) ...<pn(n) PCs{o1...on) (1) 

angesetzt wird, die entsprechenden Gleichungen 
(Hartree-Gleichungen) aus der Energievariation 
nach (pj(j) zu 

Ft(i) ydi) = Ei (pt(i), (2) 

wobei der Hartree-Faktor Fi die folgende Form hat: 

F,(i) = - * J - 2 
-1 = 1 rXi k = 1 

(kfl) 

—— — dr;-. (3) 

Bei Molekülrechnungen stellen die cpj die Molekül-
Einelektronenfunktionen dar, wobei %s in Gl. (1) 
die Gesamtspinfunktion bedeutet. Obwohl danach rp 
noch Eigenfunktion der Spin-Operatoren S2 und Sz 

ist, sowie auch die geforderten Symmetrien erhalten 
kann, erfüllt rp nicht das Pauli-Prinzip. Aus diesem 
Grunde verlangt man zumindest orthonormierte cpj-
Funktionen. 

/ <Pi* <Pj & = du , ( 4 ) 

um auf diese Weise eine Gleichheit der «^-Funktio-
nen zu verhindern. Sind dagegen einige Schalen ab-
geschlossen (Doppelbesetzung von Ortsfunktionen-
Anteilen) , so gilt Gl. (4) nur für die Ortsanteile der 
verschiedenen Ein-Elektronen-Funktionen. 

Die Forderung (4) ergibt sich eigentlich aus der 
Determinanten-Darstellung der genäherten Gesamt-
wellenfunktion 

V = | < V . . < f „ | (5) 

n mit Vi 
ß* 

(6) 

indem das Pauli-Prinzip (Antisymmetrie von rp) 
die Gleidiheit von mehr als 2 ^-Funktionen in Gl. 
(5) ausschließt. 

Da der Hamilton-Operator !H keine Spin-Anteile 
enthalten soll, kann Gl. (1) audi in der Form 

V>= 11 <£;(/) i=i 
(7) 

gesdirieben werden, wobei sich Gl. (1) aus Gl. (7) 
durch Linearkombination der Spin-Anteile ergibt, 
damit rp auch Eigenfunktion von S2 wird. 

2. Die approximativen SCF-Gleichungen 

Die Gl. (2) bedeutet, daß es maximal n Hartree-
Gleichungen gibt, da sich jedes Elektron nach (3) in 
einem anderen Potentialfeld befindet. Daher sind 
audi von vornherein die ^-Funktionen nicht ortho-
gonal aufeinander. 

Um zu einer einzigen Gleichung zu gelangen, 
mittein wir die einzelnen 1 Fi 

F(i) = 1 2 Ft(i) n i = i (8) 

und erhalten 

! i ' " 2 ' ' ' . lr, . (9) n k = i J Tij 
wobei 

N 

h(i) = - i A i - 2 X 
a = I rxi 

(9 a) 

Damit ist an Stelle der Gin. (2) die Gleichung 

F(pi = Ei <Pi (10) 

zu lösen. Wir nennen Gl. (10) eine approximative 
SCF-Gleichung, da F nach Gl. (9) noch alle <pu ent-
hält. 
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Diese werden nun in bekannter Weise als Linear-
kombination von Funktionen %p angesetzt 

<Pk= 2 cPk XP • 
P = l 

(11) 

Durch Energievariation in Gl. (10) nach den cp in 
Gl. (11) wird wieder ein Säkularproblem erhalten 

2 cpk {Fpq - ek Spq} = 0 (q = 1, 2 , . . . , M) (12) 
v = l 

mit 

und 

Spq — f Xp Xq 

n-1 nJ? M M 

(12 a) 

F„q = hpq+ CpkCsk(r s\p q), 
n k=l r=l s=l 

( 12b ) 

wobei 

Ferner ist 
Kq = f x P * h XQ & • (12c ) 

(pq\rs) = ^ *r>(0) ^ t S W d^dr,. 

(12 d) 

Nehmen wir an, daß der Zustand cpk mit mk Elek-
tronen 

0 mk 2 

besetzt sei, so geht wegen 

2 mk Cpk C(jk = P] 

(13) 

(14) 

die Gl. (12 b) in 
n _ l M M 

Fpq = hpq+ 2 2 Prs(rs\pq) (15) 
n r= 1 s = 1 

über. 
Im folgenden Schritt verwenden wir die Mulliken-

sche Abschätzung 2 für Gauß-Integrale 

(r s | p q) { (r r | p q) + (5 5 | p q) } (16) 

und setzen Gl. (16) in Gl. (15) ein. Damit resultiert 
die Form 

n - 1 M M 
fpq = hpq + 2 2 Prs S, Z TI r = 1 s = 1 

{{rr\pq) + (ss\pq)} , (17) 

die 

2 Prs Srs — ns 
r = 1 

(18) 

(20) 

n - 1 M 
Fpq = hpq + 2 n s ( s s | p g ) (19) 

« S = 1 

übergeht. 
Aus Gl. (18) folgt weiter 

M 
2 ns = n . 

