BAND 26 a

ZEITSCHRIFT FUR NATURFORSCHUNG

HEFT 4

Feldtheoretische Konstruktion der Jordan—Brans—Dicke-Theorie

H. voN GRUNBERG

Institut fiir Theoretische Physik der Universitit zu Kéln

(Z. Naturforsch. 26 a, 599—622 [1971] ; received 15 December 1970)

Fieldtheoretic Construction of the Jordan-Brans-Dicke-Theory

In the framework of Lorentz invariant theories of gravitation the fieldtheoretic approach of the
generally covariant Jordan-Brans-Dicke-theory is investigated.

It is shown that a slight restriction of the gauge group of Einstein’s linear tensor theory leads
to the linearized Jordan-Brans-Dicke-theory. The problem of the inconsistency of the field equations
and the equations of motion is solved by introducing the Landau-Lifschitz energy momentum tensor
of the gravitational field as an additional source term into the field equations. The second order
of the theory together with the corresponding gauge group are calculated explicitly. By means of
the structure of the gauge group of the tensor field it is possible to identify the successive orders
of the scalar-tensor theory as an expansion of the Jordan-Brans-Dicke-theory in flat space-time. The
question of the uniqueness of the procedure is answered by showing that the structure of the gauge
group of the tensor field is predetermined by the linear equations of motion. The mathematical
proof of this fact confirms formally the meaning of the equations of motion for the geometry

of space.

Einleitung

Die Einsteinsche Gravitationstheorie ist auf zwei
Weisen abgedndert worden: Erstens im Riemann-
schen Raum z.B. von JorRDAN?, BRANS und DICKE 2,
zweitens im flachen Raum u. a. von CAPELLA 3, BEL-
INFANTE und SwiHART %. Die Frage nach der Zu-
ordnung dieser beiden Klassen von Gravitations-
theorien 1aBt sich in einer Richtung positiv beant-
worten: Den genannten allgemein-kovarianten Theo-
rien entsprechen eindeutig ihre linearen Naherungen
im Minkowski-Raum. Eine eindeutige Zuordnung in
umgekehrter Richtung ist bisher nur im Fall der
Einstein-Theorie nachgewiesen worden * 6, Ahnliches
fiir die Jordan-Brans-Dicke-Theorie (J.-B.-D.) 7 zu
versuchen, scheint nach den Untersuchungen von
SEXL 8 aussichtslos, der behauptet, da} in linearer
Naherung die Theorien 1) —4) identisch sind. Denn
dann wire die linearisierte J.-B.-D.-Theorie ebenso
wie die von Capella konsistent und es gibe keine
Motivation fiir die sukzessive Riickkehr zu ihrer
kovarianten Form.

Tatsachlich wird die lineare J.-B.-D.-Theorie durch
Eichung identisch mit der Theorie von Capella; die
entsprechende Eichkonvention — die bei Capella
fehlt — mull man dann aber zusammen mit den
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Feldgleichungen beriicksichtigen und erreicht auf
diese Weise doch eine Unterscheidung der Fille.

Die allgemeinen Prinzipien, die bei der feldtheo-
retischen Konstruktion einer Gravitationstheorie zu
beachten sind, iibernehmen wir aus 5), 6) aller-
dings nicht alle, denn die Postulate

a) Lorentz-Invarianz,

b) Herleitung der ganzen Theorie aus einer La-
grange-Funktion,

c) Beschrankung auf hochstens zweite Ableitun-
gen der FeldgroBen in den Feldgleichungen,

d) Spineindeutigkeit (d.h. die Gravitation soll
nur durch eine Teilchenart mit Spin 2 und Masse 0
tibermittelt werden),

e) Aquivalenzprinzip
fiihren eindeutig auf die Einsteinsche Theorie 6. Wir
miissen also mindestens eine Forderung aufgeben;
und zwar werden wir im Sinne der im Thema ge-
nannten Aufgabenstellung d) ersetzen durch

d’) Zugelassen sind ein Spin 2- und ein Spin 0-
Feld, beide mit der Masse Null.

Um die dadurch verlorengehende Eindeutigkeit des
Verfahrens wiederherzustellen, nehmen wir die For-
derung

5 W. Wyss, Helv. Phys. Acta 38, 469 [1965].
6 J. B. BARBOUR, Dissertation, Kéln 1968.
7 Fiir = —1 stimmt die Jordan-Theorie mit der von Brans

und Dicke tiberein.
8 R. U. SExL, Fortschr. Phys. 15, 269 [1967].
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f) Die Einsteinsche Theorie soll fiir bestimmte
Wahl der Parameter enthalten sein
hinzu.

Wir werden zeigen, dafl man zur Erfillung von
d’) nicht notwendig eine Skalar-Tensortheorie von
vornherein anzusetzen braucht, sondern dafl man,
ausgehend von einer Tensortheorie mit eingeschrink-
ter Eichgruppe, zwangsliufig auf die Hinzunahme
eines Skalarfeldes gefiihrt wird. Hierbei spielt die
Eichinvarianz der Bewegungsgleichung eine wichtige
Rolle, die man nur durch Einfiihrung einer Ord-
nungsdefinition der einzelnen Terme erklaren kann.

Genau diese Ordnungsrelation 16st auch das Pro-
blem der Inkonsistenz von Feld- und Bewegungs-
gleichungen, welches bisher > ¢ als Ausgangspunkt
fiir Groflenordnungsbetrachtungen verwendet wurde.
Die Forderungen nach gleichen Invarianzeigenschaf-
ten und nach Konsistenz von Feld- und Bewegungs-
gleichungen sind also dquivalent als Begriindungen
dafiir, daf die lineare Theorie eine Naherung ist.

Die Skalar-Tensortheorie in zweiter Ordnung kon-
sistent zu machen, ist ungleich komplizierter als im
Einsteinschen Fall. Man kann sich aber mit einem
Trick helfen: Durch Eichung laft sich das Skalar-
feld in der linearen Theorie eliminieren, und durch
Beriicksichtigung des Landau-Lifschitz-Energie-Im-
puls-Tensors des Tensorfeldes als zusétzlichem Quell-
term in den Feldgleichungen erreicht man gerade
Vertriglichkeit von Feld- und Bewegungsgleichun-
gen, wie man es physikalisch erwartet.

Daran anschlieBend zeigen wir zunichst die Exi-
stenz und spiter die Eindeutigkeit einer Theorie
zweiter Ordnung mit den Eigenschaften a) —f). Da-
bei geht die Verwendung der Eichgruppen wesent-
lich ein; mit ihrer Hilfe gelingt es — durch Bestim-
mung ihrer Lie-Algebren und damit ihrer Struk-
tur —, das Verfahren der schrittweisen Behebung
der Inkonsistenz zu systematisieren und seine phy-
sikalische Bedeutung zu kldren: Die sukzessive Er-
weiterung der behandelten Skalar-Tensortheorie von
einer Ordnung zur néchsthcheren ist die Entwick-
lung der J.-B.-D.-Theorie im flachen Raum.

In einer formal so komplizierten Theorie 1af3t sich
der Eindeutigkeitsheweis nur gruppentheoretisch
fuhren. Man stellt fest, daf} die Bewegungsgleichung
der linearen Theorie die Struktur der Eichgruppe
des Materiefeldes zu bestimmen erlaubt. Da sich be-
weisen ldf3t, dal die Eichgruppe zweiter Ordnung
des Tensorfeldes von derselben Struktur sein muf,
gilt die ,physikalische Eindeutigkeitsaussage®, daf}

H.v. GRUNBERG

es zwar formal verschiedene Erweiterungen zweiter
Ordnung gibt, die aber alle die J.-B.-D.-Theorie re-
prasentieren, entwickelt im flachen Raum mit ver-
schiedenen Ansétzen fiir den metrischen Tensor.

