INTERACTION OF RANDOMLY PHASED VIBRATIONAL WAVES

citation, the cross section o, (E) is represented by
the line spectrum of Fig. 4 of this paper, which has
a centre of intensity at Ey= — 6 meV in relative re-
sonance energies as already mentioned in the text.
One gets the maximum of inelastically scattered
electrons for E; =F, and the maximum of detected
current, if also E,=E,— W, where W is the energy
loss of the scattered electrons. The elastic cross sec-
tion 0¢(E) can be assumed as nearly constant over
the energy range of the functions f; and f,. Under
these conditions and with the absolute elastic cross
section of Fig. 6, one gets from the ratio of the peak
maxima in Fig. 1: §',_;=6.7-10720 cm? eV/ster.
We have assumed Gaussian profiles for f, and f,,
the half widths of which were 4E; =58 meV and
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AE, =31 meV, respectively, in accordance with the
data of the selectors (slit width, mean radius, trans-
mision energy). The measured half widths of the
elastic peak (4E =65 meV) and the inelastic peak
(4E =35 meV) in Fig. 1 are consistent with all as-
sumptions of this appendix.

In S’,_1, the outer lines of the structure of Fig. 4
are suppressed by the energy profiles f, and f,.
A correction of 20% must be applied to get the
energy-integrated cross section

Sv=1=f0v=1(E) dE, (B2)
which is the desired final result. This gives S,.;=

8:10720 cm? eV/ster which corresponds to the area
under the resonance structure of Figure 4.
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A diagrammatic technic is presented which is appropriate to study the nonlinear response of the col-
lision dominated solid state plasma to randomly phased ac fields. By summation of diagrams, a non-
linear integral equation is established for the propagator S’ which is directly related to the nonlinear
response function. Using the equation for S’, an equivalence is derived between a model solution in
the theory of nonlinear coherent ultrasound amplification and the interaction theory of a great
number of randomly phased vibrational modes, confined to a small frequency band.

1. Introduction

It has been proposed by HuTson! that the inter-
action of highly amplified vibrational waves in a
piezoelectric semiconductor predominantly proceeds
via the electron gas by means of the concentration
nonlinearity. An ultrasonic wave produces an ac-
companying electric field which perturbs the elec-
tron gas. The electron gas usually is in the state of
a collision dominated plasma. In this case, the Cou-
lomb interaction of the electrons manifests itself in
form of the concentration nonlinearity. The theory
of vibrational wave interactions in a piezoelectric
semiconductor thus essentially is equivalent to the
study of the nonlinear response of the collision
dominated solid state plasma.

1 A.R. HutsoN, Phys. Rev. Lett. 9, 296 [1962].
2 K. YAMADA, Phys. Rev. 169, 690 [1968].
3 V. L. GurevicH, V. D. KaGaN, and B. D. LAIKHTMAN,

Sov. Phys. JETP 27, 102 [1968].

4 B. K. RipLEY and J. WILKINSON, Brit. J. Phys. C 2, 1307
[1969].

In recent years, the following special case has
attracted some attention: The great number of
acoustoelectrically active modes present in the crys-
tal may be treated in the random phase approxima-
tion (RPA). More precisely, one assumes that these
waves are subject to a Gaussian random process.
One of the first investigators to treat this problem,
were YAMADA 2 and GUREVICH et al. 3 who derived
on this basis transport equations for the phonon dis-
tribution function. Recently, RIDLEY and WILKIN-
soN4, GaNGuLy and CONWELL®, and BUTCHER
and SLECHTA © investigated the acoustoelectric gain
of vibrational waves within the RPA.

All these authors confine themselves to the lowest
orders in perturbation theory.

