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Temperature Dependence of Electrical and Thermal Resistivities of Noble Metals
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The electrical and thermal resistivities of noble metals copper, silver and gold have been de­
termined at different temperatures in the free electron approximation using Sharma and Joshi’s 
model for the phonon dispersion relations. A modified Houston’s method is used to evaluate the 
formidable integral over the scattering vector. The normal and Umklapp contributions to the 
resistivity are considered separately from the conservation laws of wave vector. The theoretical and 
experimental resistivity curves are found to be of similar nature, but the agreement is not detailed.
The Lorentz numbers of noble metals deduced from theoretical and experimental resistivity data 
show considerable deviation from Wiedemann-Franz law.

I. Introduction

In pure metals, the resistance to the flow of elec­

tricity and heat is mainly due to the scattering of 

conduction electrons by the thermal vibrations of 

ions. The crux of the problem for the calculation of 

electrical and thermal resistivities due to phonon 

scattering lies in the determination of the phonon 

spectrum of normal modes and the matrix element 

of electron-ion core scattering 1. During the last few 

years, a number of models 2 have been worked out 

for studying the phonon dispersion relations in me­

tals by making specific use of conduction electrons. 

One of the authors (P. K. S.) and J o s h i  3> 4 have 

proposed a successful theory of this type by visualis­

ing a metallic crystal as a quasi-infinite lattice of 

bare ions embedded in a sea of electrons. The vol­

ume forces due to the compressibility of the elec­

tron gas and its interaction with ions are obtained 

from an average over a Wigner-Seitz sphere. The 

model has been shown to provide a satisfactory de­

scription of the phonon spectrum and the thermal 

properties of a number of metals 5.

In this paper, we present a computation of elec­

trical and thermal resistivities of the noble metals 

copper, silver and gold within the free electron ap­

proximation using Sharma and Joshi’s model for 

the phonon dispersion relations. The normal and 

Umklapp contributions are considered separately

from the conservation laws of wave vectors and the 

geometry of reciprocal space. The calculated resisti­

vities are used to deduce the Lorentz numbers of 

these metals.

II. Theory

Z im a n  1 and others 6> 7 have given general proce­

dures for evaluating the transport coefficients of 

metals using a variational principle. For lattices 

with cubic symmetry, the expressions for electrical 

resistivity Q and thermal resistivity W due to pho­

non scattering in the first Born approximation con­

sidering the simplest trial function are given by
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Here C(K ) is the matrix element for the transition 

of an electron from initial to finite state on the 

Fermi surface, v the electron velocity in state k  on

1 J .  M. Z im a n , Electrons and Phonons, Oxford University 
Press, New York 1962, Chap. V II and IX.

2 J .  d e  L a u n a y ,  Solid State Physics, Academic Press, Inc., 
New York 1956, Vol. 2, p. 220.

3 P. K. S h a r m a  and S. K. J o s h i ,  J .  Chem. Phys. 39, 2633 
[19631.

4 P. K. S h a r m a  and S . K. J o s h i ,  J .  Chem. Phys. 40, 662
[1964].

R. P. G u p t a  and P. K. S h a r m a ,  J. Chem. Phys. 46, 1359 
[1967]. — P. K. S h a r m a  and K. N. M e h r o t r a ,  Anales 
Fis. 65, 189 [1969]. — P. K. S h a r m a  and R. P. G u p t a ,  

Z. Physik. Chem. 242, 341 [1969].
M . K o h l e r ,  Z. Physik 124, 772 [1948]; 125, 679 [1949]. 
E. H. S o n d h e im e r ,  Proc. Roy. Soc. London A 203, 75 
[1950].
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the Fermi surface, kp the Fermi momentum, K the 

scattering vector, a)9> p the angular frequency of a 

phonon of wave vector q and polarization p, eq< p 

the polarization vector, M the ion mass, N the num­

ber of ions per unit volume, L0 the free electron 

Lorentz number, T the absolute temperature, kß the 

Boltzmann constant and ß is equal to h/kgT . The 

two surface integrals are taken over the Fermi sur­

face. Even for a spherical geometry, the evaluation 

of the double surface integral presents great difficul­

ties because of the change of phonon parameters

with the direction of K. Here we use B a i ly n ’s 8 
averaging procedure to convert the four-dimensional 

integral into a three-dimensional integral over K. 
The details of the procedure have been described 

elsewhere9. Using this method, Eqs. (1) and (2 ) 

can be written as
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Here Q  is the solid angle in K space and u = K j2 kp. 