Lineare Tensortheorie

Der allgemeinste Ansatz fiir eine Lagrange-Funk-
tion, die eine Lorentz-invariante Gravitationstheorie
mit hochstens zweiten Ableitungen der Feldgroflen
in den Feldgleichungen beschreibt, ist

6
L(vy) =iglai I; (1)

mit Is=vw,, , p*°,

. va,
Ly =ylia V" .

Li=vyiyh, L=v"v.,
]4 =Y, ’#"““”' 715 = V'Z,u '(I'z’o’
Wenn man Invarianz der zu L(1) gehorigen Feld-
gleichungen
0 [ L(y) d*x

() L) =aa =5 55 = =G () =0

gegeniiber der Eichtransformation
l/'m' 2 @uv . l/'),uv =t '1111,,1' <t */11'.;1 (2)

fordert, wird man bekanntlich® eindeutig auf die
linearisierte Einsteinsche Theorie gefiihrt.

Die Invarianz der Theorie gegeniiber (2) ist eine
starke Einschriankung, denn sie erlaubt, wie Wyss
zeigt, mit speziell gewéhlten A, zur Hilbert-Eichung
mit zusdtzlicher Spurfreiheit,

W - w‘u)'.y - 0 (3)

tiberzugehen. In der Eichung (3) sind drei der vier
beziiglich der Untergruppe der rdumlichen Drehun-
gen irreduziblen Darstellungs-Komponenten ausge-
schlossen, namlich die Vektordarstellung und beide
Skalardarstellungen; % ist also ein reines ,,Spin 2%-
Feld.

Wir wollen nun die durch (2) gegebene Eich-
gruppe dahingehend einschranken — die Theorie
also verallgemeinern —, daf} die mit ihrer Hilfe er-
reichbaren Eichungen zwar die Vektordarstellung
und eine Skalarkomponente auszuschlieflen ermogli-
chen, nicht aber die zu vy/+ 0 gehorige Skalardar-
stellung. Dazu wird man zweckmaflig zu (2) die Be-
dingung

A,4=0 (4)

hinzunehmen. Denn ausgehend von v, mit i +0
ist die Eichung i/, mit ;=0 mit (2) und (4) nicht
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erreichbar; der zu v}, gehorende ,,Spin 0“-Teil 1aft
sich also durch Eichung im allgemeinen nicht besei-
tigen.

Invarlanz von — G“’(w) gegen (2) mit (4) be-
deutet — G () +G“”(y) =0, nach Zusammenfas-
sen der Terme

m=s é,uv(w) + éu;(w) (5)
=2ay (A% + A) — (2ay+a,) 447
—(2a3+ay) 47 =0

Infolge der Zusatzbedingung (4) werden nur-
mehr zwei Forderungen an die a; gestellt,

a;=0, 2a3+a;=0, (6)

so dal} nach Festlegung des gemeinsamen Faktors

durch
ag=1 (7

noch drei Konstanten frei bleiben. Zu ihnen gehért
der Koeffizient a; des Masseterms #*" vg, den wir
durch Einschriankung auf masselose Gravitations-
felder a; =0 setzen. Damit und mit (6) und (7)
erhélt man

~Ge () = — By by By

2 ay YT - agn Y —ag B =0, (8)
Wir wollen (8) noch durch die Eichung
= (9)

vereinfachen. Den Ubergang von v, zu i7,, mit (9)
vermittelt eine Transformation mit

Aty =gt G =y,
(9) ist invariant gegeniiber (2), wenn
A8 = A3 (29 -1)
gilt. Man sieht, dal nur im Fall 9} =} die Einschrin-

kung (4) nicht notig ist und daher ,,Spineindeutig-
keit“ erreicht werden kann.

Mit (9) wird (8)
— G (y) = — 3% + (9 —ag) y&*
—(2as+9) o ygr =0, (10)

(10) ist invariant unter (2) mit den Bedingungen

(4) und, nach der Eichung (9),
O04,=0. (11)
Mit der Festsetzung ag = erhilt man aus (10)

— G () = — 3y — (2az+92) gyt =0,

(12)
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das ist die ,,Flache Theorie“ von CAPELLA® in
vacuo, abgesehen davon, dafl v,, hier zusitzlich
den Koordinatenbedingungen (9) unterworfen ist.

Wir bemerken, dall in (12) noch immer die li-
nearisierte Einsteinsche Theorie enthalten ist: Fiir
¥= 4 und ay= — 1 sind (12) die linearen Feld-
gleichungen in Hilbert-Eichung

yom, = dyf, (9

—G(y) = — & (Yo — vyt = (12)

Ebenso wie (12") ist (12) invariant unter (2) mit
(11).

Damit die nach dem Norther-Theorem aus dieser
Invarianz von (12) folgenden Identitdten eine mog-
lichst einfache Form annehmen, wahlen wir

as=— 319 +1%). (13)
Damit wird (12)
~Gm(y) = — 1 Oy =997 vf)  (14)
und
—GC(y)m, = — % Oy, —948*) =0 (15)

wegen (9). Nur mit der Wahl (13) von a; und
ag =" bleibt die Einsteinsche Theorie als Grenzfall
fiir 9 = } enthalten. Die Lagrange-Funktion zu (14)
ist

L(’(p)_ Y Vo — 1Oyl wd? . (16)

Ankopplung an das Materiefeld

_ Entsprechend dem Aquivalenzprinzip koppeln wir
G () direkt an den symmetrischen Energie-Im-
pulstensor der Materie T (q) mit einer Kopplungs-
konstanten 877/®, und schreiben die Lagrange-
Funktion des Systems von Materie mit Gravitations-

feld als
L=L(y) +4(q) + Ly (17)

mit der Lagrange-Funktion A(g) des Materiefel-
des ¢ und der Wechselwirkungs-Lagrange-Funktion

Ly,= (8a/Dy) v, T (q).
Aus (17) folgen die Feldgleichungen

»,0 4 L i
— I 3Oy ygs = — 5T (g)  (18)
0

und die Bewegungsgleichungen

o[ Ld*%
¢(q,) L = gt féq '

]

. 6(90) ‘1(q) ‘*‘8(99) L\\':O .
(19)
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Wegen (15) erhalten wir aus (18)

T(g)*,=0. (20)

(19) und (20) sind aber, wie BARBOUR ¢ gezeigt
hat, inkonsistent, und zwar unabhingig vom Mate-
riemodell. Diese Inkonsistenz ist eine Folge von (9),
liegt also im Grunde genommen daran, daf} wir die
Theorie aus einem allgemeinen Ansatz mit der For-
derung nach Invarianz unter (2) mit (4) gewonnen
und durch die Eichkonvention (9) spezialisiert ha-
ben. Bei Capella, der seine Theorie ad hoc formu-
lierte, tritt obige Inkonsistenz nicht auf, und die
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Fall sehen wir uns gezwungen, wie Wyss und Bar-
bour, die Feldgleichungen als Anfang einer Entwick-
lung einer konsistenten Theorie aufzufassen.

