NOTIZEN

Allgemeine Aussagen iiber
Aktivitatskoeffizienten bei Elektrolytschmelzen

R. HAASE

Lehrstuhl fiir Physikalische Chemie 1T
der Rheinisch-Westfélischen Technischen Hochschule Aachen

(Z. Naturforsch. 26 a, 783—785 [1971] ; eingegangen am 26. Februar 1971)

Wir betrachten eine fliissige Mischung, die aus zwei
Elektrolyten mit je zwei Ionenarten besteht. Dabei soll
eine Ionenart den beiden Elektrolyten gemeinsam sein.
Beispiele stellen die Salzschmelzen NaNOg+ AgNO,
und PbCl,+PbBr, dar. An Hand dieses relativ ein-
fachen Typs von bindren Elektrolytschmelzen, der schon
vor kurzem?! hinsichtlich der Transporteigenschaften
untersucht worden ist, sollen einige thermodynamische
GesetzmdBigkeiten abgeleitet und diskutiert werden.
Diese betreffen die Abhéngigkeit der Aktivitdtskoeffi-
zienten von der Zusammensetzung sowie die Beziehun-
gen zwischen den Aktivitatskoeffizienten der einzelnen
Teilchenarten und denen der Komponenten. Obwohl
man heute, auch bei der Thermodynamik der Elektro-
lytschmelzen, in zunehmendem Mafle zur Beschreibung
durch ,,Zusatzfunktionen® iibergeht2, ist das hier zu
besprechende Problem in Zusammenhang mit einer all-
gemeinen Formulierung der Grenzgesetze fiir unend-
liche Verdiinnung wichtig. Molekularstatistisch sind ja
die primdren Einheiten nicht die Komponenten oder
ionischen Bestandteile, sondern die wirklich vorhande-
nen Teilchenarten.

Die beiden Elektrolyte der bindren Schmelze werden
als Komponente 1 und Komponente 2 bezeichnet. Die-
jenige Ionenart, die nur in der Komponente 1 bzw. 2
vorkommt, wird Teilchenart a bzw. b genannt. Die den
beiden Komponenten gemeinsame Ionensorte heifit Teil-
chenart c. Die Zahl der Tonen der Sorte a bzw. b, die
aus einem Molekiil der Komponente 1 bzw. 2 bei der
Dissoziation hervorgehen, wird mit v, bzw. v, bezeich-
net, wihrend das Symbol v, bzw. ».” die Zahl der Tonen
der Sorte ¢ bedeutet, die aus einem Molekiil der Kom-
ponente 1 bzw. 2 stammen. So gilt etwa fiir die Salz-
schmelze NaCl (1) +MgCl,(2) :

Vb =VMgH = 1,
’ ’
Ve =7~ =2.

VYa=VNat= 17
ve=vor=1,

Der makroskopische Zustand der Schmelze 148t sich,
wie bei jeder biniren Phase, durch die thermodynami-
sche Temperatur 7, den Druck P und den stéchiometri-
schen Molenbruch 2z der Komponente 2 beschreiben.

Die wahren Molenbriiche z,, zp und z. der Ionen-
arten a, b und c sind prinzipiell immer auf den unab-
hiingigen Molenbruch z zuriickfiihrbar. Aber die Zu-
sammenhinge sind nur dann einfach, wenn man voll-
stindige Dissoziation und Fehlen von Ionenkomplexen
annimmt. Zur Vereinfachung der Rechnungen fiihren
wir ab Gl. (9) diese Voraussetzung ein.
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Wir definieren weiterhin:
2, =1lim 2, , 2 = lim xp,
r—0 z—1
2 = lim 2z, 2 =1lim z.. (1)

z—0 r—1

Dabei bedeutet der Grenziibergang z— 0 bzw. z—1
den Ubergang zur reinen fliissigen Komponente 1
bzw. 2.

Die chemischen Potentiale #; und @y der Komponen-
ten 1 und 2 sind mit den chemischen Potentialen u,,
Uy, te der Tonenarten a, b, ¢ durch folgende generelle
Beziehungen verkniipft:

MUy ="Va Ua+ Ve Uec,
Mit den Definitionen

Mo =Pb b+ ve e (2)

wi =lim uy, uz =lim u,, 3)
r—0 r—1

1 = lim py, wp® = lim
z—0 r—1

we =lim we, (4)
z—>1

RTy:=pp—p2, (5

RTwy = up—m® (6)

RT yw'= pe—p, (7)