It is obvious from Eqs. (3) and (4) that to evaluate 

Q and W we need to know the matrix element C (K) 

and the phonon dispersion relations. In the present 

work we have used the free electron model for C(K) 

from ZiMAN 1, and SHARMA and JoSHl’s model 4 for 

the phonon dispersion relation coq <p.

III. Results and Discussion

The evaluation of electrical and thermal resistivi­

ties of copper, silver and gold at different tempera­

tures from Eqs. (3) and (4) has been made by a 

modification of Houston’s interpolation procedure 10. 

The integration over K was performed numerically

and over Q  by the six-term integration method as 

developed by B e t t s  et al. n . The six directions for 

K used are: [100], [110], [111], [210], [211] 

and [221]. The phonon frequencies and polarization 

vectors were obtained from solutions of the Sharma- 

Joshi secular determinant4 for a face-centred cubic 

lattice. Two sets of elastic constants were used re­

ferring to 0 K and 300 K. The numerical values 

of elastic constants and other parameters used in 

the calculation are given in Table 1. The elastic 

constants have been taken from the measurements 

of O v e r t o n  and G a f f n e y  12 for copper, and from 

N e ig h b o u r s  and A l e r s  13 for silver and gold. In 

evaluating the integrals over K in Eqs. (3) and (4), 

the normal and Umklapp processes were considered

Table 1. Constants for noble metals used in the calculation.

Metal

Cn

Elastic constants 
(IO11 dynes/cm2)

C12 Q 4

Lattice
parameter

(Ä)

Temperature

(K)
V(rs)~ E 0

(eV)

Fermi energy 
(eV)

Copper 17.620 12.494 8.177 3.604 0 1.361 7.04
16.839 12.142 7.539 3.616 300 1.361 7.04

Silver 13.149 9.733 4.109 4.078 0 1.10 5.51
12.399 9.367 4.612 4.080 300 1.10 5.51

Gold 20.163 16.967 4.544 4.054 0 3.70 5.51

19.234 16.314 4.195 4.070 300 3.70 5.51

8 M. B a i ly n ,  Phys. Rev. 120, 381 [1960].
9 P. K. S h a rm a  and R. P. G u p ta , Rev. Mex. Fis. 18, 41 

[1969].
10 A. A. M a r a d u d in ,  E. W. M o n t r o l l ,  and G. H. Weiss, 

Theory of Lattice Dynamics in Harmonic Approximation, 
Academic Press, Inc., New York 1963.

11 D. D. B e t ts ,  A . B . B h a t ia ,  and M. W y m an , Phys. Rev. 
104, 37 [1956].

12 W .C .O v e r t o n  and J .G a f fn e y , Phys. Rev. 98, 969 [1955].
13 J. R. N e ig h b o u rs  and G. A. A le r s , Phys. Rev. I l l ,  707 

[1958].
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separately from the conservation laws of wave vec­

tors and the geometry of reciprocal space. For nor­

mal processes, K = q, where the phonon wave vec­

tor q lies within the first Brillouin zone. The limit­

ing values of K along any direction are given by ^  

the intersection of corresponding K vectors with the e 10 

planes of the first Brillouin zone. In Umklapp pro-T  ̂

cesses K = q + G, where G is a vector of the reci- ^  

procal space. In this case K goes beyond the bound- ~ 

ary of the first Brillouin zone, but the phonon wave U 

vector is constraint to lie inside the Brillouin zone. £ 

The minimum values of K along the above six di- ^ 

rections at which Umklapp processes start up were | 

obtained from the geometry of the reciprocal space, x 

Figures 1 and 2  show the calculated electrical 10* 

and thermal resistivities of noble metals at different 

temperatures. For comparison the experimental val­

ues have also been plotted in these figure. The sour­

ces of experimental resistivity data are summarized 

in Table 2. The experimental resistivity values re­

ported by various authors agree well enough except 

for copper in the low temperature region. It will be

T e m p e r a t u r e  (°k )
Fig. 1. The electrical resistivity against temperature for noble 
metals. The curves A and B are obtained by using elastic data 
at 0 K and 300 K respectively. Experimental points, Cu: O i 
White and Woods, X , Berman and MacDonald, A ,  White; 