Eichinvarianz der linearen Theorie

Um die Bewegungsgleichung (19) genauer zu un-
tersuchen, wahlen wir als Materiemodell das skalare

Klein-Gordon-Feld ?, also
A= (167/Py) L(z), L(z) =x,.x“—m?x® (21)

mit dem kanonischen Energie-Impulstensor

lineare Theorie ist in sich geschlossen. In unserem T () =2 0" —n* (. x*—m?x%). (22)
Der Faktor 16 7/®; von L(y) in A wurde so gewdhlt, daf} die Bewegungsgleichung
o[ Ld% .
“(Z) Llet'f féy zf(l) (‘"1+L\\‘) = (16 R/QO) ‘('(Z) (L(Z) + % WYor T'W(Z)) =0 (23)
die Kopplungskonstante nicht enthalt. (23) lautet ausgerechnet
e(2) L(x) +€(0) 2 v T (1)
= —2(9,9“+m?) z+ 3 [2v} (3,0“+m?) y —4 0, (v* x,) +2yi» 1’1 =0. (24)

Nach Konstruktion gestattet (18) Eichtransfor-
mationen (2) mit (11), die Feldgleichungen (18)
bestimmen also die Potentiale v, nur bis auf Eich-
zusitze der Form .1,, + 4, , mit [J4,=0. Da die
Bewegungsgleichung (24) aber offensichtlich diese
Invarianzeigenschaft nicht besitzt, entspricht jeder
Umeichung der Potentiale eine andere Bewegung
der Materie. Diesen scheinbaren Widerspruch kann
man beseitigen, wenn man in (24) gleichzeitig mit

(/v/u"_) '7’!1)': '/'l:;'+‘1u.1'+‘1r.u (2)
die Transformationen

r=> 2 = X3
au —* éu = a“ e ‘1"./4 al' D)
a‘u _)é‘u = a‘u o /11',/: ar

vornimmt, die fiir infinitesimale /1 eine Gruppe bil-
den. Die Invarianz von (24) unter (2) und (25)
héngt unmittelbar mit einer Ordnungsdefinition der
einzelnen Terme zusammen. Wenn man 7% () nach
Definition als von nullter Ordnung betrachtet, sind
nach (18) v,, und seine Ableitungen von der Ord-
nung 1/®,. Da v,, und ¥, die gleiche Ordnung
haben sollen, ist nach (2) ebenfalls A, =0(1/D,).

(25)

9 Alle im folgenden gewonnenen Ergebnisse hdngen aber
nicht von der speziellen Wahl des Materiemodells ab. Die
Verwendung des Klein-Gordon-Feldes vereinfacht die Rech-

Nimmt man nun auf der linken Seite von (24) die
Ersetzungen (2) und (25) vor, so findet man als
Ergebnis

~2(3,3“+m?) y + ¥ [2y) (3, 0“+m?) g

— 49, (v 2,) +2 ¥ 1] +0(P7%).  (26)

Wenn man voraussetzt, da} (24) nur bis auf Terme
o(D,?) gilt, ist die Bewegungsgleichung invariant
gegeniiber (2), (25). Konsequenterweise wird man
auch nach dem Verhalten von (18) gegeniiber der
erweiterten Eichgruppe [mit (25)] fragen. Man
sieht, daf} die Invarianz von (18) unter (2), (11)
bei gleichzeitiger Anwendung von (25) durch Zu-
satzterme o (P, 2) zerstort wird. Mit der Forde-
rung, daB (18) nur in der Ordnung 1/®, gelten
soll, sind auch die Feldgleichungen invariant unter
der erweiterten Eichgruppe.

Diese Konvention bedingt dann die Abdnderung
von (20) in

T ()" =o0(1/Dy) (27)
und stellt mit Hilfe der Beziehung
T(Z).ur.r == e Z..u E(Z) L(X) (28)

nungen und verbessert die Ubersichtlichkeit des Verfah-
rens.
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die Konsistenz der Feldgleichungen (18) und der
Bewegungsgleichung (24) in erster Ordnung von
1/ D, sicher.

Ausgehend von der Bemiihung, die scheinbare
Abhingigkeit der Bewegung der Materie von den
— auf Grund der Feldgleichungen unwesentlichen —
Eichzusitzen A4,,+A4,, zu beseitigen, haben wir
die erweiterte Eichgruppe (2), (25) gefunden. Da-
bei ist zu beachten, daB in der Eichtransformation
(2) von v, die fiir die Invarianz der Feldgleichun-
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gen notige Einschrankung [] 4, =0 bei der Bewe-
gungsgleichung nicht gemacht werden muf}. Das ver-
anlalt uns zu fragen, ob es aus einer Lagrange-
Funktion ableitbare Feldgleichungen

Hw — — (8a/®Dy) T

mit divergenzfreiem H*’ gibt, die wie die Bewe-
gungsgleichung invariant gegen (2), (25) ohne Ein-
schrankung sind und die in der Eichung (9) gerade
die Form (18) annehmen.

Der in Frage kommende Ansatz fiir H* ist eine Linearkombination der zweiten Ableitungen von v, ,

Hv —q w/w,g + b y)g,uv +e w,uu,; s d wva,;; +e 7]‘[4)/ l/,ga.w + f nyr 1/,3.3 . (29)

Wegen der Symmetrie von H*, die ihrerseits aus der Symmetrie von v, und der Ableitbarkeit aus einer
Lagrange-Funktion folgt, gilt
c=d. (30)

Die Forderung, dal H* durch die Eichkonvention (9) in die linke Seite von (18) ubergeht, fithrt auf die
Gleichung

o, uy

HY =ay™5 + 95" (b+2¢9) + 7 ygs(ed+f) = — 3™+ 1 y}s -9, (31)
also auf die Koeffizientenbedingungen
a=—%, b+2c¢¥=0, ed+f=1% (32)

Die zweite Forderung, ndmlich dal H*" invariant unter (2) sein soll, bedeutet natiirlich, dal H*" ein Viel-
faches des aus der linearisierten Einsteinschen Theorie bekannten Tensors

— G = F (=95 —ye YT Y — T g+ YD)
H‘m' —

(33)

sein muf}, also, wenn man a= — % aus (32) hinzunimmt, -G, (34)

(34) und die letzten beiden Gleichungen in (32) sind offenbar nur vertriglich fiir # = 4, d. i. der Einstein-
sche Fall. Wir sehen, daB sich die beiden Forderungen fiir ¥ & 4 mit Hilfe eines H** in der Form (29)
nicht realisieren lassen. Der einzige Ausweg ist die zunéchst rein formale Einfithrung von ,,nicht-geometri-
schen“ Hilfsfeldern ® in H**. Wir werden sehen, daBl wir in unserem Fall mit einem Skalarfeld auskommen.

Statt einen neuen Ansatz fir H*” zu machen, der neben den Termen (29) aus einem Skalarfeld gebildete
Ausdriicke enthalt, wollen wir einen direkteren Weg einschlagen. Dazu subtrahieren wir von H* in (29)
den eichinvarianten Teil, d.i. wegen a= — % gerade — G, und versuchen, den Rest, H* + G**, durch

ein Hilfsfeld auszudriicken. H* + G* 1aBt sich mit (32) schreiben als
Hw AL G = (_2 C'l9+ %) q,g,,uv + (C~ %) l/»'/m'; ne (C . %) wvc,;{;

b et 1) 7yt (D —e D= 3) oyl (35)
Die Koeffizienten ¢ und e in (35) lassen sich bestimmen, wenn man die Bedingung H**», = 0 hinzunimmt.
Damit folgt
(HY4+6%) ,=F P —-2cP—e) v3F + (c— 3) v + (c+e) v*7h =0, (36)
also fir die Koeffizienten
e= % y B== % (37)
Aus (32) und (37) erhalten wir jetzt auch
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und damit
Hw +G‘uv - (_é_ _19) y/,g,lli’ + (’l? o %) 77/41' u'gvg . (39)
Jetzt wollen wir (39) durch einen aus einem Skalarfeld & und seinen hochstens zweiten Ableitungen auf-

gebauten Tensor A (&) ausdriicken. Wir versuchen es mit dem einfachsten A4 (&), das wie H* + G
divergenzfrei ist, und setzen

