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The contribution of the vibration-rotation interaction term to the potential results in the fact 
that each rotational level has a slightly different potential curve. These deformed curves are used 
to integrate the Schrödinger equation. 

General Considerations 

The theory of the diatomic molecules can be 
found in H E R Z B E R G The wave function S repre-
senting the vibrational and rotational motions of 
such a molecule may be written as a product of 
three functions: 

S(r,6,cp)=R(r)0(e) &(cp) 

where r, 0, cp are the spherical polar coordinates of 
the second nucleus related to the first one taken 
as origin. We have 

and 
= 

0(0)« (2 7+1) (/—|M |) ! 
i 2 ( / + | Af | •PjW (cos 6) 

where M and 7 are the magnetic and rotational 
quantum numbers, respectively, and Pj\M\ the as-
sociated Legendre polynomial. 

As for the third function R, if we replace it by 
ip(r)=rR(r), ip is solution of the radial wave 
equation: 

d2yj 
d r2 

7 ( 7 + 1 ) , 8 jr 2 p 
r2 + h2 

[E-V{r)]) = 0 

If we make a change of variable x = r — re, where 
re is the equilibrium nuclear separation, and put 
B = h/8 JI2 c P, r2, c being the velocity of light, the 
equation becomes: 

d 2tp 
dx2 

8 n2 p 

h2 E-

where f.i is the reduced mass and E the total energy 
of the molecule in its motion about the center of 
gravity, h being Planck's constant. V(r) represents 
the potential energy, and 7 ( / + l ) / r 2 the interaction 
term, because it contains the rotational quantum 
number J together with the vibration-dependent in-
ternuclear distance r. 

(1+x/re)2 

By use of the term values (in m - 1 ) instead of ener-
gy values, we may write 

d2y . 8 n2 p, c 
dx2 h ~ 

[ T - U j ( x ) ] - i p = 0 (1) 

where T = EVT/h c, 
EyT = E — Ee i and 

V{x) =Eel + V1 (x), 
Eej = electronic energy , 

U(x) = Vx (x) /h c , 
Uj(x)=U(x) + B J (J + 1) / (1 + x/re)2. 

The expression of U j being not simple, it is con-
venient to use its graphical representation for the 
solution of Eq. (1) : Thus, we have to draw the 
potential curves with the help of a digital computer, 
and then solve this equation by an analogue method. 

Plotting of the Potential Curves 

The vibration term value in m - 1 of the hydrogen 
fluoride molecule is 1 

Gv = 413852 (v + i ) - 9006.9 {v + £)2 

+ 98 .0 (v + i ) 3 - 2 . 5 ( t ; + i ) 4 . 
(2) 

When the vibrational quantum number v varies 
from 0 to 4, the dominant contribution is given by 
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the two first terms, and Gv may be reduced to the 
Morse term value: 

Gv = a)e(v + h) - ojexe(v + %)2. (3) 

A least squares method calculation shows that this 
is achieved with an error less than 0.04%, with 

cDe = 413497.3698 , oje xe = 8572.2752 . 

We can now write the potential without interac-
tion in the form of a Morse function: 

U(x) = Z)[ 1 -exp{-ßx}]2 

where D, the dissociation energy referred to the 
potential minimum, and ß are given by 

D = co2/4 coe xe, ß2 = oje xe/B r2. 

From the values of the rotational constant B and the 
internuclear distance at equilibrium 1 r e , we deter-
mine that of the potential taking into account the 
vibration-rotation interaction: 

Uj(x) =4986426 .31 [1 - exp{ - 2.20624 x}]2 

1761.1215 . . . / ( / + 1 ) . + (0.9171 + x)2 

Uj is calculated by means of an IBM 1620 digital 
computer for a number of J values varying from 
0 to 12, and for - 0.70 Ä < a; < 0 . 7 0 A with Ax = 
0.004 Ä. The Uj curves are then plotted on a 25 cm 
X 40 cm sheet of graph paper, which has the dimen-
sions of the input table belonging to the analogue 
computation device. 

