
citation, the cross section oy(E) is represented by 
the line spectrum of Fig. 4 of this paper, which has 
a centre of intensity at E0 = — 6 meV in relative re-
sonance energies as already mentioned in the text. 
One gets the maximum of inelastically scattered 
electrons for Eg = E0 and the maximum of detected 
current, if also E& = E0 — W, where W is the energy 
loss of the scattered electrons. The elastic cross sec-
tion o^\(E) can be assumed as nearly constant over 
the energy range of the functions fg and / a . Under 
these conditions and with the absolute elastic cross 
section of Fig. 6, one gets from the ratio of the peak 
maxima in Fig. 1: S'v = i = 6 .7-10~ 2 0 cm2 eV/ster. 
We have assumed Gaussian profiles for f g and / a , 
the half widths of which were AE„ = 58 meV and 

zl-Ea = 31 meV, respectively, in accordance with the 
data of the selectors (slit width, mean radius, trans-
mision energy). The measured half widths of the 
elastic peak (AE = 65 meV) and the inelastic peak 
(zl£ = 35 meV) in Fig. 1 are consistent with all as-
sumptions of this appendix. 

In S'v = i , the outer lines of the structure of Fig. 4 
are suppressed by the energy profiles fg and / a . 
A correction of 20% must be applied to get the 
energy-integrated cross section 

SVmi-foVml(E) dE, (B2) 

which is the desired final result. This gives S„ = i = 
8 -10~ 2 0 cm2 eV/ster which corresponds to the area 
under the resonance structure of Figure 4. 
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A diagrammatic technic is presented which is appropriate to study the nonlinear response of the col-
lision dominated solid state plasma to randomly phased ac fields. By summation of diagrams, a non-
linear integral equation is established for the propagator S' which is directly related to the nonlinear 
response function. Using the equation for S', an equivalence is derived between a model solution in 
the theory of nonlinear coherent ultrasound amplification and the interaction theory of a great 
number of randomly phased vibrational modes, confined to a small frequency band. 

1. Introduction 

It has been proposed by H U T S O N 1 that the inter-
action of highly amplified vibrational waves in a 
piezoelectric semiconductor predominantly proceeds 
via the electron gas by means of the concentration 
nonlinearity. An ultrasonic wave produces an ac-
companying electric field which perturbs the elec-
tron gas. The electron gas usually is in the state of 
a collision dominated plasma. In this case, the Cou-
lomb interaction of the electrons manifests itself in 
form of the concentration nonlinearity. The theory 
of vibrational wave interactions in a piezoelectric 
semiconductor thus essentially is equivalent to the 
study of the nonlinear response of the collision 
dominated solid state plasma. 

1 A. R. HUTSON, Phys. Rev. Lett. 9, 296 [1962]. 
2 K . YAMADA, Phys . Rev. 1 6 9 , 6 9 0 [ 1 9 6 8 ] . 
3 V . L . GUREVICH, V . D . KAGAN, and B . D . LAIKHTMAN, 

Sov. Phys . J E T P 2 7 , 1 0 2 [ 1 9 6 8 ] . 
4 B . K . RIDLEY and J. WILKINSON, Brit . J. Phys. C 2 , 1 3 0 7 

[1969] . 

In recent years, the following special case has 
attracted some attention: The great number of 
acoustoelectrically active modes present in the crys-
tal may be treated in the random phase approxima-
tion (RPA) . More precisely, one assumes that these 
waves are subject to a Gaussian random process. 
One of the first investigators to treat this problem, 
were Y A M A D A 2 and G U R E V I C H et al. 3 who derived 
on this basis transport equations for the phonon dis-
tribution function. Recently, R I D L E Y and W I L K I N -

S O N 4 , G A N G U L Y a n d C O N W E L L 5 , a n d B U T C H E R 

and S L E C H T A 6 investigated the acoustoelectric gain 
of vibrational waves within the RPA. 

All these authors confine themselves to the lowest 
orders in perturbation theory. 