:uco = lim He s
z—0
RTy, = py—pt,
R TWa = ,ua—,uao s
R TU)cEMc—,uco,
worin R die Gaskonstante bedeutet, ergibt sich aus
Gl (2):
Yi=VaWatVeWe,  Ya=bWb+¥ W (8)
Die mit vy bezeichneten dimensionslosen Groflen, die
Funktionen von 7, P und z sind, entsprechen den natiir-
lichen Logarithmen der ,Aktivititen“ der Komponen-
ten bzw. Teilchenarten. MeBbar sind nur w; und v, .
Wir fithren jetzt die Aktivitdtskoeffizienten ein. Diese
dimensionslosen Gréfen, die von T, P und x abhiingen,
werden mit fa, fb, fo, fo bzw. mit f,, f, bezeichnet,
wenn sie sich auf die Ionenarten bzw. auf die Kompo-
nenten beziehen. Die Definitionen lauten:

In fa = wa—In(za/za?), Info =yp—In(zp/z?), (9)
In fo = we—1In(2e/2c), In fo'= e —In(zc/z.Y), (10)
Infi=valnfa+v.Infc,

Inf=wpInfp+v. Inf. . (11)

Dabei sind die Ausdriicke a/2,%, zp/21’, ... unter der
Voraussetzung vollstandiger Dissoziation und fehlender
Tonenkomplexe zu berechnen.

Aus Gl (1), (4), (6), (7), (9), (10) und (11) ge-
winnt man die Aussagen:
lim fp = lim fo = lim f;=1,
r—0 z—0 z—0
lim fy, = lim f.'= lim fy=1. (12)
Tr— z—1 z—1
Aus Gl. (8) — (11) erhilt man:
In fy =1, —va In (za/22%) — ve In (zc/2c0),
In fo =15 — v In (zb/zp?) — v In(zc/2.Y). (13)
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Hieraus ist ersichtlich, dal f; und f; — im Gegensatz
zu fa, fn, fo und f’ — meBbare Grofen darstellen,
die mit den bereits friiher 3: ¢ definierten und diskutier-
ten Aktivititskoeffizienten identisch sind.

Aus der Gibbs-Duhemschen Beziehung leitet man
ab3:

Slnf Qlnf
(l—x)< 82 I)T,P—}-z(? S{;J>TP =0.

Diese Formel ist mit dem analogen Zusammenhang bei
bindren Nichtelektrolytlosungen identisch.

Setzt man In f, als Potenzreihe in z mit nicht-nega-
tiven Exponenten ein, so kann man schreiben 3:

In fo=By+ B, 2"+ By 2" * 1 + hohere Terme. (15)
Hieraus folgt mit Gl. (12) und (14):

In f; =B 2" *1 4+ hohere Terme (16)

B= —n/(n+1) B,. a7

Darin ist n eine positive Zahl (die auch gebrochen sein
kann), wihrend B, B; und B, Funktionen von T und
P sind. Aus Gl. (15) und (16) lassen sich alle Grenz-
gesetze fiir unendliche Verdiinnung ableiten 3. Sowohl
diese Grenzgesetze als auch der zugrundeliegende An-
satz (15) diirfen als empirisch gesichert angesehen wer-
den. Das bisherige Tatsachenmaterial deutet auflerdem
darauf hin, dal — wie bei bindren Nichtelektrolyt-
losungen — stets n=1 ist2

Wir wollen nun untersuchen, welche Beziehungen
zwischen den Reihenentwicklungen (15), (16) und dem
frither >~ 7 aufgestellten generellen Satz iiber die Kon-
zentrationsabhéngigkeit der Aktivitdtskoeffizienten ein-
zelner Teilchenarten bestehen.

Aus Gl. (11) und (14) ergibt sich zundchst:

Sinfs <alnfc) ]

(5 e (B -
+ |V 3z Jr.p e Qz Jr.pl T

Dabei gilt infolge der Definitionen (7) und (10):

(72"),, - (°5)
3z Jrp \ 3z Jrp-

Die GroBen In f. und In f." unterscheiden sich also bei
fester Temperatur und festem Druck voneinander nur
durch einen konstanten Term.

Der erwihnte allgemeine Satz~ 7 besagt fiir den hier
diskutierten Fall, daB8 bei gegebenen Werten von T und
P die nicht meBbaren GroBen Infy, Infy, Inf. und
In /.’ Potenzreihen in z mit nicht-negativen Exponenten
sind. Wir setzen demgemdll bei Beriicksichtigung von
Gl. (12) und (19) an:

valnfa=a 2" +ap 2"t 14.. .,
vpln fo=>by+bya"+boa™ 14+, ..,
velnfe=cia®+coa 4. ..,

ve' Inf =cotef a"+c a4 ..