Description of the Analogue Computer 

Figure 1 gives the schematic representation of the 
apparatus 2. Let y", the second derivative of a cer-
tain tension y, be the input to the first integrator 

— C 4 . Its output — y'IR\ Ct is changed into 
— a y'/Ri Ci by the potentiometer Px set at the 
value a, and applied at the entry of the second 
integrator which furnishes a tension equal to 
a y/Rx R2 C2 . The latter is transformed by the 
potentiometer P 2 , adjusted to r/R0 (R0 being the to-
tal resistance of P 2 ) , into ay r/R0 R1C1 R2C2 . In-
verter R3 — R3 changes the sign of this term and 
feeds the summer R4 — R4 — R4 , at the second entry 
of which is applied the output of the second inte-
grator multiplied by the setting t/T0 of potentio-

2 S. FIFER, Analogue Computation, McGraw-Hill, New York 
1961. 

meter P 3 , whose total resistance is T0. The tension 
resulting from the summer, namely 

ayir/Ro-t/TJ/R^R.C,, 

is finally transformed into 
at>y(r/R0 — t/T0) /Rt Ct R2C2 

through the potentiometer P4 set at the value b. This 
term is fed bade to integrator R j — Cj and the loop 
is closed, performing thus the equality 

y" = ab y {r/R0 — t/T0) / Rt C,R2C2, 

which can be written as 

with K = ab/R1C1R,C2. 

Comparison of Eqs. (1) and (4) shows that the first 
one must be transformed into the form of the sec-
ond, in order to be solved by analogue computa-
tion. 

r S 

Fig. 1. Block diagram of the analogue computation device. 

Rj —C t : integrator 
P t : potentiometer 

R 2 - C 2 : integrator 
P 2 : curve follower potentiometer 
P 3 : term value potentiometer 

R 3 - R 3 : inverter 
R 4 —R 4 — R 4 : summer 

P4 : potentiometer 
RA: relay amplifier 

r: recorder 

If we have a tension y proportional to the wave 
function yj, Eq. (1) may be written 

D2y 8 JI2 /u c 
[T-Uj(x)]y = 0 . (5) dx2 ' h 

The plot of the potential curve Uj(x) is mounted on 
an input table, before which the arm of an optical 
curve follower translates2 with a constant speed 
parallel to the abscissae axis. We have 

w = da:/df = const, 
dy = J_ dy = J_ , 
dx w At w y ' 
d2^ J^ d2^ „ 
dx2 w2 At2 w2 y 



Thus Eq. (5) becomes 

y + 
8 .t2 n c 

r[T-Uj(x)]y = 0 (6) 

and it may be solved by means of the analogue 
computer if r in Eq. (4) varies during the time pro-
portionally to Uj(x) in Equation (6 ) . This is 
achieved by the optical curve follower which moves 
the slider arm of potentiometer P2 in direct ratio 
to Uj . In this way the recorder draws curves cor-
responding to the output of integrator R2 — C2 , that 
is to say ip(t), when the settings t/T0 of P3 are pro-
portional to the energy levels of the HF molecule 
expressed in term values. 

Calculation of Initial Values 

To obtain a unique solution for a second-order 
differential equation, we must specify the values of 
the function and its first and second derivatives for 
a given value of the variable. For the above describ-
ed device, this is carried out when the starting point 
is determined on the potential curve Uj(x), and 
capacitors Ct and C2 charged under the adequate 
tensions 2 . 

Fig. 2. Potential energy Uj and wave function y plotted 
against the change of internuclear distance. 

Term value T=Gy+B J(J+1). 