Hw = G* = (% — 19) 1/!Z"“’ + (19 o %) ,'7.uv '/Yg.g - (1/(1')0) (E,‘ur . ,'Tm' ;cj) ) (4_0)
Wegen des Faktors 1/@, ist & von nullter Ordnung im Sinne unserer Ordnungsdefinition. Damit
H = — G+ (1/Dg) (G —q £)) = — (8a/Dy) T (41)

bei Anwendung der Eichtransformationen (2), (25) invariant bleibt, darf & sich dabei, wenn tiberhaupt,
nur um o(1/®,) dndern. Wir haben uns also in (41) Feldgleichungen verschafft, die die gleichen Invarianz-
eigenschaften besitzen wie die Bewegungsgleichung und die mit der Eichkonvention (9) in (18) iibergehen.
Die physikalische Bedeutung dieses rein formalen Verfahrens ist, dal wir annehmen, daf} die sich auf (18)
reduzierenden eichinvarianten Feldgleichungen zu einer Skalar-Tensortheorie gehéren, und dal wir, statt
die richtige Lagrange-Funktion L(v, &, 7) und die entsprechenden Feldgleichungen &(v,,) L(vy, &, 7) =0,
(&) L(y,&, %) =0 zu raten, sie induktiv zu konstruieren versuchen. In diesem Sinne gewinnen wir aus
der Definition (40) von & durch Verkiirzung die &-Feldgleichung

(1/Dy) €1 = — (9 — 3) y3s, (42)

allerdings wegen der Herleitung aus H*” + G* nur in beschrinkter eichinvarianter Form ([J4,=0).
Wir verfahren daher dhnlich wie bei der Behandlung von (18) und schreiben unter Benutzung von (9)

(1/@g) &1 = — (9= +a) w§7 + (afD) yeo,. (43)
a bestimmen wir so, da} (43) invariant ist unter (2) und erhalten
5. 5= - Tog G- DlEt iy =Dy, (44)
bzw. mit der Abkiirzung
P=01-mw)/(1-2w) (45)
(20/DBy) & =y87 — v, (46)
Die Feldgleichungen (41) und (46) folgen aus der Lagrange-Funktion
L=L(y) — (0/Py?) §18* + (1/Dy) E1(v8h) —wo® + A+ (8a/Dy) v, T (2) (47)
mit L) = 1 Yo" = Vo V' + 2900 W07 — 1 Yo W07 (48)

Das Ergebnis ist iiberraschend angesichts dessen, dal} wir das Lagrange-Prinzip bisher nicht benutzt haben,
und ist eine Folge der Eichinvarianz von (41) und (46), vor allem aber davon, daf zur Einfithrung der
erweiterten Invarianzgruppe (2), (25) in die Theorie (18), (9) gerade ein Skalarfeld gemédll (40) her-
genommen wurde. Das Auftreten des &-Feldes zusammen mit der Gruppe (2), (25) war nach den Uber-
legungen im 1. Kap. in gewissem Sinn zu erwarten, denn mit Hilfe von (2) ist beziiglich des Tensorfeldes
»Spineindeutigkeit* erreichbar.

Die Konvention (9) laft sich durch (42) in die Form
(= 3 b yld) 5= — (1/ D) &0 (49)
bringen. Wenn man (46) durch o dividiert und den Grenzwert ®— o bildet!?, erhdlt man u.a. die

Losungsmannigfaltigkeit & =const. Damit geht (41) in die linearisierte Einsteinsche Theorie iber, und
(49) wird die Hilbert-Eichung. Andererseits gilt fiir @ — oo nach (45) ¥ =14, wie erwartet.

10D, BriL, in: Evidence fo rGravitational Theories, Academic Press, New York 1962.
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Die Konsistenz in zweiter Ordnung

Die Einfithrung der gleichen Invarianzgruppe in Feld- und Bewegungsgleichungen hat natiirlich nichts
zur Konsistenz beigetragen.

Die Inkonsistenz von (41) und (23) rithrt von dem Term zweiter Ordnung &(y) Ly in (23) her. Da-
her liegt es nahe, zur Erreichung der Konsistenz ein zusitzliches Wechselwirkungsglied von dritter Ord-
nung Ly (y, ) in die Lagrange-Funktion einzufiihren. Damit erhilt man an Stelle von (47)

L' =L(y) — (0fDg?) 184+ (1/Pg) Ea(wf* —45°) + A+ (87 Py) v, T (1) +Luw (w,2)  (50)

o(y?) o(y?) o(y?) o(v) o(y?) o(y?)
und die daraus folgenden Gleichungen
G (1/By) (§4 — e £2) + (8/By) T (1) + () L (1,7) =0 (51)
o(y) o(y) o(y) o(y?)
baw. £(7) A+ (B/By) £(x) Yoo T (1) +(1) L (3 7) = 0. (52)
o(y?) o(y?) o(y?)

Die &-Feldgleichung (46) bleibt ungeéndert. Wir haben die Ordnungen der Terme mit angegeben, wobei
wir gemél unserer Ordnungsdefinition o(y") statt o(Po ") geschrieben haben.
Aus (51) entsteht durch Divergenzbildung

(87/Dy) T ()" + 9, e(wu) Luv (%) =0 (53)
und daraus wegen (28) und (21)
— %z e(x) 4+9, e(ww) Ly (w,2) =0. (54)

Wenn man (52) mit — 3% y“ multipliziert und mit (54) gleichsetzt, erhilt man die Konsistenzbedingung
der zweiten Ordnung

3, e(Wiw) Lw (. 2) = — 3 (8 1/ D) €(2) Y T (1) +0(4%). (55)
Diese Gleichung ist dieselbe wie im Einsteinschen Fall, und wir kénnen das Ergebnis iibernehmen, daf} das
gesuchte Lv’v(tp, %), unabhingig vom Materiemodell %, nicht existiert.

Wir wollen deshalb als nichstes auBer Ly (1, ) Terme dritter Ordnung in v allein Z(w) und eine Wech-
selwirkungs-Lagrange-Funktion Ly (v, &), ebenfalls dritter Ordnung, zu L in (47) hinzunehmen. In L (y, &)
sind z. B. quadratische Glieder in v, multipliziert mit 1/@, (und &), und in v lineare Glieder, multipliziert
mit 1/®D,2, zugelassen. Die genaue Gestalt aller neueingefiihrten Lagrange-Funktionen muf} natiirlich, wenn
moglich, aus der Konsistenzbedingung bestimmt werden. Der Vollstindigkeit halber miiite man noch
L (v, &, ) hinzufiigen; wir wollen aber versuchen, darauf zu verzichten, da bisher keine direkte Kopp-
lung des &-Feldes an die Materie aufgetreten ist. Wir setzen also an mit

L* = L(y) — (0/Dg?) 184+ (1/Dy) Ea(we* —wh®) + A+ (87/ D) v, T ()
o) oy o) oly) o(y?)
+ Ly (w, 1) + L() + Ly (v, §) (50")
o(y?)  o(y?) o(y?)
und erhalten die Feldgleichungen
— G+ G+ (1) By) (& —qp E3) + () Ly (1, 8) + (871/Pg) T (1) + () Ly (y,2) =0 (51)
o(y) o(y?) o(y) o(y?) o(y) o(y?)
mit é’“’:e(wm) i(q'). Die Bewegungsgleichung (52) bleibt bestehen. Die Anderung der &-Feldgleichung

infolge L. (v, &) ist von zweiter Ordnung und wird bei den Konsistenzuntersuchungen keine Rolle spielen.
Die Divergenz von (51°) ist

