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Allgem eine Aussagen über 
Aktivitätskoeffizienten bei Elektrolytschmelzen

R. H a a s e

Lehrstuhl für Physikalische Chemie II 
der Rheinisch-Westfälischen Technischen Hochschule Aachen
(Z. Naturforsch. 26 a, 783— 785 [1971] ; eingegangen am 26. Februar 1971)

Wir betrachten eine flüssige Mischung, die aus zwei 
Elektrolyten mit je zwei Ionenarten besteht. Dabei soll 
eine Ionenart den beiden Elektrolyten gemeinsam sein. 
Reispiele stellen die Salzschmelzen NaN03-f AgNOs 
und PbCl2 +  PbBr2 dar. An Hand dieses relativ ein­
fachen Typs von binären Elektrolytschmelzen, der schon 
vor kurzem1 hinsichtlich der Transporteigenschaften 
untersucht worden ist, sollen einige thermodynamische 
Gesetzmäßigkeiten abgeleitet und diskutiert werden. 
Diese betreffen die Abhängigkeit der Aktivitätskoeffi­
zienten von der Zusammensetzung sowie die Beziehun­
gen zwisdien den Aktivitätskoeffizienten der einzelnen 
Teilchenarten und denen der Komponenten. Obwohl 
man heute, auch bei der Thermodynamik der Elektro­
lytschmelzen, in zunehmendem Maße zur Beschreibung 
durch „Zusatzfunktionen“ übergeht2, ist das hier zu 
besprechende Problem in Zusammenhang mit einer all­
gemeinen Formulierung der Grenzgesetze für unend­
liche Verdünnung wichtig. Molekularstatistisch sind ja 
die primären Einheiten nicht die Komponenten oder 
ionischen Bestandteile, sondern die wirklich vorhande­
nen Teilchenarten.

Die beiden Elektrolyte der binären Schmelze werden 
als Komponente 1 und Komponente 2 bezeichnet. Die­
jenige Ionenart, die nur in der Komponente 1 bzw. 2 
vorkommt, wird Teilchenart a bzw. b genannt. Die den 
beiden Komponenten gemeinsame Ionensorte heißt Teil­
chenart c. Die Zahl der Ionen der Sorte a bzw. b, die 
aus einem Molekül der Komponente 1 bzw. 2 bei der 
Dissoziation hervorgehen, wird mit ra bzw. vb bezeich­
net, während das Symbol v c bzw. vc' die Zahl der Ionen 
der Sorte c bedeutet, die aus einem Molekül der Kom­
ponente 1 bzw. 2 stammen. So gilt etwa für die Salz­
schmelze N aC l(l) +M gCl2( 2 ) :

n  =  ^Na+ =  1, 
vc =  v.cr =  l ,

Vb =  ̂ M g ^ = l,
'  '  o

Vc = VC1- = 2 .

Der makroskopische Zustand der Schmelze läßt sich, 
wie bei jeder binären Phase, durch die thermodynami­
sche Temperatur T, den Druck P  und den stöchiometri­
schen Molenbruch x der Komponente 2 beschreiben.

Die wahren Molenbrüche xa , xb und xc der Ionen­
arten a, b und c sind prinzipiell immer auf den unab­
hängigen Molenbruch x zurückführbar. Aber die Zu­
sammenhänge sind nur dann einfach, wenn man voll­
ständige Dissoziation und Fehlen von Ionenkomplexen 
annimmt. Zur Vereinfachung der Rechnungen führen 
wir ab Gl. (9) diese Voraussetzung ein.

Wir definieren weiterhin: 
xa° =  lim xa ,

x -+0
xc° =  lim xc ,

x ->-0

xb° =  lim xb ,
X - > 1

°' =  lim xc .
x ->-1

Xc (1)

Dabei bedeutet der Grenzübergang x —► 0 bzw. x —> 1 
den Übergang zur reinen flüssigen Komponente 1 
bzw. 2 .