5 A. K. GaNGULY and E. M. CONWELL, Phys. Lett. 29 A, 271
[1969].

8 P. N. ButcHER and J. SLECHTA, Brit. J. Phys. C 4, 870
[1971].
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In the present paper, we devise a diagrammatic
method capable of treating this problem to an arbi-
trarily high order in perturbation theory. This me-
thod is used to derive an integral equation for the
renormalized propagator which is associated with
the nonlinear response function of the collision do-
minated solid state plasma. Using this result, we
are able, to derive an equivalence between a model
solution in the theory of nonlinear coherent sound
amplification and a simple multimode situation,
namely when a very great number of randomly
phased modes are concentrated in a small frequency
band. We thus substantiate an early statement in
Ref. 7.

2. Basic Equations

The object of our interest is the collision domi-
nated solid state plasma. We therefore start from
the nonlinear current density equation, which in
quasi static approximation and in one dimension
may be written (cf. Ref. 7):

200 =503 %" 23 (0- Q)

e (0) =n,. (1)

Here, 0 (v Q) is the electronic density fluctuation
associated with the wave vector (v Q) and @ is the
corresponding piezoelectric potential. The tilde in-
dicates that frequency factors exp{—iw(»Q) t}
have been omitted. S(») is given by

2= [”‘i () (1“ Mﬂ

where wp is the diffusion frequency, vs the sound
velocity and v4 the electronic drift velocity. n is the
dopant concentration. Following the method of
BuTcHER and SLECHTA S Q is taken to be a very
small quantity such that an arbitrarily wave vector k&
may be represented as k= (k) Q where %(k) is an
appropriate integer which eventually is very high.
Thus Q) may be chosen as the wave number resolu-
tion in an experiment on the spectral distribution
of acoustoelectrically amplified noise.

v+0,

Equation (1) may be cast into still a simpler
form. Extracting the x=v term from the sum (in
which from now on terms with vanishing wave vec-
tors x=0 and % =0 are excluded from the sum

7 W. WONNEBERGER, Phys. Stat. Sol. 40, 127 [1970].
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which is indicated by 2’) one obtains after substi-
tuting

79(7:'700) —r(»), ”'Spé:TQ) = /()
the relation
r(») =S(») f(») +S(») Z'_f(%) r(*) »v+0,
r(0) 1. T 2)

f() is essentially the ( Q)-component of the piezo-
electric ac field.

3. Diagrammatic Analysis

In this section we assume that the fields f are
probabilistic quantities which are subject to a Gaus-
sian random process. We study the consequence of

this by a systematic iterative treatment of Eq. (2).

To explain the method, the first iteration steps
are described in detail. We associate with r(v) a
line which we picture as follows:

r(»): =)—.

The propagators S(») shall be represented by:
S): ——

and the fields f(#) by:
fo): —X

A vertex represented by a dot which joins three of
these lines (but one and only one f-line) shall in-
dicate summation over wave vectors of the out-
going lines conserving total wave vector. Iteration
then is graphically represented by the following

series:

3 o —— + * ¢
R 2 S
+ * * * 44)‘1 + ees
By performing the RPA, two f-lines join together:

(f(=) f()) =6, fC) f(—2): —————

and one gets

(1) (Z) /’~\‘
== — 4+
@ Loy
+
%) 7=~
+
(€)) % N
4 : N é 3 5
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Clearly, only diagrams containing an even number
of vertices will survive. Before we proceed to in-
finite diagram summation, a classification of dia-
grams is useful. We call a diagram reducible if it
is divided into two by cutting one S-line or if it
ends with an S-fline combination, otherwise it is
called irreducible. Diagrams (2), (4) and (5) are
reducible. Furthermore, diagram (2) contains a
closed loop. The S-line in front of this loop would
be associated with the wave vector zero. But for
#=0 our iterative equation is redundant. Such
anomalous diagrams must therefore be omitted.

As there is no small coupling constant involved
in the nonlinear term of Eq. (2), finite iterations
are supposed to be inappropriate. A very simple
infinite summation is obtained by

777N
#==——H—+—‘—¢

This is not a very deep result, since it follows by
a single step iteration of the full Eq. (2) followed
by the RPA.