s = 1 

Wendet man ein zweites Mal Gl. (16) auf Gl. (19) 
an, so ergibt sich schließlich 

n - 1 M 
Fpq = hpq + 0 2 ns Spq Zn s = i 

• {(pp\ss) + (qq\ss)} . (21) 

3. Interpretation der approximierten 
SCF-Gleichung 

Die Verschiedenheit der Hartree-Gleichungen (2) 
und (3) bedeutet den jeweiligen Abzug der Selbst-
wechselwirkung vom elektrostatischen Potentialfeld V 
aller Elektronen nach 

r i f ^ ' a , , . 
k=lJ Tu 

(22) 

Soll dagegen mit V eine einzige Gleichung beschrie-
ben werden, so muß dieses mit dem Faktor (n — l)/n 
versehen werden, um kollektiv den Abzug zu erfas-
sen, wie es in Gin. (9) und (10) durch eine Mitte-
lung erhalten wurde. Man kann aber auch den Fak-
tor 1 — 1 /n so interpretieren, als erfasse man mit 
(1 /n) V formal einen Teil des Elektronenaustau-
sches, da sich Fpq im exakten HF-Operator (abge-
schlossene Schalen) in der Form 

M M 
Fpq ~ hpq + 2 2 Pn{(pq\rs)~ (Pr\qs)} (23) r = 1 s=l 

ergibt, wobei man Fpq mit Fpq von Gl. (15) verglei-
chen muß. Es liegt daher nahe, mit einem Korrela-
tionsglied der Form (u/n) V zu arbeiten, wobei ju 
(als halbempirischer Parameter) in seiner Abhän-
gigkeit von der Funktionsbasis noch näher unter-
sucht werden müßte. 

Die Anwendung der Mullikenschen Approxima-
tion (16) liefert dann eine Form von Gl. (19) , die 
so verstanden werden kann, als würde nur ein Po-
tential der Form 

F(i) =h(i) + ^ | ns f 7JU) <*P (24) 
n 

vorliegen, wobei 
2 R. S. MULLIKEN. J. Chim. Phys. 46, 497 [1949]. FPq=(p\F\q). (24 a) 



Wegen Gl. (9 a) kann Gl. (24) audi geschrieben 

F(i) = -\Ai + V(i) (25) 
mit 

U (i) = - 2 1 Z "s \ a t j . (25 a) 
1 = 1 rXi n s = l J rn 

Unterscheidet man nun die ^-Funktionen nach den-
jenigen, die in den Zentren 1 lokalisiert sind (5;.) 
und den übrigen (s) , so geht Gl. (25 a) über in 

T 7 / . x v 1 1 / n ~ l S A 1 
U(i) = - 1 —\ZX- 2 nsx rXi \ atj \ 

>1 = 1 rxi { n sx J ri} ) 
n-1 * [ y j ( j ) , 

wobei im einzelnen 
N 

2 MX + M' = M. (26 a) 
; = i 

Wir ersehen aus Gl. ( 2 6 ) , daß die Kernladungszahl 
Zx für große Txi in eine gewisse effektive Ladungs-
zahl Z; — Oj übergeführt wird, wobei 

a a « — f n ^ l ^ d r , - (27) 
n sa J r ij 

und die Abschirmung durdi die jeweiligen Ladungs-
verteilungen x unter Einschaltung der ns gegeben 
ist, die die Rolle von Besetzungszahlen spielen. In 
der Tat kommt den ns nach Gl. (20) diese Bedeu-
tung zu. 

Man beachte dabei, daß für sehr große n zwar 
der Faktor (n — l)/n gegen eins geht, aber auch die 
Summe in Mx approximativ mit n ansteigt, da dann 
auch mehr ^-Funktionen Verwendung finden müs-
sen. 

Schließlich liefert der letzte Term in Gl. (26) ein 
Abstoßungspotential jeweils an den Stellen, an denen 
eine ^-Funktion lokalisiert ist, ebenfalls mit ns mul-
tipliziert, so daß wenig besetzte ^-Funktionen geringe 
Abschirmung in Gl. (27) und schwache Abstoßung 
im 2. Term von Gl. (26) liefern. 

Sehr wichtig sind noch folgende Hinweise: Wäh-
rend in Gl. (15) die Anzahl der Integrale mit M4 

ansteigt, wenn alle berücksichtigt werden, ist dies 
nach Gl. (19) nur noch mit M3 der Fall. Schließlich 
steigt die Anzahl der Integrale in Gl. (21) nur noch 
mit M2 an; dies ist bei großen Basissätzen, die hier 
wohl mit großen Molekülen verknüpft sind, von ganz 
wesentlicher Bedeutung! 

Wir wollen hier die Meinung vertreten, daß für 
große Moleküle eine solche Vereinfachung der Fpq-
Elemente vorteilhaft sein kann, audi wenn ggf. ge-
wisse Eigenschaften des exakten SCF-Formalismus 
verloren gehen, was hier der Fall ist. Die vorgeschla-
gene Methode ist daher zwar kein halbempirisches 
Verfahren, muß aber als ein approximatives Vor-
gehen gesehen werden, wobei prinzipiell der SCF-
Formalismus erhalten bleibt. 