(14)

mit

(19)

(20)

3 R. Haasg, Z. Phys. Chem. Frankfurt 63, 95 [1969].

4 R. HaAsE, J. Phys. Chem. 73,1160, 4023 [1969].

5 R. Haasg, C. R. 2¢ Réunion Chimie Physique, Paris 1952,
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' = (v [ve) cs.
Hierin hingen die Grofen a4, as, . .
ab. Die Zahl n ist wiederum positiv.

Durch Einsetzen der Beziehungen (20) in Gl. (18)
erhalten wir folgende Bedingungsgleichungen, wenn wir
der Einfachheit halber die Reihenentwicklungen nach
den ausgeschriebenen Termen abbrechen:

mit ¢ = (v'/ve) ¢1,s

.nur von T und P

ay= —Cq,
ay+cy=by+cy’ = —n/(n+1) (by+¢,)=B. (21)
Damit finden wir aus Gl. (11):
Inf=Ba*+1, (22)
. In fo=By+ By 2"+ B z"+1 (23)
™t B =btcy, Bi=—((n+1)/n)B. (24)

Die Beziehungen (22) und (23) stimmen mit Gl. (15)
und (16) und daher mit der Erfahrung iiberein. Soweit
es sich um meBbare Groflen handelt, ist also die Kon-
sistenz unserer verschiedenen Ansétze erwiesen.

Die Gln. (22) und (23) gelten entweder fiir hin-
reichend kleine Werte von z bei beliebigen Mischungen
oder fiir besonders einfache Typen von Mischphasen
im gesamten Bereich zwischen 2=0 und z=1. Im letz-
ten Falle folgt aus Gl. (12) und (23):

By+B;+B=0.

Hieraus ergibt sich mit Gl. (22), (23) und (24), wenn
man aullerdem noch n=1 (siehe oben) setzt:

In f; =B 22, Info=B(1—1z)2,

ein sowohl bei einfachen Nichtelektrolytlosungen als
auch bei einfachen Salzschmelzen giiltiger Ansatz.

Wie aus Gl. (16) bzw. (22) hervorgeht, hat in der
Reihenentwicklung von In f; nach Potenzen von z die
niedrigste Potenz die Form 2™ mit m>1 (m=2 fir
n=1). Entsprechendes 1ifit sich fiir die Entwicklung
von In f, nach Potenzen von (1 —z) zeigen.

Es fragt sich nun, ob die Behauptung®~7 zutrifft,
daB auch in den Reihenentwicklungen fiir Infy und
In f. (allgemein: fiir die Logarithmen der Aktivitdts-
koeffizienten der Teilchenarten des ,,Losungsmittels®)
die niedrigste Potenz in x von der Gestalt 2 mit m >1
ist. Formal braucht dies nach Gl. (20) und (21) nicht
der Fall zu sein; denn die Bedingung a;= —c; hat
nicht zwingend die Aussage a;=c;=0 zur Folge.

Es gibt indessen zwei wichtige Griinde, die es ver-
niinftig erscheinen lassen, von vornherein die Bedin-

gung al=C1=O (25)

und damit auch ¢;"=0 zu fordern:

1. Nur /, stellt eine meBbare GréBe dar, so dall vom
empirischen Standpunkt die Aufspaltung von Inf; in
In fo und In f. gemidB Gl. (11) willkiirlich ist. Von die-
sem Gesichtspunkt aus ist Gl. (25) eine Konvention,
die niemals zu einem Widerspruch mit der Erfahrung
fiithren kann.

6 R. HaasE, Z. Naturforsch. 8 a, 380 [1953].
7 R. HaasEg, Thermodynamik der Mischphasen, Springer-Ver-
lag, Berlin 1956.
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2. Gilt Gl. (25) nicht, so bedeutet dies nach Gl. (20)
und (22), daB hinsichtlich der Variablen z in In f; und
In f. niedrigere Potenzen als in In f; auftreten. Dies ist
nicht nur von vornherein unwahrscheinlich, sondern
auch in den molekularstatistisch durchrechenbaren Fal-
len (etwa beim analogen Problem der Aktivitdtskoeffi-
zienten von Ionen bei normalen Elektrolytlosungen)
eindeutig widerlegt 8.

Ubrigens ist Gl. (25) identisch mit der — schon in
der dlteren Literatur aufgestellten — Forderung, dal}
fiir jede Teilchenart i das chemische Potential u; der
asymptotischen GesetzmaBigkeit

ui—>const+RT Inz; fir 2z—0 (26)

gehorchen soll, wobei z; den wahren Molenbruch der
Partikelsorte i bedeutet.