Note, that diagrams of type (3) do not appear in
this kind of iterative treatment. This is due to the
fact, that the exact r-line is treated as a determinis-
tic quantity.

A nontrivial extension of the theory is achieved
if the S-lines are renormalized. We introduce the
exact propagator S defined by r=S'f:

S(v: ——|.

It is noted that S’ is connected to the nonlinear elec-
tronic response function &, by the relation

, 1 -1
Sty (3)
where erp=1+4me2ny/(egkpT(2Q)2) 1is the
Thomas-Fermi dielectric constant of the crystal.
The approximation to S corresponding to the above
diagrams for r is:

77

e = — + —4——l=|

This still is a linear equation and will not lead very
far. The next step is to insert diagrams into the ir-

Fa until one re-

reducible “self energy’ part

covers &= . If we stop at this stage of approxi-

mation we end up with the following equation for S’:

—
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The analytic form of this diagrammatic equation is

NS -
SO =1 56) > 5 ) J&) (=)

x+x =v

(5a)

Equation (5) is nonlinear. It is supposed to be the
simplest nontrivial integral equation for the pro-
pagator S” within the RPA. We note, that diagrams
of type (3) are not accounted for by Eq. (5). Such
diagrams are irreducible while Eq. (5) is the re-
summation result of reducible diagrams. We have
pointed out, however, that the first kind of dia-
grams appears only if the exact r-lines are treated
probabilistically. It is not clear whether this would
be an improvement over the above treatment or not.

Finally it is noted that vertex renormalizations
have been omitted completely. They would enhance
the degree of nonlinearity and reduce the chance of
an appropriate further treatment of the resulting
nonlinear equation.

4. An Application

We base the following considerations on Eq. (5).
It may be written in the form

S ) 1=S(r) 1= 3" S () f(x) f(=).

x+x' =y
Remembering the definition of S, it is seen, that

— 2" 8 (%) () f(—#)

x+x =v
amounts to a renormalization of the quantity
—i(1 —wa/vs) wp/w(Q) .

The renormalization contained in the dc-term cor-
responding to »=0 is expected to come from the
acoustoelectric current. Indeed, it is easy to show
that

— 28 (%) [() f(—#)

x+x'=0
is identical to

:ae
. OWp Jde

where j3; is the acoustoelectric dc current density.
This result was first found by YAMADA 2 using the
second order expression for jic. It is seen, that this
result is true to higher orders of perturbation the-
ory, too.
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We therefore may account for this simply by
choosing the correct value for vq. If one considers
only a small volume element inside the crystal the
correct form for vq is clearly vg=u E4, where u is
the electron mobility and E, the local dc electric
field.

—S(») 2 S(x) fG) f(—=

) = S0 /) /{
This relation follows by infinite insertion of Eq. (5)
into itself.

Equation (6) may be evaluated to yield a closed
analytic expression under the following assump-
tion: All fmodes which are sufficiently excited are
concentrated in : a small band around the mean wave
vector (7 Q) =k. The evaluation of an expression

like
S(») 25(/) fe) (=) [(L—g (=),

x+x =v

where (»(Q) is a wave vector in the small band
around (# Q) then proceeds in the following way:
In the »'-sum, only the terms with '~ —# are re-
tained. Thus #~~2 % and one gets approximately

S(»)-S(2%) ;,f(”') f(=#)[(1~g(27)).

From the definition of f(x") it follows
Zf”)f(—%)—>—”22|¢ Q) [ks T2 = —72y?

x' =y

where we have introduced the bunching parameter

o (k) 1

W. WONNEBERGER

A more careful analysis of this question is ne-
cessary, however, if this “local” point of view is
abandoned.

For an explicit treatment of Eq. (5) we write it
as a continued fraction and go back to the quan-

tity r(v) :

, S(x”) f(xlll) f( III
/[1 B S(”) x"+§;”= * -—-S(””) Z } (6)
vy SEe0mIE O
Furthermore,
- 1 1
2S(») S(27%) — *;{ 2 iy

where

=%ty (1 Zi)

is the usual definition of the activity parameter.