- % Z"u E(Z) 11 + a“”’v_*_ av 8(1/}/47) LW(I,U9 5) & ay 8(1}};41/) L:V (‘pa x) = 0 . (53’)
o(y?) o(y?) o(y?) o(y?)
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(53’) muB der Bewegungsgleichung (52) i#quivalent sein. é""",. ist nach Konstruktion aus Termen vy -y
aufgebaut, O, ¢(vy,,) Ly (v, &) aus (1/Dg) w&, (1/Dy2) &-&,... . Falls einige dieser Glieder sich auf
Grund der &-Feldgleichung erster Ordnung (46) heben, wollen wir unter B den aus G, + 3, &(v,,) Ly (v, &)
durch Elimination der sich kompensierenden Glieder entstehenden Ausdruck verstehen. Damit

— dx e(x) A+ B +3, e(y.) Ly (y,2) +0(y?) =0 (53")
dquivalent zu (52) werden kann, diirfen -y, (1/®;) v & in B* nur in der Kombination y H auftreten,
wobei

HY = — 6+ (1/®g) (& -y £7) . B

Denn dann nehmen die Terme in B* mit Hilfe der Feldgleichungen erster Ordnung die Form (1/®g) v x 1
an (s. u.), die auch die Glieder zweiter Ordnung der Bewegungsgleichung haben. Der allgemeinste Ansatz
fir B ist daher
B = myy*¢, Hy + my w*¢° H,o + mg Wit Hy +my o H o+ myy? Hy , + mg w5 Hf
+mqg e, Hy + mgys HY" +mgyw? Hyo*+mygwe Hb . (56)
Bei dieser Wahl von B* wird der symmetrisierte kanonische ! Energie-Impulstensor des y-Feldes 7% (v)
entsprechend dem Aquivalenzprinzip beriicksichtigt ©.

T sei der Vektor, in den B* bei Ersetzung von H* durch — (8 7/®,) T* () iibergeht. Wegen (51')
gilt

He = — (87/Dy) T (x) +0(y?), (57
und wir wissen daher, daB B und T* in zweiter Ordnung iibereinstimmen:
Be=T¢ ro(y?) . (58)
Damit wird (53”)
~ b pre(r) A+Tr +3,6(ww) Lu (y,7) +o(y®) =0, (53"
und der Vergleich mit (52) liefert die Konsistenzbedingung
T +3,6(w) Ly (w,2) = — b 2 (8a/Dy) £(2) v T (1) +0(1%). (59)

(59) stimmt mit der entsprechenden Gleichung in der Einsteinschen Theorie iiberein, und ihre Losbarkeit
mit dem Ansatz (56) ist demnach gesichert. Man konnte hier fortfahren und, allerdings weniger eindeutig
als im Einsteinschen Fall, eine in zweiter Ordnung konsistente Theorie aufbauen; wir wollen das aber nicht
tun, weil das bisher benutzte Verfahren, das zu (56) fiihrte, physikalisch zu undurchsichtig ist; insbeson-
dere ist z. B. unklar, ob in (56) der Energie-Impulstensor des &-Feldes miterfafit wurde.

Statt dessen wollen wir in die Eichung (49) zuriickgehen, in der die linearen Feldgleichungen die Form
(18) annehmen. Das beruht auf der Uberlegung, daB fiir die Konsistenz der Skalar-Tensortheorie in zwei-
ter Ordnung die Konsistenz der durch Eichung reduzierten Theorie notwendig ist und dal}, ausgehend von
der reinen Tensorfeldtheorie (18), alle erforderlichen Rechnungen viel iibersichtlicher sind. Der wichtigste
Punkt dabei ist, dafl die Bewegungsgleichung zweiter Ordnung (23) der Skalar-Tensortheorie mit der der
reduzierten Theorie iibereinstimmt und daB, da ja Konsistenz Aquivalenz der Divergenz der Feldgleichun-
gen mit der Bewegungsgleichung bedeutet, die Divergenz der Feldgleichungen in beiden Fillen dieselbe
sein mufl. Das vereinfacht den Ubergang zur eichinvarianten Skalar-Tensortheorie nach Erreichung der
Konsistenz.

Bei der Eichung der Feldgleichungen zweiter Ordnung ist zu beachten, dafl (49) zunachst nur in linearer
Niherung sinnvoll ist. Die Invarianz von (49) gegeniiber (2) 1Bt sich durch die Zusatzbedingung (] A4, =0
erreichen. Es ist keineswegs klar, ob (49) auch in zweiter Ndherung zu einer invarianten Gleichung ge-

11 Der EinfluB der speziellen Wahl des Energie-Impulstensors auf das Verfahren wird am Ende des Kapitels erwédhnt.
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macht werden kann, denn dazu miifiten nun auch die Eichzusitze zweiter Ordnung durch eine geeignete Be-
dingung an A, zum Verschwinden gebracht werden konnen. Sicherheitshalber setzen wir an Stelle von (49)

(= E i) 5 = — (1/Dy) &%+ 0(y?) (s. Anm. 12). (60)

Unabhingig hiervon laft sich die Giiltigkeit der Eichkonvention (9) untersuchen. (9) folgt aus (49)
zusammen mit der &-Feldgleichung (46). (46) ist nur bis auf Glieder zweiter Ordnung richtig,

(20)By) &4 =92~y +o(y2), (61)
so daf} auch (9) durch
e, =t -9 + o (y?) (62)
ersetzt werden mul3.

Angesichts der unbekannten Terme o(y?) erscheint es aussichtslos, die Eichung der Theorie in zweiter
Ordnung durchfiihren zu kénnen. Den Ausweg bildet die Divergenz (53”) der Feldgleichungen, deren simt-
liche Summanden o(%?) sind. Denn wenn wir in Gliedern zweiter Ordnung (49) und (9) statt (60) und
(62) verwenden, ist der Fehler o(y3).

Wir wollen uns daher vorstellen, da8 die Gl. (53") in der Eichung (49) vorliegt. Damit (53) der Be-
wegungsgleichung (52) &dquivalent sein kann, miissen die Summanden in &"“‘*,,—0—3,.8(1”,.) Ly (y, &) mit
Hilfe der linearen Feldgleichungen die Form (1/®,) v x 7 annehmen. In der Eichung (49) haben wir in
erster Ordnung nur die v-Feldgleichungen (18), woraus wir schlieen, daf} 6/"",.+a,,£(1/,rﬂ,.) L, (y, &)
durch (49) in einen Vektor D* iibergehen, der nur aus Ausdriicken -1y aufgebaut ist. Wir haben es also
wieder mit einer reinen Tensorfeldtheorie zu tun.

Bei der Wahl von D* wollen wir uns vom Aquivalenzprinzip leiten lassen: Ausgehend von der linearen
Tensortheo.'rie (17), (18) erwarten wir, dall der Energie-Impulstensor des w-Feldes [mit der Lagrange-
Funktion L(v)] als zusitzlicher Quellterm in der zweiten Ordnung der Theorie beriicksichtigt werden
mulB. Als 7 () soll das symmetrische Landau-Lifschitz-Objekt genommen werden. Zu seiner Berechnung
miissen wir voriibergehend die pseudo-euklidischen Koordinaten mit der konstanten Metrik #,, verlassen
und uns vorstellen, dal wir die Theorie ebensogut in einem Inertialsystem mit z. B. Polarkoordinaten als
raumlichen Koordinaten hétten ansetzen konnen. Wir wéren auf diese Weise zwangsldaufig zur allgemein-
sten Formulierung einer Lorentz-invarianten Feldtheorie gelangt!4, in der alle gewohnlichen Ableitungen
durch ,kovariante® ersetzt sind und die Metrik g,, (statt 7,,) die Bedingung R,00=0 erfullt 13,

T« () laBt sich dann aus der Definition
V—gTw(y) =2 (@V :LL,(?H)__ —9, 3V i«f/_!{,(‘ﬂ),) (63)
uy guv,u
bestimmen 3. Wenn wir anschliefend wieder in pseudo-euklidische Koordinaten zuriickgehen, erhalten wir
T () = 3 oo w2 — 3O YR B — 10" Woro w0 + 1O wlo v + F wo yl + Tyl
B ot Lot s L TR S T S CE PN R ()
L R By
Uns interessiert in der Divergenz der Feldgleichungen

) 2 s 5 W L 5% . q . 0, .
T(w) = yo v* — Oy vy — v yle —w o v+ Oyl v + 9 yig v,

= —2 (’l/)g,v - % 1}"0)‘,'“) G —2 I//t; GQU’Q (65)

12 Tnsbesondere ist fraglich, ob es zuldssig ist, beim Einstein- 14 J. L. ANDERSON, Principles of Relativistic Physics, Aca-
schen Grenzfall in zweiter Ordnung die Hilbert-Eichung demic Press, New York 1967.

