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Temperature Dependence of Electrical and Thermal Resistivities of Noble Metals
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The electrical and thermal resistivities of noble metals copper, silver and gold have been de-
termined at different temperatures in the free electron approximation using Sharma and Joshi’s
model for the phonon dispersion relations. A modified Houston’s method is used to evaluate the
formidable integral over the scattering vector. The normal and Umklapp contributions to the
resistivity are considered separately from the conservation laws of wave vector. The theoretical and
experimental resistivity curves are found to be of similar nature, but the agreement is not detailed.
The Lorentz numbers of noble metals deduced from theoretical and experimental resistivity data
show considerable deviation from Wiedemann-Franz law.

I. Introduction

In pure metals, the resistance to the flow of elec-
tricity and heat is mainly due to the scattering of
conduction electrons by the thermal vibrations of
ions. The crux of the problem for the calculation of
electrical and thermal resistivities due to phonon
scattering lies in the determination of the phonon
spectrum of normal modes and the matrix element
of electron-ion core scattering . During the last few
years, a number of models 2 have been worked out
for studying the phonon dispersion relations in me-
tals by making specific use of conduction electrons.
One of the authors (P.K.S.) and Josui® ¢ have
proposed a successful theory of this type by visualis-
ing a metallic crystal as a quasi-infinite lattice of
bare ions embedded in a sea of electrons. The vol-
ume forces due to -the compressibility of the elec-
tron gas and its interaction with ions are obtained
from an average over a Wigner-Seitz sphere. The
model has been shown to provide a satisfactory de-
scription of the phonon spectrum and the thermal
properties of a number of metals °.

In this paper, we present a computation of elec-
trical and thermal resistivities of the noble metals
copper, silver and gold within the free electron ap-
proximation using Sharma and Joshi’s model for
the phonon dispersion relations. The normal and
Umklapp contributions are considered separately

1 J. M. ZmmaN, Electrons and Phonons, Oxford University
Press, New York 1962, Chap. VII and IX.

2 J. pE LAUNAY, Solid State Physics, Academic Press, Inc.,
New York 1956, Vol. 2, p. 220.

3 P. K. SHARMA and S. K. JosHr, J. Chem. Phys. 39, 2633
[1963].

4 P. K. SHARMA and S. K. JosHi, J. Chem. Phys. 40, 662
[1964].
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from the conservation laws of wave vectors and the
geometry of reciprocal space. The calculated resisti-
vities are used to deduce the Lorentz numbers of
these metals.

II. Theory

Z1MAN ! and others % 7 have given general proce-
dures for evaluating the transport coefficients of
metals using a variational principle. For lattices
with cubic symmetry, the expressions for electrical
resistivity 0 and thermal resistivity W due to pho-
non scattering in the first Born approximation con-
sidering the simplest trial function are given by
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Here C(K) is the matrix element for the transition

of an electron from initial to finite state on the
Fermi surface, v the electron velocity in state K on

5 R. P. GurTaA and P. K. SHARMA, J. Chem. Phys. 46, 1359
[1967]. — P. K. SHARMA and K. N. MEHROTRA, Anales
Fis. 65, 189 [1969]. — P. K. SHARMA and R. P. GurTa,
Z. Physik. Chem. 242, 341 [1969].

6 M. KOHLER, Z. Physik 124, 772 [1948] ; 125, 679 [1949].

7 E. H. SONDHEIMER, Proc. Roy. Soc. London A 203, 75
[1950].
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the Fermi surface, kr the Fermi momentum, K the
scattering vector, wq, , the angular frequency of a
phonon of wave vector q and polarization p, €q,,
the polarization vector, M the ion mass, N the num-
ber of ions per unit volume, L, the free electron
Lorentz number, T the absolute temperature, kg the
Boltzmann constant and f is equal to #i/kg T . The
two surface integrals are taken over the Fermi sur-
face. Even for a spherical geometry, the evaluation
of the double surface integral presents great difficul-
ties because of the change of phonon parameters
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Here £ is the solid angle in K space and u = K/2 ky.
It is obvious from Eqgs. (3) and (4) that to evaluate
0 and W we need to know the matrix element C(K)
and the phonon dispersion relations. In the present
work we have used the free electron model for C (K)
from ZiMAN !, and SHARMA and JosHI’s model ¢ for
the phonon dispersion relation wq, .

III. Results and Discussion

The evaluation of electrical and thermal resistivi-
ties of copper, silver and gold at different tempera-
tures from Eqs. (3) and (4) has been made by a
modification of Houston’s interpolation procedure 9.
The integration over K was performed numerically
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with the direction of K. Here we use BAILYN’s$
averaging procedure to convert the four-dimensional
integral into a three-dimensional integral over K.
The details of the procedure have been described
elsewhere . Using this method, Eqgs. (1) and (2)
can be written as
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and over £ by the six-term integration method as
developed by BETTs et al. 1. The six directions for
K used are: [100], [110], [111], [210], [211]
and [221]. The phonon frequencies and polarization
vectors were obtained from solutions of the Sharma-
Joshi secular determinant 4 for a face-centred cubic
lattice. Two sets of elastic constants were used re-
ferring to 0 K and 300 K. The numerical values
of elastic constants and other parameters used in
the calculation are given in Table 1. The elastic
constants have been taken from the measurements
of OVERTON and GAFFNEY % for copper, and from
NEIGHBOURS and ALERS'? for silver and gold. In
evaluating the integrals over K in Egs. (3) and (4),
the normal and Umklapp processes were considered

Table 1. Constants for noble metals used in the calculation.