The extreme inflexion points of the wave function 
curve, where d2ip/dxr is zero, correspond to the in-
tersections of Uj(x) with the energy level T (Fig. 2) 
according to Eq. ( 1 ) , and it is convenient to choose 
the left one 3 . Furthermore, ip is equal to 4 

yj = N exp{-z/2] zb'2Lbv (z) 
where N = the normalization factor, 

z = k exp{ — ax) , 
k = a)Jcoe xe, 
b=k—2v—1, 
«, 8 -T2 u c 

a- = — , coe xe . 

The associated Laguerre polynomial of degree 
v — b is given by 

It is solution of the hypergeometric equation 

/ / T v dL , z w + {b + 1 - z) — + v L = 0 . dz2 dz (7) 

On the other hand, at the inflexion point, the nullity 
of d2yj/dx2 leads to 

d2L , , _ , dL 
z~nr + (b + l - z ) V - (8) dz2 1 i * - / d z 

L must satisfy Eqs. (7) and ( 8 ) . The suitable solu-
tion is 5 

Zi = k+Vk2-b2 

hence X[. 
By a change of variable, if we put 

z = A + Y with A = b + v 

the polynomials are transformed into the following 
simple forms 6 : 
— for even values of v: 

yv 
v\ i Ti ^v 

p-1 
for odd values of v : 

v/2 

(v - 2)/2 v-2 p , 
4- y ( nv-2p+\-jyi 

2 ( } A jHv-Dr*-*-' 

( v - 3 ) / 2 v-2p , . \ 

+ 2 { - A V I 1 y T C ? = | » t 1 - f H -
p = 1 j = 0 ^ ' 1' ' ) 

The coefficients C\ are found by use of the recur-
sion relation: 

C{ = (2 i — k) [C{Zi + ] 

where Q=i\ , C? = 0 if i > 0 , Cf = 0 if i<k. 

Upon taking the derivative of if , we obtain 
yj z-, 
~V = a\2 

d L 
dz 

We need only to calculate L and dZ,/dz for z = z i , 
and to apply the preceding relations in order to de-
termine This is achieved by means of an IBM 
1620 computer supplied with a program in which 
L and dL/dz are given by the same statements. 

3 R . GRANDMONTAGNE, Cahiers P h v s . 1 5 , 3 8 5 [ 1 9 6 1 ] . 
4 P . MORSE, P h y s . R e v . 3 4 , 5 7 [ 1 9 2 9 ] . 
5 H. KOBEISSE, Thesis, Lyon 1962. 
8 P. PERDIGON, Thesis, Lyon 1969. 



Operation Procedure 

rpi may be arbitrary. For convenience, it is kept 
at a constant value; so xp{ is easily deduced for a 
given vibrational quantum number 6 v. The outputs 
of integrators R j — C t and R2 — C2 being proportio-
nal to xp' and \p respectively, capacitors Cj and C2 

are charged with the help of initial condition poten-
tiometers in order to insert tensions in direct ratio 
to xp{ and xpi across the integrators. 

Potentiometer P3 is then adjusted to the corre-
sponding value of the spectral term T, and the re-
corder switched on. Its stylus draws a parallel to the 
abscissae axis, having ipi as ordinate. In order to 
plot the right branch (for £> : r { ) of the wave func-
tion curve, the optical follower which makes use of 
a photocell is put on the potential curve at a point 
where x < x x and Uj>T, and allowed to start. The 
value of (U j — T) decreases and at the very moment 
when it becomes null the relay RA (Fig. 1) estab-
lishes the connection and so the integration is per-
mitted to proceed. Therefore the recorder plots the 
wave function curve. 

As the automatic follower moves only in one way, 
to draw the left branch (r<a; i ) we must turn up the 
graph paper of the potential curve. In this way, the 
left inflexion point is always taken as origin of inte-
gration. The procedure is then the same, but the 
curve follower starts at a point where Uj<.T. 

Results 

The wave functions relative to v = 0, 1, and 3, 
and 0 ^ / ^ 1 2 have been determined7. Table 1 
gives as an example the numerical values corre-
sponding to v = 3 and J = 10, the maxima and mi-
nima having the greatest absolute values in this 
latter case. The absolute error is not greater than 
0.02. 