Ag: □ , White and Woods, A, Dugdale and Basinski;
Au: # ,  White and Woods.

o
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Fig. 2. The thermal resistivity versus temperature curve for 
noble metals. The curves A and B correspond to elastic data 
at 0 K and 300 K respectively. Experimental points, C u : X , 

Berman and MacDonald, O» White; Ag: □ , White;
A u : # ,  White.

seen from Fig. 1 that the nature of the theoretical 

and experimental resistivity curves is similar, but 

the experimental values are higher than the theore­

tical ones throughout the temperature range studied 

and the discrepancy increases with rising tempera­

ture. Figure 2 shows that the shape of the theoreti­

cal thermal resistivity curves is quite right, but the 

agreement with experiments is not satisfactory at 

low and high temperatures. At low temperatures the 

calculated values are substantially higher than the 

experimental values, while at high temperatures the 

theoretical curves lie below the experimental points.

The discrepancies between theory and experiment 

at low and high temperatures may be ascribed to 

the neglect of several effects. The expressions (1) 

and (2 ) are obtained on one-phonon approximation 

and first-order trial function in the variational solu­

tion of the Boltzmann equation. The first assumption 

is expected to be true at low temperatures, but the 

use of the first order variational solution somewhat 

overestimates the resistance. Further, the present 

study uses the free electron model for the electron- 

phonon matrix element which overlooks the ex­

change and correlation effects. If the exchange and 

correlation energies are introduced in C(K ), the

300
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Table 2. Experimental electrical and thermal resistivity data for noble metals.

M etal

Temperature 

range (K)

E lectrical resistivity 

Source

T herm al resistivity 

Temperature

range (K) Source

Copper 1.4-290 W h it e  a 2 -  90 B e r m a n  and M a c D o n a l d  b

2 -  90 B e r m a n  and M a c D o n a l d  b 2-160 W h it e  a

15-295 W h it e  and W o o d s  c

Silver 10-295 W h it e  and W o o d s  c 2-160 W h it e  e

22-298 D u g d a l e  and B a s in sk i d

Co ld 10-295 W h it e  andn W o o d s  c 2-150 W h it e  f

» G. K. W h ite ,  Austr. J. Phys. 6, 397 [1953].
11 R. B e rm an  and D . K. C. M a c D o n a ld ,  Proc. Roy. Soc. London A 211,122 [1952]. 
'' G. K. W h ite  and S. B. W o o d s , Phil. Trans. Roy. Soc. London A 251, 373 [1959]. 
'■ J. S. D u g d a le  and Z. S. B as insk i, unpublished (private communication).
« G. K. W h ite ,  Proc. Phys. Soc. London A 66, 844 [1953]. 
f G. K. W h ite ,  Proc. Phys. Soc. London A 66, 559 [1953].

Fig. 3. The Lorentz number of noble metals. The solid curves 
represent present calculations and the dashed curves are ob­

tained from experimental resistivity data.

form factors are slightly increased. This will have a 

pronounced effect on the electrical resistivities at 

higher temperatures. At high temperatures multi- 

phonon processes will also have a dominant effect 

on the transport coefficients.

Using the calculated temperature dependence of 

resistivities shown in Figs. 1 and 2, the Lorentz 

number L = q/T W of noble metals is determined. 

Figure 3 shows the calculated values of L along with 

the curves deduced from experimental resistivity 

data. It is seen that the theoretical and experimental 

Lorentz numbers vary with temperature and show 

marked departure from the Wiedemann-Franz Law.
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