(w1 —3% paf ;) p=0 zu verwenden, wie WESTPFAHL!®> 15 Gemeint ist natiirlich die allgemein-kovariante Schreibweise

es tut. Besser nimmt man die bis zur zweiten Ordnung ent- im flachen Raum, d.h. mit der (inhomogenen) Lorentz-

wickelte de Donder-Bedingung. Gruppe als Invarianzgruppe. Diese Begriffe wollen wir aus

13 K. WESTPFAHL, Fortschr. Phys. 15, 309 [1967]. methodischen Griinden vermeiden. Wir schreiben §,, zur

Unterscheidung von ¢, in (130).
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[im zweiten Schritt wurde (14) eingesetzt]. Wegen (62) gilt an Stelle von (15)

Daraus folgt (5‘”*y =o(y?). (66)
vh Gemy =0 (y?) (67)
und deswegen T(p)e, = —2(vhy— 2y, t#) G +o(y?). (68)
Diesen Ausdruck nehmen wir als Ansatz fiir D* in der aus (53") durch Eichung entstehenden Gleichung
— 3y e(r) A+D +3,e(y) Ly (w,2) +o(y*) =0, (69)
und zwar mit einem Proportionalitatsfaktor d: D#=d T (y)*,. (70)
[Dies ist ein Ansatz von der Form (56)]. Zusammen mit den linearen Feldgleichungen (18) folgt
T, = got — d (16 71/ Do) (Way =% 9 ¥) T (7) = D%+ 0(y?) Gl
[vgl. (58)]. Damit lautet die Konsistenzbedingung von (69) und der Bewegungsgleichung (52)
Tery +3, 6(Wim) Lu (9, 2) = — ¥ 2487/ By) () W, T (1) +0(4). (72)

Die Gl. (72) stimmt mit der entsprechenden in der Einsteinschen Theorie iiberein % 6. Wir wissen daher,
daf sie losbar ist und kénnen die Rechnungen iibergehen. Bei unserer Wahl der Kopplungskonstante 8 72/ @,
miissen

L;V (':Ua X) = (8 7‘/¢0) (% m2 Z2 Yy ‘P"" = 11— m2 }:2 IP‘;: l/’:' - % X X.'u Yo 1/'”’

+ %Z.!t Z’M '(/): ',Ug - Z’v Ipvo X’° T/)Hu <+ 2 Z"u '*IU;U' 7/’"40 70) (73)
und d = } gesetzt werden. Diese Gemeinsamkeit der (durch Eichung) reduzierten Skalar-Tensortheorie und
der Einsteinschen liegt einerseits daran, daf} die Bewegungsgleichung, mit der die Feldgleichungen vertrig-
lich sein sollen, in beiden Fillen dieselbe ist, andererseits daran, dafl wir mit der unmittelbaren Einfiih-
rung des ,gravitierenden® Landau-Lifschitz-Tensors offenbar formal das gleiche getan haben, was bisher
im Einsteinschen Fall auf anderen Wegen erreicht worden ist. Man hétte auch von dem nach der BELINFANTE-
Methode ! symmetrisierten kanonischen Energie-Impulstensor zur Lagrange-Funktion L (1) ausgehen kon-
nen. Dieser Tensor 1af3t sich zwar berechnen, ohne voriibergehend die Minkowski-Metrik aufzugeben, fithrt
aber nur auf einem Umweg zur Konsistenz (in der Bezeichnungsweise von Barbour: a’=b"=c¢" =0, aber
d +0). Da die Einstein-Theorie in allen Rechnungen fiir © = 4 enthalten ist, gelten diese Ergebnisse ins-
besondere auch dort.

Die Feldgleichungen zweiter Ordnung

Die Einfithrung von T (y)#*, zur Erreichung der Konsistenz kann solange nur als Ansatz gelten, wie
nicht nachgewiesen ist, da} der Ausdruck aus einer Lagrange-Funktion abgeleitet werden kann. Wir wollen
diese Frage an Hand der eichinvarianten Skalar-Tensortheorie untersuchen, da dann die gefundenen Ergeb-
nisse insbesondere fiir die reduzierte Theorie gelten.

Als Ausgangspunkt dient die zur Konsistenz fithrende Divergenz der Feldgleichungen (69), die mit
(70) und d = % tibergeht in

(87/Dy) T (1) + % T(w)*,+3,e(yw) Ly (v, 1) +0(y?) =0, (74)
oder mit (68) .
(81/By) T(1), — (yhr — b yun) G2+, £(10) L (19 7) +0 (%) =0. (75)

Da die richtige Eichkonvention (60), die die Behandlung auch linearer Terme erlaubt, nicht bekannt ist,
muf} man schon an dieser Stelle in die eichinvariante Theorie zuriickgehen. Wir fragen also nach einer Glei-
chugg, die die Form einer Divergenz hat und mit (49) in (75) ibergeht. Die einfachste Moglichkeit ist,
— G durch H* [vgl. (41)] zu ersetzen:

(8a/Dy) T (1), + (Whr — 3 wor®) H” + 3, e(y,0) Lw (1, 2) +0(y?) =0. (76)

16 F. J. BELINFANTE, Physica 6, 887 [1939].
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Wir wissen wegen der Aquivalenz zur eichinvarianten Bewegungsgleichung, daf3
(87/Py) T ()" +T%+0, () Ly (w,2) +o0(y?) =0 (77)

gegeniiber der erweiterten Gruppe (2), (25) in der entsprechenden Ordnung invariant ist. Daraus folgt,
dal auch (76) diese Eigenschaft hat. Damit ist gezeigt, dal} zwei der Forderungen, die man an (76) stel-
len muf, erfiillt sind, ndmlich die Reduktion auf (75) mit (49) und Eichinvarianz. Die dritte geforderte
Eigenschaft, dal (76) Divergenz von Feldgleichungen ist, die aus einer Lagrange-Funktion folgen, wird
noch nachgewiesen.

1

Aus Griinden der Allgemeinheit mufl man in (76) zusétzlich zu (5, — % ¥,,,*) H? Ausdriicke der Form
(2 w/Dy) EF—pe5+1y2,,) E*, die wegen der &-Feldgleichungen (46) verschwinden, und

[y — 3 9 y)) s+ (1/Dy) &°1 Fi,
die bei Eichung durch (49) =0 werden, sowie Ausdriicke, die durch Kombination von (46) und (49)

zum Verschwinden gebracht werden, zulassen; dabei sollen E# und F5 Tensoren erster Ordnung sein. Da
(76) bereits die drei genannten Forderungen erfiillt, miissen die Zusatzglieder allein es ebenfalls tun. Man
kann auf diese Weise versuchen, die Zusatzglieder auszuschlielen und Aussagen iiber die Eindeutigkeit
des Verfahrens zu gewinnen. Wegen der Kompliziertheit dieser Methode wollen wir vorldufig nur den
,»Existenzbeweis® von (76) fiihren.