Zum Beweis der letzten Aussage beriicksichtigen wir
die Beziehung 3:

Ta 11— _1'h+"r’

o l_ng' mit f=»—1 und »= kv

Hieraus erhidlt man durch Entwicklung der Logarith-
men:

In (2a/2,°) =In(1 —2) —In(14+B2)

(27)

=—vax+(Er2—r)22.... (28)
Aus Gl. (6) und (9) findet man:
ta= "+ R T In[ (za/22%) fa] . (29)

Anisotropie der **Pt-KMR-Verschiebungen
kristalliner Platin(II)-Verbindungen

H. J. KELLER und H. H. Rurp

Anorganisch-Chemisches Laboratorium
der Technischen Universitdt Miinchen

(Z. Naturforsch. 26 a, 785—786 [1971] ; eingegangen am 23. Februar 1971)

Wie wir bereits kiirzlich am Beispiel des kristallinen
K,PtCl, zeigen konnten?!, tritt bei quadratisch koordi-
nierten Platinkomplexen eine Anisotropie der chemi-
schen Verschiebung des 19Pt-KMR-Signals in der Gro-
Benordnung von 1% auf. Um den EinfluB von im Sinne
der ,,spektroskopischen Reihe“ verschieden starken Li-
ganden auf die magnetische Anisotropie zu iiberpriifen,
haben wir nun zusitzlich Kristalle der Verbindungen
(2) — (4) der Tab. 1 untersucht.

Tab. 1.
il o) Oaniso Pt-Pt
[%0]  [%o]  [%o] A
(1) K,[PtCl,] —5,6 4,9 10,5 4,132
(2) Ky[Pt(Cy0y),]-2H,0 —4,6 4,0 8,6 —
(3) [Pt(NHj),]ClL,-H,0 —3,0 46 7,6 4,213
(4) Ba[Pt(CN),] -4 H,O 3,3 5,8 25 3,32 4
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Setzt man die Reihenentwicklung fiir In f, gemdf} (20)
und die Beziehung (28) in Gl. (29) ein, so leitet man
ab:

Ua=U"4+RT %
'{—vx+ 3r2—v) 22+

a, a, i
"+ ghEd
Va Va

(1=n>0). (30)

Dieser Ausdruck kann nach Gl. (28) nur unter der Be-
dingung a;=0 (¢;=0, ¢,’=0) das asymptotische Ver-
halten (26) zeigen. Damit ist die obige Aussage bewie-
sen.

Obwohl unsere Uberlegungen hinsichtlich des Typs
der Elektrolytschmelzen einen Spezialfall betreffen,
lassen sich die SchluBfolgerungen leicht verallgemei-
nern 9.

Demgemil ist der auf S.356 der zitierten Monographie 7
hinter der fiinften Formel stehende Satz wie folgt zu ergén-
zen (hinzugefiigter Text kursiv) : ,,Damit diese Bedingung
allgemein erfiillbar ist und die Logarithmen der Aktivitits-
koeffizienten der Teilchenarten des Losungsmittels nicht
niedrigere Potenzen enthalten als der Logarithmus des
(meBbaren) mittleren Aktivititskoeffizienten (S. 316) des
Lésungsmittels, missen die Differentialquotienten . . . ein-
zeln verschwinden.®

9 Vgl. J. RICHTER, Z. Naturforsch. 24 a, 447 [1969].

Alle Verschiebungsangaben sind auf die 1%Pt-Reso-
nanz einer walrigen 1-molaren Losung von H,PtClg
bezogen.

Die Komponente des Verschiebungstensors bei paral-
leler Ausrichtung der z-Achse des planaren Komplex-
ions (o)) zum Magnetfeld reagiert sehr empfindlich auf
eine Anderung der dquatorialen Liganden: Mit zuneh-
mender Ligandenstirke (Cl”<<C,0,2-<<NH; < CN")
tritt o|| bei deutlich h6herem Magnetfeld auf (Tab.1,
Spalte 2). Die o ]-Komponente dndert ihren Wert in
der beobachteten Reihe bedeutend weniger. Die Aniso-
tropie der Zentralmetallresonanz nimmt also bei qua-
dratischen Platinkomplexen mit steigender Liganden-
stirke ab (Tab. 1, Spalte 4).

Die Verbindungen (1), (3) und (4) kristallisieren
in einer sogen. Kolumnarstuktur, d.h. die planaren
Komplexionen sind geldrollenartig angeordnet, so dal}
entlang der z-Richtung eine lineare Anordnung von
Platinionen entsteht. Die Platinionen ober- und unter-
halb einer Komplexebene kann man daher als axiale
Liganden betrachten. In Spalte (5) von Tab. 1 sind die
Abstdnde zwischen den Platinatomen angegeben. Mit
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