Metal Elastic constants Lattice Temperature V(rs) —E, Fermi energy

(10 dynes/cm?) parameter (K) (eV) (eV)
Cy Ci» Cy &)

Copper 17.620 12.494 8.177 3.604 0 1.361 7.04
16.839 12.142 7.539 3.616 300 1.361 7.04
Silver 13.149 9.733 4.109 4.078 0 1.10 5.51
12.399 9.367 4.612 4.080 300 1.10 5.51
Gold 20.163 16.967 4.544 4.054 0 3.70 5.51
19.234 16.314 4.195 4.070 300 3.70 5.51

8 M. BaiLyn, Phys. Rev. 120, 381 [1960].

9 P. K. SHARMA and R. P. GupTa, Rev. Mex. Fis. 18, 41
[1969].

10 A, A. MarapUDIN, E. W. MonTROLL, and G. H. WEIiss,
Theory of Lattice Dynamics in Harmonic Approximation,
Academic Press, Inc., New York 1963.

11 D. D. BeTTs, A. B. BHATIA, and M. WyMAN, Phys. Rev.
104, 37 [1956].

12 W.C.OVERTON and J.GAFFNEY, Phys. Rev. 98, 969 [1955].

13 J. R. NetcuBours and G. A. ALERrs, Phys. Rev. 111, 707
[1958].
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separately from the conservation laws of wave vec-
tors and the geometry of reciprocal space. For nor-
mal processes, K= ¢, where the phonon wave vec-
tor q lies within the first Brillouin zone. The limit-
ing values of K along any direction are given by
the intersection of corresponding K vectors with the
planes of the first Brillouin zone. In Umklapp pro-
cesses K=q + G, where G is a vector of the reci-
procal space. In this case K goes beyond the bound-
ary of the first Brillouin zone, but the phonon wave
vector is constraint to lie inside the Brillouin zone.
The minimum values of K along the above six di-
rections at which Umklapp processes start up were
obtained from the geometry of the reciprocal space.

Figures 1 and 2 show the calculated electrical
and thermal resistivities of noble metals at different
temperatures. For comparison the experimental val-
ues have also been plotted in these figure. The sour-
ces of experimental resistivity data are summarized
in Table 2. The experimental resistivity values re-
ported by various authors agree well enough excep!
for copper in the low temperature region. It will be
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Fig. 1. The electrical resistivity against temperature for noble
metals. The curves A and B are obtained by using elastic data
at 0 K and 300 K respectively. Experimental points, Cu: O,
White and Woods, X, Berman and MacDonald, /\, White;
Ag: [], White and Woods, A, Dugdale and Basinski;
Au: @, White and Woods.
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Fig. 2. The thermal resistivity versus temperature curve for
noble metals. The curves A and B correspond to elastic data
at 0 K and 300 K respectively. Experimental points, Cu: X,
Berman and MacDonald, O, White; Ag: [], White;
Au: @, White.

seen from Fig. 1 that the nature of the theoretical
and experimental resistivity curves is similar, but
the experimental values are higher than the theore-
tical ones throughout the temperature range studied
and the discrepancy increases with rising tempera-
ture. Figure 2 shows that the shape of the theoreti-
cal thermal resistivity curves is quite right, but the
agreement with experiments is not satisfactory at
low and high temperatures. At low temperatures the
calculated values are substantially higher than the
experimental values, while at high temperatures the
theoretical curves lie below the experimental points.

The discrepancies between theory and experiment
at low and high temperatures may be ascribed to
the neglect of several effects. The expressions (1)
and (2) are obtained on one-phonon approximation
and first-order trial function in the variational solu-
tion of the Boltzmann equation. The first assumption
is expected to be true at low temperatures, but the
use of the first order variational solution somewhat
overestimates the resistance. Further, the present
study uses the free electron model for the electron-
phonon matrix element which overlooks the ex-
change and correlation effects. If the exchange and
correlation energies are introduced in C(K), the

300
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Table 2. Experimental electrical and thermal resistivity data for noble metals.

Metal

Electrical resistivity Thermal resistivity
Temperature Temperature
range (K) Source range (K) Source
Copper 1.4—290 WHITE 2 2— 90  BermAN and MacDoNALD b
2— 90 BeErMAN and MACDONALD b 2—160 WHITE 2

15—295 WHITE and WooDs ¢
Silver 10—295 WHITE and WoobDs ¢ 2—160 WHITE ¢

22—298 DuGDALE and Basinskr d
Gold 10—295 WHITE andn WooDS ¢ 2—150  WarTE f

i G. K. WHITE, Austr. J. Phys. 6, 397 [1953].
b R.
¢ G. K.

4 7. 8.

¢ G. K. WHITE, Proc. Phys. Soc. London A 66, 844 [1953].
" G.K

f . WHITE, Proc. Phys. Soc. London A 66, 559 [1953].
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Fig. 3. The Lorentz number of noble metals. The solid curves
represent present calculations and the dashed curves are ob-
tained from experimental resistivity data.

BerMAN and D. K. C. MacDoNALD, Proc. Roy. Soc. London A 211, 122 [1952].
WHITE and S. B. Woobs, Phil. Trans. Roy. Soc. London A 251, 373 [1959].
DUGDALE and Z. S. Basinski, unpublished (private communication).

form factors are slightly increased. This will have a
pronounced effect on the electrical resistivities at
higher temperatures. At high temperatures multi-
phonon processes will also have a dominant effect
on the transport coefficients.

Using the calculated temperature dependence of
resistivities shown in Figs. 1 and 2, the Lorentz
number L =po/T W of noble metals is determined.
Figure 3 shows the calculated values of L along with
the curves deduced from experimental resistivity
data. It is seen that the theoretical and experimental
Lorentz numbers vary with temperature and show
marked departure from the Wiedemann-Franz Law.
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