3 A . K . GANGULY and E . M . CONVELL, Phys . Lett . 2 9 A , 2 7 1 
[1969]. 

6 P . N . BUTCHER and J. SLECHTA, Brit . J. Phys . C 4 , 8 7 0 
[1971]. 



In the present paper, we devise a diagrammatic 
method capable of treating this problem to an arbi-
trarily high order in perturbation theory. This me-
thod is used to derive an integral equation for the 
renormalized propagator which is associated with 
the nonlinear response function of the collision do-
minated solid state plasma. Using this result, we 
are able, to derive an equivalence between a model 
solution in the theory of nonlinear coherent sound 
amplification and a simple multi-mode situation, 
namely when a very great number of randomly 
phased modes are concentrated in a small frequency 
band. We thus substantiate an early statement in 
Ref. 7. 

2. Basic Equations 

The object of our interest is the collision domi-
nated solid state plasma. We therefore start from 
the nonlinear current density equation, which in 
quasi static approximation and in one dimension 
may be written (cf. Ref. 7 ) : 

X (tRJ 
e ( 0 ) (i) 

Here, Q (v Q) is the electronic density fluctuation 
associated with the wave vector (v Q) and (p is the 
corresponding piezoelectric potential. The tilde in-
dicates that frequency factors exp{ — i co (v Q) t} 
have been omitted. S(v) is given by 

S(v) = v — i 
coD 

co(Q) 
1 -

where OJd is the diffusion frequency, vs the sound 
velocity and v<j the electronic drift velocity. n0 is the 
dopant concentration. Following the method of 
B U T C H E R and S L E C H T A 6 Q is taken to be a very 
small quantity such that an arbitrarily wave vector k 
may be represented as k = x(k) Q where x(k) is an 
appropriate integer which eventually is very high. 
Thus Q may be chosen as the wave number resolu-
tion in an experiment on the spectral distribution 
of acoustoelectrically amplified noise. 

Equation (1) may be cast into still a simpler 
form. Extracting the x = v term from the sum (in 
which from now on terms with vanishing wave vec-
tors y. = 0 and x = 0 are excluded from the sum 

7 W . WONNEBERGER, P h y s . Stat . Sol . 4 0 , 1 2 7 [ 1 9 7 0 ] . 

which is indicated by 2') one obtains after substi-
tuting 

6(VQ) Zp{xQ) 
=r(v), x =f(x) 

n0 kB 1 
the relation 

r(v) =S(v) f(v) +S(v) Z'f(x) r(x') v * 0 , 
X + x' = V 

r ( 0 ) = l . (2) 
f(x) is essentially the (x (^)-component of the piezo-
electric ae field. 

3. Diagrammatic Analysis 

In this section we assume that the fields / are 
probabilistic quantities which are subject to a Gaus-
sian random process. We study the consequence of 
this by a systematic iterative treatment of Eq. ( 2 ) . 

To explain the method, the first iteration steps 
are described in detail. We associate with r(v) a 
line which we picture as follows: 

r(v): = > = . 

The propagators S(v) shall be represented by: 
S(v): 

and the fields f(x) by: 
f(x): — X 

A vertex represented by a dot which joins three of 
these lines (but one and only one f-line) shall in-
dicate summation over wave vectors of the out-
going lines conserving total wave vector. Iteration 
then is graphically represented by the following 
series: 

-X- + 1 H-K-

+ M . „ 
4. i t i— -K— + 

By performing the RPA, two /-lines join together: 
(f(x)f(x))-dM,_K'f(x)K—K): 

and one gets 

= » = = 
( f ) C2) /Jc 

+ -I i i 

(<3) 

+ ' I ' 
-I- I 1 1—X-

(5) 
i » * » t—X-



Clearly, only diagrams containing an even number 
of vertices will survive. Before we proceed to in-
finite diagram summation, a classification of dia-
grams is useful. We call a diagram reducible if it 
is divided into two by cutting one 5-line or if it 
ends with an 5-/-line combination, otherwise it is 
called irreducible. Diagrams ( 2 ) , (4) and (5) are 
reducible. Furthermore, diagram (2) contains a 
closed loop. The 5-line in front of this loop would 
be associated with the wave vector zero. But for 
x = 0 our iterative equation is redundant. Such 
anomalous diagrams must therefore be omitted. 

As there is no small coupling constant involved 
in the nonlinear term of Eq. ( 2 ) , finite iterations 
are supposed to be inappropriate. A very simple 
infinite summation is obtained by 

- t - y -

This is not a very deep result, since it follows by 
a single step iteration of the full Eq. (2) followed 
by the RPA. 