(76) muB in zweiter Ordnung mit (53’) iibereinstimmen. Das zwingt uns zu setzen

Gy = — (s — Fv) G2, (78)
a)’ & (y',;n') LW (q)a 5) = (l/¢0) (y)g,l’ - %lpgv,'u) (5’9’, - ngv E,:%) ¥ (79‘

Gleichung (78) fur é””’, ist genau dieselbe wie im Einsteinschen Fall, und es ist von dorther bekannt,
daf} damit G** und L(vy) (bis auf Divergenzen) eindeutig bestimmt sind ®. Wir geben G*" fiir spitere
Rechnungen an:

G = — bypa v — Fyla vt =y we — Syt g+ Byt — Tyt r et Byt
P — Py + 3 eyt — g+ Ryt — Ly gl
e — L pap + Ey t h Rt — Tyl =L vy + Ly gt (80)
} e yls+ e wRa wd + B o w8+ Ay wlas — e iy + E 0yl vl

= I e i — A Y e — TP G T — I Pt e + B S — B g,

— EYE (=R =y YR T T YE — 1 e ).
Es bleibt die Aufgabe, Ly (v, &) zu finden. Wenn wir uns auf hochstens zweite Ableitungen in den Feld-
gleichungen beschranken, kommen fiir L (v, §) wegen (79) nur Skalare in Frage, die quadratisch in
oder seinen ersten Ableitungen und linear in & (oder &7) sind; es gibt also die drei Typen

+ + +

v,0 &

“P,’: w:,r ;c,r, wﬁ,o vy S und "Pﬁ w: E .
Die letzte Klasse kann man ausschlieen, da sie iiberhaupt keine Terme, wie sie in (79) gesucht sind, lie-
fert. Der allgemeinste Ansatz, den man aus Skalaren vom ersten Typ bilden kann, ist

6
Ly (v.8) = Sk (81)

mit konstanten e; und

o £ N
E1 = wz ’Wa,r ;’1 s E2 == w;w W'w’1 5,1’ ? E3 =Yq '/'uz." E’t 3
wy ou & & &
E4=w/w Yz & E5=wll1 %” Gy Es=‘/’m Ué: S (82)

Die moglichen Kombinationen des zweiten Typs sind

v £ & »,0 g
E7 = ’l/'yux-,a .'/’,m g ; 9 ES = U)uv,u "/’Y‘“U’; ': E] Eg = UJZ,D' 1/"» E 9 E10 = '/it,cr ‘,/}VD,V S 9 E11 = w.uu,u 1/":7,11 E . (83)
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Die E;, (k=1,...,11) sind jedoch nicht Lagrange-unabhiingig: Man kann ein Ej bis auf eine Divergenz
als Linearkombination der tbrigen darstellen; z. B. ist £y

14 1= 1’ _— '/ VUG C.‘ :‘ a(;(q'/w ,’)Uyo,r _ y,z q’,‘u)'.r) ES + & £ u(q':u l11/,14#) o '1 s 3 a [ (l/' ]/,110.1‘ . l[,/,z l/,'-I“"V)]
=Eg+E; — E;— O, [&(w,y o —yiywes)] . (84)
Wir lassen deswegen E,; in L5 (1, &) weg:
10
LVZ‘ (‘#'7 S) = Z €; LI . (85)

=7

Fiir die spiitere Verwendung in den Feldgleichungen geben wir die Eulerschen Ableitungen von L (v, &)
+L5 (y, &) an,

e(W) (LY (9, 8) + L3 (1, 8)] = —eyn” YA ES —ea i £ + (e3— e5— eg0) N Ypr 2 &
,#J. (6-—63—6 0) w:,# F1 % ( _83_610) w;,vf.u _e3wa L‘.m'+ (64—6 *288) 1l,uv ¥ 4
+ ] (64 gy — 2 68) 'U)”‘ et + 3 ( o 64) wua." E.v + ((’G —84) 1/,10 ’:.y: o T12 ( ey + eﬁ) ,,//,ua ;:’
é E’4+€6) q)ujt,ll_e ,y}u: wutgqt_ze7y)/1 65 287”"““’;,0‘ (86)

&

YO,1 0,0 & 2,0 & ) 21400 oy =
—eg Y7 E—eg WGl —2eqn T ygs & —2eqn Y’ £ —eqg N YTy, € —eqo " £

Zunichst aber brauchen wir deren Divergenz:

3, et (L (1, ) +L3 (1, )] = — (eg + ) WEED + (63— ey — 5= e10) e 2 7

1 ey 1 s N
T a(—e3tes—deg—3ey) wat &+ 2 (—2e —ezt+e5—eqq) ¥ &y

+ 3(—e3+e5—4eg—eyq) 1;'§‘Z E'“+ 2(—Beg+es—deg—ey) Wi &l

t d(eg—eg—4des—2e) Wit ET+ (—eg—2e7— ) Wi &S (87)

T3 (2egtes—2e5—eg—deg —2eq) YIRET T 3 (eg—2e5—e5—2¢e5) YL

+ 3 (—944’66*497—238)’#"0': ir + §(—2ey—ey+eg) Y, &

T3 (—egteg—2e) Yo" — 3(2est+es+eg) Yo Es — 3 (eg+2e5+e6) yo G
(2 e;4eg) Wor § — (€s+€10) Vo & — (2eq+eg9) Yo E.

Wir wollen versuchen, durch Vergleich mit (79) die Konstanten ¢; zu bestimmen. Gleichsetzen der Koeffi-
zienten der vier Terme, die in (79) auftreten, ergibt

eg—2e,—eg=(1/Dy), eg—2e5—eg—2e3— — (1/Dy)
2e;—eg+es—ejy=(1/Dy), —2ey—eg+eg= — (2/Dy). (88)

Alle tibrigen Klammern in (87) sollten =0 sein. Auf jeden Fall wollen wir das Verschwinden der sechs
Terme mit dritten Ableitungen fordern, da O, e(v,,) [Li(y, &) + (L3 (v, &)] Bestandteil einer physikali-
schen, namlich zur Bewegungsgleichung dquivalenten, Gleichung ist. Diese Forderung liefert die sechs Be-
dingungen

e;+e; =0,2ey+es+eg=0,e,+2e5+e5 =0, 2e;4+e3 =0, eg+eg =0, 2eg+e9 =0. (89)

Die Losung der zehn Gleichungen (88), (89) enthalt noch eine freie Konstante, da nur neun von ihnen

unabhéngig sind:

es = —e;+ (1/2Dy), e; = —e;, e =2¢e;, e5s = —e;+ (1/2 D), (90)
— — (1/Dy) e; = —e;— (1[4 Dy), eg =2e;+ (1/2Dy), eq =e;+ (1/4Dy), eyg = —2¢;— (1/2 Dy)

Die Koeffizienten der bis jetzt nicht berticksichtigten Terme in (87) lassen sich jedoch fiir keine Wahl von
e, gleichzeitig zum Verschwinden bringen. Das bedeutet, daf es keine Lagrange-Funktion L (v, &) gibt,
die genau (79) erfullt. Die bisher getroffenen Annahmen sind also zu eng gefafit. Da wir die mit der
Bewegungsgleichung vertrdagliche Divergenz der Feldgleichungen in der Form (76) behalten wollen, bleibt
nur die Moglichkeit, den Ansatz (50") fiir L* zu erweitern. Statt mit einem allgemeineren Ansatz von vorn
anzufangen — was rechnerisch kaum durchfithrbar ist —, wollen wir die notigen Erweiterungen konstruk-
tiv aus der Forderung gewinnen, die bisherigen Widerspriiche zu beseitigen.
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Der einzige Ausweg aus der genannten Schwierigkeit — daBl Ly (v, &) die Terme in (79) nur in Ver-
bindung mit anderen liefert, die die Konsistenz zerstoren —, besteht darin, weitere Wechselwirkungsglie-
der hinzuzufiigen, die infolge der Feldgleichungen erster Ordnung die stérenden Glieder gerade kompen-
sieren. Um festzustellen, ob das moglich ist, wird (90) in (87) eingesetzt. Man erhalt [mit Ly (v, &)
=Ly (p, &) + L3 (w, 8]