Die chemischen Potentiale /ut und fi2 der Komponen­
ten 1 und 2 sind mit den chemischen Potentialen /Xa, > 
/Ub» ju-c der Ionenarten a, b, c durch folgende generelle 
Beziehungen verknüpft:

=  v a [/.& +  Vq fJ,c 5 f^2 ~  f^b ~\~Vc (*c  • (2 ) 

Mit den Definitionen
(3)/ui —  lim u x ,

z->- 0 ‘
/Ua0 =  lim //a ,

x -+0
=  lim /uc ,

jj.2 =  lim [x2 ,
X - * l

/Ub° —  lim fib  ,
x -+ \

/uc0' =  lim /uc , (4)
X - + 0  x - > - l

R T xpt =  /ux — /ui , R T  xp2 = / u 2- / u i  , (5) 
R T  ya, = / u n - z u a ,0 , R T  yjb = / U b - ( * b 0, (6) 

R T y c = / Z c - f i c 0 , R T  ipc' =  jMc-iMc0', (7)

worin R die Gaskonstante bedeutet, ergibt sich aus 
Gl. (2):

V i =  va.y ja, +  vc ipc , V2 =  n  ipb +  Vc W -  (8)
Die mit rp bezeichnten dimensionslosen Größen, die 
Funktionen von T, P  und x sind, entsprechen den natür­
lichen Logarithmen der „Aktivitäten“ der Komponen­
ten bzw. Teilchenarten. Meßbar sind nur xpx und xp2 • 

Wir führen jetzt die A k tiv i tä tsk o e ff iz ie n te n  ein. Diese 
dimensionslosen Größen, die von T, P  und x abhängen, 
werden mit / a , fb  , f c ,  fc  bzw. mit f x , / 2 bezeichnet, 
wenn sie sich auf die Ionenarten bzw. auf die Kompo­
nenten beziehen. Die Definitionen lauten:
ln /a  =  V a -ln (x a/xa°), ln fb  =  Wb ~  ln (xb/xb°), (9)
ln /c =  xpc — ln(xc/xc°), ln /c' =  xpc — ln(xc/xc0'), (10)

ln / x =  va ln / a +  vc ln / c ,
ln / 2 =  Vbln/b +  ̂ c' ln/c'. (11)

Dabei sind die Ausdrücke xa/xa°, xb/xb°,. . .  unter der 
Voraussetzung vollständiger Dissoziation und fehlender 
Ionenkomplexe zu beredinen.

Aus G1. (1) , (4), (6) , (7), (9), (10) und (11) ge­
winnt man die Aussagen:

lim / a =  lim / c =  lim f x =  1 ,
x —>- 0 :r->-0 x-+0

lim fb =  lim /</ =  lim /2 =  1 . (12)
X - > - l  X  —*■ 1 x - + \

Aus Gl. (8) — (11) erhält man:
ln f t =  yj i -  va ln (xa/xa°) -  vc ln (xc/xc°), 
ln f 2 = i p 2 — ̂ b ln(xb/xb°) — vc' ln(xc/xc0') . (13)

Sonderdruckanforderungen an Prof. Dr. R. H a a s e ,  Lehr- 1 R. H a a s e  u. J. R i c h t e r ,  Z. Naturforsch. 24 a, 418 [1969]. 
stuhl für Physikalische Chemie II der Rhein.-Westf. Techn. 2 J. R i c h t e r ,  Z. Naturforsch. 24 a, 835 [1969].
Hochschule Aachen, D-5100 Aachen, Templergraben 59.
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Hieraus ist ersichtlich, daß f x und f 2 — im Gegensatz 
zu /a , / b 5 / c und /c' — meßbare Größen darstellen, 
die mit den bereits früher 3> 4 definierten und diskutier­
ten Aktivitätskoeffizienten identisch sind.

Aus der Gibbs-Duhemschen Beziehung leitet man
ab

3 ln fi \  , /  B in /a .
3x /r.F V 3x ^  p ‘  ̂ ^( ! - * ) ( r,p

mit

Diese Formel ist mit dem analogen Zusammenhang bei 
binären Nichtelektrolytlösungen identisdi.