Note, that diagrams of type (3) do not appear in 
this kind of iterative treatment. This is due to the 
fact, that the exact r-line is treated as a determinis-
tic quantity. 

A nontrivial extension of the theory is achieved 
if the 5-lines are renormalized. We introduce the 
exact propagator 5 ' defined by r = 5 ' / : 

S'(v): — |. 

It is noted that 5 ' is connected to the nonlinear elec-
tronic response function eni by the relation 

1 £ n i ~ l 
X £<tf — 1 ' 

where £tf = 1 + 4 ne~ n0/(e0 T [x Q)2) is the 
Thomas-Fermi dielectric constant of the crystal. 
The approximation to 5 ' corresponding to the above 
diagrams for r is: 

5 » = (3) 

=l = 

This still is a linear equation and will not lead very 

far. The next step is to insert diagrams into the ir-

reducible "self energy" part until one re-

covers L a . If we stop at this stage of approxi-

mation we end up with the following equation for 5 ' : 

_ = J -u C \ i (5) 

The analytic form of this diagrammatic equation is 

ö { v ) - i - s o o r s » / ( * ' ) / ( - * ' ) ' ( a ) 
x + x' = v 

Equation (5) is nonlinear. It is supposed to be the 
simplest nontrivial integral equation for the pro-
pagator 5 ' within the RPA. We note, that diagrams 
of type (3) are not accounted for by Eq. ( 5 ) . Such 
diagrams are irreducible while Eq. (5) is the re-
summation result of reducible diagrams. We have 
pointed out, however, that the first kind of dia-
grams appears only if the exact r-lines are treated 
probabilistically. It is not clear whether this would 
be an improvement over the above treatment or not. 

Finally it is noted that vertex renormalizations 
have been omitted completely. They would enhance 
the degree of nonlinearity and reduce the chance of 
an appropriate further treatment of the resulting 
nonlinear equation. 

4. An Application 

We base the following considerations on Eq. ( 5 ) . 
It may be written in the form 

5,(v)-1=5(v)-i- TS'(x) f { x ) f ( - x ' ) . 

X + x' = V 

Remembering the definition of 5, it is seen, that 

- r s ' ( x ) / ( * ' ) / ( - * ' ) 

X + x' =v 

amounts to a renormalization of the quantity 

- i ( L - v d j v a ) Ü)b/OJ(Q) . 

The renormalization contained in the dc-term cor-
responding to v = 0 is expected to come from the 
acoustoelectric current. Indeed, it is easy to show 
that - I ' S'{x)f{x')f{-x') 

x + x' = 0 

is identical to 

. OJD ] dc 
co(Q) en0vs 

where ;|c is the acoustoelectric dc current density. 
This result was first found by Y A M A D A 2 using the 
second order expression for /dc • It is seen, that this 
result is true to higher orders of perturbation the-
ory, too. 



We therefore may account for this simply by 
choosing the correct value for . If one considers 
only a small volume element inside the crystal the 
correct form for is clearly = ju E& , where ju is 
the electron mobility and £ j the local dc electric 
field. 

A more careful analysis of this question is ne-
cessary, however, if this " local " point of view is 
abandoned. 

For an explicit treatment of Eq. (5) we write it 
as a continued fraction and go back to the quan-
tity r ( v ) : 

(v) = S(v) f(v)/\l—S(v) 2'Six) /(*') f i - x ) / 
l x + x'=v 

This relation follows by infinite insertion of Eq. (5) 
into itself. 

Equation (6) may be evaluated to yield a closed 
analytic expression under the following assump-
tion: All /-modes which are sufficiently excited are 
concentrated in a small band around the mean wave 
vector (v Q) = k . The evaluation of an expression 
like 

S(V)2S(h) f(y/)f(-y/)/(l-g(x)), 
X + x' = V 

where (v Q) is a wave vector in the small band 
around [v Q) then proceeds in the following way: 
In the x'-sum, only the terms with x m —v are re-
tained. Thus x m 2 v and one gets approximately 

S (v ) ' S ( 2 v) 2 / ( * ' ) / ( - x)/(l-g(2 v)) . 