Theoretically, rp vanishes for x having an infinite 
value. Because of the inaccuracy of the potentio-
meters and the errors due to the thickness of the 
potential energy curve, instead of an asymptotic 
branch we get rather a parabolic one (Fig. 2, broken 
line), or a curve crossing the abscissae axis (dotted 
line). 

Table 1. Values of the wave function for v = 3 and / = 1 0 . 

r [ Ä] V r[ A] V r[ Ä] V 

0.58690 + 0.02 0.87148 - 0.40 1.15606 2.37 
0.59608 + 0.04 0.88066 - 0.96 1.16524 — 2.68 
0.60526 + 0.06 0.88984 - 1.42 1.17442 — 2.88 
0.61444 + 0.08 0.89902 - 1.86 1.18360 — 3.04 
0.62362 + 0.10 0.90820 - 2.14 1.19278 — 3.11 
0.63280 + 0.13 0.91738 - 2.33 1.20196 — 3.14 
0.64198 + 0.18 0.92656 - 2.37 1.21114 — 3.14 
0.65116 + 0.21 0.93574 - 2.33 1.22032 — 3.10 
0.66034 + 0.26 0.94492 - 2.05 1.22950 — 3.00 
0.66952 + 0.35 0.95410 - 1.64 1.23868 — 2.83 
0.67870 + 0.45 0.96328 - 1.14 1.24786 — 2.69 
0.68788 + 0.57 0.97246 - 0.53 1.25704 — 2.48 
0 69706 + 0.72 0.98164 + 0.04 1.26622 — 2.29 
0.70624 + 0.90 0.99082 + 0.64 1.27540 — 2.10 
0.71542 + 1.10 1.00000 + 1.19 1.28458 — 1.91 
0.72460 + 1.32 1.00918 + 1.64 1.29376 — 1.72 
0.73378 + 1.57 1.01836 + 2.00 1.30294 — 1.51 
0.74296 + 1.79 1.02754 + 2.28 1.31212 — 1.36 
0.75214 + 2.02 1.03672 + 2.44 1.32130 — 1.20 
0.76132 + 2.27 1.04590 + 2.47 1.33048 — 1.03 
0.77050 + 2.47 1.05508 + 2.40 1.33966 — 0.90 
0.77968 + 2.60 1.06426 + 2.15 1.34884 — 0.77 
0.78886 + 2.65 1.07344 + 1.80 1.35802 — 0.67 
0.79804 + 2.66 1.08262 + 1.37 1.36720 — 0.54 
0.80722 + 2.60 1.09180 + 0.89 1.37638 — 0.44 
0.81640 + 2.43 1.10098 + 0.40 1.38556 — 0.36 
0.82558 + 2.10 1.11016 - 0 . 1 7 1.39474 — 0.26 
0.83476 + 1.70 1.11934 - 0 . 7 0 1.40392 — 0.19 
0.84394 + 1.23 1.12852 - 1.22 1.41310 — 0.11 
0.85312 + 0.70 1.13770 - 1.65 1.42228 — 0.05 
0.86230 + 0.13 1.14688 - 2 . 0 4 

To overcome this difficulty, we modify very 
slightly the setting of the initial condition potentio-
meter; the best convergence is thus obtained on the 
left branch. The adjustment of P3 is then faintly 
changed in order to have the most convenient result 
on the right branch. It is however necessary to cor-
rect with his hand to achieve an asymptotic curve 
(full line). 

Conclusion 

By this method we obtained vibration wave func-
tions modified by the vibration-rotation interaction. 
Other calculations, carried out separately on both 
digital and analogue computers for a slightly dif-
ferent problem, showed a very good agreement be-
tween the results and tested the accuracy of the 
analogue method. 

7 A. H. TOPOUZKHANIAN, Thesis, Lyon 1968. 