Setzt man ln f2 als Potenzreihe in x mit nicht-nega­
tiven Exponenten ein, so kann man schreiben 3:

ln f2 =  B0 +  B x xn +  B2 xn +1 +  höhere Terme. (15)
Hieraus folgt mit Gl. (12) und (14) :

ln f1 =  B x n + 1 +  höhere Terme (16)
B =  - n/ ( n + l )  Bx . (17)

Darin ist n eine positive Zahl (die auch gebrochen sein 
kann), während B0, und B2 Funktionen von T und 
P sind. Aus Gl. (15) und (16) lassen sich alle Grenz­
gesetze für unendliche Verdünnung ableiten3. Sowohl 
diese Grenzgesetze als auch der zugrundeliegende An­
satz (15) dürfen als empirisch gesichert angesehen wer­
den. Das bisherige Tatsachenmaterial deutet außerdem 
darauf hin, daß — wie bei binären Nichtelektrolyt­
lösungen — stets rc =  l is t2.

Wir wollen nun untersuchen, welche Beziehungen 
zwischen den Reihenentwicklungen (15), (16) und dem 
früher5-7 aufgestellten generellen Satz über die Kon­
zentrationsabhängigkeit der Aktivitätskoeffizienten ein­
zelner Teilchenarten bestehen.

Aus Gl. (11) und (14) ergibt sich zunächst:

( 1 - * )

+  x Vb

T , P
+  VC

4" r c

3 ln /a
3a:

3 ln /b
3x  ) T , P

Dabei gilt infolge der Definitionen (7) und (10) : 
=  /  3 ln /c '\

\ 3 z  J t .P \  3 x  Jt , p '

3 ln /c
3x 

3 ln fc 
3x

T , P

T . P

(18) 

=  0 .

(19)

Die Größen ln / c und ln /</ unterscheiden sich also bei 
fester Temperatur und festem Druck voneinander nur 
durch einen konstanten Term.

Der erwähnte allgemeine Satz5-7 besagt für den hier 
diskutierten Fall, daß bei gegebenen Werten von T und 
P  die nicht meßbaren Größen ln / a , ln /b , ln / c und 
ln fc' Potenzreihen in x  mit nicht-negativen Exponenten 
sind. Wir setzen demgemäß bei Berücksichtigung von 
Gl. (12) und (19) an:

I’a ln /a =  öl X n  +  a2 x n +1 +  . .  . ,
X’b ln /b =  b 0 +  b t x n +  b 2 x11 +1 +  . . .  , 
v c ln / c =  c t x n +  c2 x n +1 +  . . .  , 

v c' ln / c' =  c0 +  c /  x 11 +  c2 x n +1 +  . • • (20)

3 R. H a a s e ,  Z. Phys. Chem. Frankfurt 63, 95 [1969].
4 R. H a a s e ,  J. Phys. Chem. 73,1160, 4023 [1969].
5 R. H a a s e ,  C. R. 2e Reunion Chimie Physique, Paris 1952, 

S. 131.

mit

mit Ci — (vc/vc)  ct , c2 =  (vc/vc) c2 .
Hierin hängen die Größen a t , a 2 , . .  . nur von T  und P  
ab. Die Zahl n ist wiederum positiv.

Durch Einsetzen der Beziehungen (20) in Gl. (18) 
erhalten wir folgende Bedingungsgleichungen, wenn wir 
der Einfachheit halber die Reihenentwicklungen nach 
den ausgeschriebenen Termen abbrechen:

öi =  -  c t ,

a2 +  c2 =  b2 +  c2 =  -  n/ (n +  1) {bx +  c / )  =  B. (21)
Damit finden wir aus Gl. (11) :

ln A =  ß x w + 1 , (22)
ln f 2 =  B0 +  Bl xn +  B xn + 1 (23)

B0 =  b0 +  c0 , B± — — ( (n. +  l ) /n )  B . (24)
Die Beziehungen (22) und (23) stimmen mit Gl. (15) 
und (16) und daher mit der Erfahrung überein. Soweit 
es sich um meßbare Größen handelt, ist also die Kon­
sistenz unserer verschiedenen Ansätze erwiesen.

Die Gin. (22) und (23) gelten entweder für hin­
reichend kleine Werte von x bei beliebigen Mischungen 
oder für besonders einfache Typen von Mischphasen 
im gesamten Bereich zwischen x =  0 und x =  \ .  Im letz­
ten Falle folgt aus Gl. (12) und (23) :

B0 +  Bi +  B =  0 .
Hieraus ergibt sich mit Gl. (22), (23) und (24), wenn 
man außerdem noch n =  1 (siehe oben) setzt:

ln f t =  B x 2, ln f2 =  B (1 — x)2,
ein sowohl bei einfachen Nichtelektrolytlösungen als 
auch bei einfachen Salzschmelzen gültiger Ansatz.