From the definition of f(x') it follows 

2 / (*') /( - X) - v* 2 (x ' Q) /kB T\* --v2y* 
x' X' ~ V 

where we have introduced the bundling parameter 

i -S(x) 2' 
1 -Six') 2 ' 

(6) 

y = \/ I,vi*Q)/kBT\*. (7) 
\ x~v 

Furthermore, 

v 2 5 ( r ) 5 ( 2 v) 
1 

1 - i t 2-ix 
where 

X = 
_ft)p_ 
coik) b 1 -

is the usual definition of the activity parameter. 

The function g(2v) contains 5 ' ( 2 v ) . But in our 
model this is not a well defined quantity from the 
physical point of view, since piezoelectric fields exist 
only in the wave vector band around (v Q). Thus 
we are free to impose a condition in which way the 
members of the set { ^ ( n v) ; n ^ 2 } are connected 
to one another. We postulate that S' in v) is de-
termined via Eq. (5) by 5 ' ( ( n + l ) v) alone. This 
amounts to retaining only terms with x ' ^ — v in 
sums of the form 2 Six) fix') fi—x). 

Rewriting all terms in the continued fraction in 
this way, one finds : 

<P(k) =n0 
Vik) 
kn T 

1 

1 ~iX 
1 + 

a - i x ) ( 2 - i x ) i+ 

ya 

r 

(2-iX) (3-ix)\l + 
(8) 

We have reintroduced the physical quantities "Q and 
(p associated with Eq. ( 1 ) . From the theory of Bes-
sel-functions 8 , it is known, that this continued frac-
tion represents the function 

1 —ix % h-iz(2iy) 
iy J_ixi2iy) 

Thus we find the explicit solution 
q>(k) 1 / i _ i z ( 2 iy) 

6 (k) — n0 (9) 
kßT iy (2 iy) 

This equation is identical in form to a former re-
sult on the electron bunching by a single ooherent 
sound wave 9 ' * . But the physical situation is quite 

8 G. N. WATSON, A Treatise on the Theory of Bessel Func-
tion, Cambridge University Press 1958. 

9 W . WONNEBERGER, H . G . REIK, and A . KNOLL, Phys. Lett . 
30 A, 47 [1969]. 

* A similar result on coherent electron bunching has also 
been found by GAY and HARTNAGEL 10. 

10 R. K. L. GAY and H. G. HARTNAGEL, Brit. J. Appl. Phys. 
2,1589 [1969]. 



different now. Q (k) is the density fluctuation asso-
ciated with the comparatively weak mode (jp (k) in-
side a frequency band containing a very large num-
ber of modes. All these 99-modes collectively influ-
ence each single £>-mode by their contribution to the 
bundling parameter y. 

The nonlinear dielectric function following from 
Eq. (3) is again found to be given by 

£nl = l + O T F - 1 ) 
1 h - i A ^ i y ) 

iy J-xz{.2iy) 
(10) 

The physical interpretation of Eq. (10) has changed 
in the same way as that of the Q — ^-relation ( 9 ) . 
From £ni the acoustoelectric gain and the renormali-
zation of the sound velocity follow in the same 
manner as derived in Ref. 7 for a coherent sound 
wave. 

5. Discussion 

The general diagrammatic method of Section 2 
was used to establish a nonlinear integral equation 
for the propagator S* which is intimately related to 
the nonlinear dielectric response function of a col-
lision dominated solide state plasma. 

Within the frame work of this equation we were 
able to extend an earlier result on nonlinear co-

herent sound amplification to a simple situation of 
incoherent amplification of noise. 

This extension has been presupposed in Ref. 7 . 
It is essential for the interpretation of the experi-
mental results in Ref. 11 and Ref. 12. This corre-
spondence was tested experimentally for stationary 
acoustoelectric domains in GaAs1 3 and found to 
be a reasonably good approximation. For travelling 
domains in GaAs, it is found appropriate, too 14. 

The full merit of the general approach presented 
in this paper is expected, however, in the comple-
mentary situation namely when the relevant modes 
are spread over a wide frequency range. 

Finally it is pointed out that even subharmonic 
generation 1 5 ' 1 6 may be studied within this general 
scheme provided the RPA is not carried through 
with full consequence. One is then able to retain 
phase relations between modes which are expected 
to interact parametrically while the great mass of 
modes is still treated in the RPA. The phase rela-
tions may be taken into account by using the me-
thod of R E I K et al.17 . 
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