The function g(2#) contains S’ (2%). But in our
model this is not a well defined quantity from the
physical point of view, since piezoelectric fields exist
only in the wave vector band around (7 Q). Thus
we are free to impose a condition in which way the
members of the set {S (n¥);n > 2} are connected
to one another. We postulate that S'(n#) is de-
termined via Eq. (5) by S'((n+1) #) alone. This
amounts to retaining only terms with »'~ —# in

sums of the form > S(x) f(#) f(—%).

%+ % ~ny

Rewriting all terms in the continued fraction in
this way, one finds:

y2

L

1/ 1+

We have reintroduced the physical quantities © and
@ associated with Eq. (1). From the theory of Bes-
sel-functions 8, it is known, that this continued frac-
tion represents the function

1—iy Ji-,(2iy)
iy - Joi,(2iy)

8 G. N. WATsON, A Treatise on the Theory of Bessel Func-
tion, Cambridge University Press 1958.

9 W. WONNEBERGER, H. G. REIK, and A. KNoLL, Phys. Lett.
30 A, 47 [1969].

(1—ix)(2—iy)

y* '
1+ " ®)
(2-in G-in(1+ ¥

Thus we find the explicit solution
50 =ng P01 N1 i)

kT iy Ji;(2iy)
This equation is identical in form to a former re-
sult on the electron bunching by a single coherent
sound wave % *. But the physical situation is quite

9)

* A similar result on coherent electron bunching has also
been found by GAY and HARTNAGEL 19,

10 R. K. L. GAY and H. G. HARTNAGEL, Brit. J. Appl. Phys.
2, 1589 [1969].
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different now. ¢ (k) is the density fluctuation asso-
ciated with the comparatively weak mode ¢ (k) in-
side a frequency band containing a very large num-
ber of modes. All these @-modes collectively influ-
ence each single g-mode by their contribution to the
bunching parameter .

The nonlinear dielectric function following from
Eq. (3) is again found to be given by

1 J1-i,(22y)

iy Joi,(2iy)
The physical interpretation of Eq. (10) has changed
in the same way as that of the ¢ — g-relation (9).
From & the acoustoelectric gain and the renormali-
zation of the sound velocity follow in the same
manner as derived in Ref. 7 for a coherent sound
wave.

em=1+ (err—1 (10)

5. Discussion

The general diagrammatic method of Section 2
was used to establish a nonlinear integral equation
for the propagator S which is intimately related to
the nonlinear dielectric response function of a col-
lision dominated solide state plasma.

Within the frame work of this equation we were
able to extend an earlier result on nonlinear co-

11 W. WONNEBERGER and M. ScHuLz, Z. Naturforsch. 26 a,
1005 [1971].

12 W. WONNEBERGER, F. SIEBERT, and W. WETTLING, Optics
Comm. 3, 179 [1971].

13 M. ScHuLz and W. WONNEBERGER, Phys. Stat. Sol. (a) 3,
721 [1970].

14 M. ScHuULZ, private communication.
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herent sound amplification to a simple situation of
incoherent amplification of noise.

This extension has been presupposed in Ref. 7.
It is essential for the interpretation of the experi-
mental results in Ref. 1! and Ref. !2. This corre-
spondence was tested experimentally for stationary
acoustoelectric domains in GaAs!3 and found to
be a reasonably good approximation. For travelling
domains in GaAs, it is found appropriate, too 4.

The full merit of the general approach presented
in this paper is expected, however, in the comple-
mentary situation namely when the relevant modes
are spread over a wide frequency range.

Finally it is pointed out that even subharmonic
generation 1% 16 may be studied within this general
scheme provided the RPA is not carried through
with full consequence. One is then able to retain
phase relations between modes which are expected
to interact parametrically while the great mass of
modes is still treated in the RPA. The phase rela-
tions may be taken into account by using the me-
thod of REIK et al. 7.
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