Wie aus Gl. (16) bzw. (22) hervorgeht, hat in der 
Reihenentwicklung von ln f t nach Potenzen von x die 
niedrigste Potenz die Form xm mit m  1 (m  =  2 für 
ra =  l ) .  Entsprechendes läßt sich für die Entwicklung 
von ln f 2 nach Potenzen von (1 — x) zeigen.

Es fragt sich nun, ob die Behauptung5-7 zutrifft, 
daß auch in den Reihenentwicklungen für ln / a und 
ln f c (allgemein: für die Logarithmen der Aktivitäts­
koeffizienten der Teilchenarten des „Lösungsmittels“) 
die niedrigste Potenz in x von der Gestalt xm mit m^>  1 
ist. Formal braucht dies nach Gl. (20) und (21) nicht 
der Fall zu sein; denn die Bedingung a l = — c 1 hat 
nicht zwingend die Aussage a1 =  c1 =  0 zur Folge.

Es gibt indessen zwei wichtige Gründe, die es ver­
nünftig erscheinen lassen, von vornherein die Bedin­
gung (25)

und damit auch c /  =  0 zu fordern:
1. Nur fi stellt eine meßbare Größe dar, so daß vom 

empirischen Standpunkt die Aufspaltung von ln f t in 
ln /a und ln /c gemäß Gl. (11) willkürlich ist. Von die­
sem Gesichtspunkt aus ist Gl. (25) eine Konvention, 
die niemals zu einem Widerspruch mit der Erfahrung 
führen kann.

6 R. H a a s e ,  Z. Naturforsch. 8 a. 380 [1953].
7 R. H a a s e ,  Thermodynamik der Mischphasen, Springer-Ver­

lag, Berlin 1956.
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2 . Gilt Gl. (25) nicht, so bedeutet dies nach Gl. (20) 
und (22), daß hinsichtlich der Variablen x in ln / a und 
ln / c niedrigere Potenzen als in ln / t auftreten. Dies ist 
nicht nur von vornherein unwahrscheinlich, sondern 
auch in den molekularstatistisch durchrechenbaren Fäl­
len (etwa beim analogen Problem der Aktivitätskoeffi­
zienten von Ionen bei normalen Elektrolytlösungen) 
eindeutig widerlegt8.

Übrigens ist Gl. (25) identisch mit der — schon in 
der älteren Literatur aufgestellten — Forderung, daß 
für jede  Teilchenart i das chemische Potential der 
asymptotischen Gesetzmäßigkeit

fi\ —>• const +  R T ln x\ für x — 0 (26)
gehorchen soll, wobei x\ den wahren Molenbruch der 
Partikelsorte i bedeutet.

Zum Beweis der letzten Aussage berücksichtigen wir 
die Beziehung3:
*a _  1—* . o _  , , _  n + V—(T — ■ -Q— mit n =  v —1 und v — ----:----. (27)xa0 l + ß x  ^  l’a+Vc v ’

Hieraus erhält man durch Entwicklung der Logarith­
men :

ln(xa/xa°) = ln ( l  — x) — ln (1 +/? x)
=  — v x +  ( 5  v2 — v) x2 . . .  . (28)

Aus Gl. (6) und (9) findet man:
A*a =  /̂ a° +  R T  ln [ (xa/xa°) / a] . (29)

Setzt man die Reihenentwicklung für ln / a gemäß (20) 
und die Beziehung (28) in Gl. (29) ein, so leitet man 
ab:
/ua. =  /ua° +  R T  *

* — v x + ( i v 2 — v ) x 2-\- — xn +  ~  xn +1 . . .  v '  va va
( l ^ n > 0 ) .  (30)

Dieser Ausdrude kann nach Gl. (28) nur unter der Be­
dingung at =  0 (ct =  0 , 0^ =  0) das asymptotische Ver­
halten (26) zeigen. Damit ist die obige Aussage bewie­
sen.

Obwohl unsere Überlegungen hinsichtlich des Typs 
der Elektrolytschmelzen einen Spezialfall betreffen, 
lassen sich die Schlußfolgerungen leicht verallgemei­
nern 9.

8 Demgemäß ist der auf S. 356 der zitierten Monographie 7 
hinter der fünften Formel stehende Satz wie folgt zu ergän­
zen (hinzugefügter Text kursiv) : „Damit diese Bedingung 
allgemein erfüllbar ist und die Logarithm en der A k tiv itä ts­
koeffizienten der Teilchenarten des Lösungsm ittels nicht 
niedrigere Potenzen enthalten als der Logarithm us des 
(m eßbaren) m ittleren  A ktivitä tskoeffizien ten  (S . 316) des 
Lösungsm ittels, müssen die Differentialquotienten . . . ein­
zeln verschwinden.“

9 Vgl. J. R i c h t e r ,  Z. Naturforsch. 24 a, 447 [1969].

Anisotropie der 195Pt-KMR-Verschiebungen 
kristalliner Platin(II)-Verbindungen

H. J. K e l l e r  u n d  H. H. R u p p

Anorganisch-Chemisches Laboratorium 
der Technischen Universität München 

(Z. Naturforsch. 26 a , 785— 786 [1971]; eingegangen am 23. Februar 1971)

Wie wir bereits kürzlich am Beispiel des kristallinen 
K2PtCl4 zeigen konnten *, tritt bei quadratisch koordi­
nierten Platinkomplexen eine Anisotropie der chemi­
schen Verschiebung des 195Pt-KMR-Signals in der Grö­
ßenordnung von 1% auf. Um den Einfluß von im Sinne 
der „spektroskopischen Reihe“ verschieden starken Li­
ganden auf die magnetische Anisotropie zu überprüfen, 
haben wir nun zusätzlich Kristalle der Verbindungen
(2) — (4) der Tab. 1 untersucht.

Tab. 1.

°ll
[%o]

ö i
[°/oo]

öaniso
[%o]

Pt-Pt
Ä

(1) K2 [PtCl4] - 5 ,6 4,9 10,5 4,13 2
(2) K2[Pt(C20 4) 2] -2 H20 - 4 ,6 4,0 8,6 -
(3) [Pt (NH3) 4] Cl2 • HoO - 3 ,0 4,6 7,6 4,21 3
(4) B a[P t(C N )4] -4 H20 3,3 5,8 2,5 3,32 4

Alle Verschiebungsangaben sind auf die 195Pt-Reso- 
nanz einer wäßrigen 1-molaren Lösung von H2PtCl6 
bezogen.

Die Komponente des Verschiebungstensors bei paral­
leler Ausrichtung der z-Achse des planaren Komplex­
ions (o||) zum Magnetfeld reagiert sehr empfindlich auf 
eine Änderung der äquatorialen Liganden: Mit zuneh­
mender Ligandenstärke (Cl- <C C20 42- <  NH3 CN~) 
tritt 0 || bei deutlich höherem Magnetfeld auf (Tab. 1, 
Spalte 2). Die oj_-Komponente ändert ihren Wert in 
der beobachteten Reihe bedeutend weniger. Die Aniso­
tropie der Zentralmetallresonanz nimmt also bei qua­
dratischen Platinkomplexen mit steigender Liganden­
stärke ab (Tab. 1, Spalte 4).

Die Verbindungen (1) , (3) und (4) kristallisieren 
in einer sogen. Kolumnarstuktur, d. h. die planaren 
Komplexionen sind geldrollenartig angeordnet, so daß 
entlang der z-Richtung eine lineare Anordnung von 
Platinionen entsteht. Die Platinionen ober- und unter­
halb einer Komplexebene kann man daher als axiale 
Liganden betrachten. In Spalte (5) von Tab. 1 sind die 
Abstände zwischen den Platinatomen angegeben. Mit

Sonderdruckanforderungen an Wiss. Rat Dr. H. J. K e l l e r ,
Anorg.-Chem. Laboratorium der Technischen Universität
München, D-8000 München 2, Arcisstraße 21.

1 H. J. K e l l e r  u . H. H. R u p p , Z. Naturforsch. 2 5  a , 3 1 2  [1 9 7 0 ] .
2 R. G. D i c k i n s o n ,  J. Amer. Chem. Soc. 44, 2404 [1922].
3 E. G. Cox u. G. H. P r e s t o n ,  J. Chem. Soc. 1933,1089.