O, e(yuw) Ly(w, &) = 3 (2e.+ (1/Dy)) &b &+ (1/2 Dy) ya" &) — ey wiy &
+ 3 2er+ (1/Dy)) wis &+ (1/ D) y4” &7 — % (2ey+ (1/Dy)) wit'ér
— (1/2 Dy) we" &7 — 3 (2 ey + (1/Dy) )y & — (1] Do) o0, &5 + ey o, &4 (91)
=21+ (1/Dg)) G &, + (1/2 Dy) w&* &5 + (1/2 Dy) witén
+ (1/Dg) v &7 — (1/2 Dy) ye* &7 — (1/Dy) wro &y — (1/2 By) o, &

[im letzten Schritt wurde die Definition (33) von G** verwendet]. Die unerwiinschten Terme in (91) sind
(2ei+ (1/Dy)) G &, + (1/2 By) wab &+ — (1/2 D) y'oy & (92)

Der erste Summand 146t sich offenbar mit Hilfe der Feldgleichungen (41) umschreiben, die beiden anderen
enthalten nach Zusammenfassung gerade die rechte Seite der &-Feldgleichung (46). Daher gilt

1 1
D] uy Y S ve, C.u
("‘el+¢)(’ Z(D Yo'v & 2@ Y e S
 2Pje +1 2Pye +1
- (1)02 (1) 2

w 5 ,Eu +0(w3) (93)

8a&, T (x) +
Um diese Glieder zu kompensieren, muf} man (50”) erweitern zu

1 g 8x ,
=L(y) - (b = £ 5" (p: Ea(ud? —pd®) 4 A4 >, Vo T (7)
0

o(y?) o(y?) o(y?) o(y) o(y?) (94)
+ Ly (1) + L) + Ly (9, &) +Ly(y, & 7) + L3 (,8)
o(y®)  o(y?) o(y?) o(y?) o(y?)
wobei die beiden hinzugekommenen Wechselwirkungs-Lagrange-Funktionen die Beziehungen
2@, e, +1 .
3, e(W) Lulvu &, 0) = — 55— 87, T (1), (95)
0
2Pye +1 D) (96)

a,,S(le,,) La(l/',;‘:) == @2 &, (&mr —pr ‘S’%) X &n &y
0 0

[bis auf o(y3)] erfiillen miissen. Unter der Voraussetzung, daB Ly (v, &, ) und L3 (v, &) existieren, be-
schreibt L**, unabhingig von e, 17, eine in zweiter Ordnung konsistente Erweiterung der Skalar-Tensor-
theorie (47). Denn nach Konstruktion ist

0=3,e(y,) L** = (87/By) T(2)", + G,
+ (1/ Do) (Whr — % o) (6 =2 £4) + 3, 8(w,) L (. 2) +0(v®)  (97)

dquivalent zur Bewegungsgleichung (52), die sich beim Ubergang zu L** in zweiter Ordnung nicht ge-
andert hat.

Zur Untersuchung von (95) iiberlegen wir uns zunachst €(v,,) Ly (y, &, 7). Man findet sofort die Losung

2D, e, +1
e(ll)uv) Lw('{"s '57 Z) = =1 '&3 12 8n§T‘uv(x)- (98)
0

17 ¢, kann erst im nachsten Kapitel mit Hilfe von Invarianzforderungen festgelegt werden.
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Denn daraus folgt wegen T (%), =o(v),

2Pge;+1, .
Brelyw) Ln(wibs2) = = = 57 82, T (1) +0(1).

Ahnlich einfach 1dBt sich £(v,,) L (v, &) hinschreiben, da im ersten Summanden von (96) (&% —u« & 7))
divergenzfrei ist und der zweite Summand 2 &+ & enthalt, d. i. die Divergenz des (kanonischen) Energie-
Impulstensor des &-Feldes.

Man erhalt

2D, e+ 1 ! L P .
e(Yw) L3 (v, &) = — ww"d;;* E(Gm —m £7) — (0 Dg?) (6 & — F &, §4). (99)
0

Weil in den rechten Seiten von (98), (99) das Tensorfeld nicht auftritt, ist die Existenz der Lagrange-
Funktionen Ly (v, &, x) und L3 (v, &) evident (Multiplikation mit v,, und Verjiingung iiber u und »).

Die bisher gestellten Forderungen — Konsistenz, Existenz einer Lagrange-Funktion — haben aber nicht
ausgereicht, die Konstante e; in L** festzulegen. Wir miissen daher noch die Feldgleichungen zweiter Ord-
nung und ihre Invarianzeigenschaften untersuchen. Wenn man (86) mit (90) ausrechnet und zusammen
mit (98), (99) in a(w,w) L** =0 einsetzt, erhilt man

1

_ G;tv + G;w = (L,MV nyv 5;%) —ey 7]!11' yjﬁ S&vg -+ (91 o ,2,?> w;w Evg + 2 ey 77;(1' ,(1/"91,0 E,r
0

1 Ly Y. u &
+<e‘+ 20 )1”“ “’L(G‘J” 20, ) " 6t ey YEE — ey YA £ — ey Y
0

—le+ > PO & — (e1+ )w"“' g —(el— - )w & — (e - )w"”&a”
129, ’ 29, ’ 29, 129,

1 uy 0,0t 1 uv,o . ]' 0,0 = (100)
_’_(81*2@0)77 L §,m+<2el+2(b0>y' E,a_ (2el+2d))77 %w
1 & ur 8 o uy ¢ 2 ¢0 el + 1 & Tur
+2 (2el+ 24)0) :G e VED: T(Z) +8(1/);w) Lw (w, X) = 7@;2 SJ;T (Z)
D
_2Ppe,+1 E(Em g ) @ (Er g Fyo £,860 =0

D2

mit Ly (v, 7) asu (73). Nach Zusammenfassen einiger Glieder mit Hilfe von (41) haben wir schlieBlich
n | 1 & ) 2
—Gw a3 Gw N (I)o ( Eouy nui 51) —e 7]tu Wi 5 -+ (31 9 q)o) w,ln' S’a 1.9 e 77ul '/'gt,g &

1 ;
:‘” S:V + (91 u 3 ¢_ E “ e rq)o‘ Euv e 1/’)"?’1 ,;,1 —gq w:ﬂ : 5%

+
P T
o
+
N
-

o |
N
.e

(101)

1
e . _— vo &l L UV 91,0T yuv,o &
(61 2450) L (el 2450)’7 W Eor (261 29, )/ o

. 2e . 2e, . 73 8n
) n#v we o E 4 b 1 8 & T (Z) S P, QS 4_(; uy 7]11)' :,;-) (D - Tur (X)
0 0

’ ()] e [ %
+e(y) Lw () — g5 (8487 Ty &,8Y) +o(y?) =
0

als Feldgleichungen zweiter Ordnung.
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Eichinvarianz in zweiter Ordnung und die exakte Theorie

Ausgangspunkt unserer Behandlung der Skalar-Tensortheorie waren die Feldgleichungen (18), die v,
nur bis auf 4,,+4,, mit [JA4,=0 bestimmen. Wir forderten daher diese Freiheit von 1,, auch in der
Bewegungsgleichung und fanden die erweiterte Gruppe (2), (25). Hier, in der zweiten Ordnung der Theo-
rie, gehen wir den Weg in umgekehrter Richtung: Die Bewegungsgleichung zweiter Ordnung blieb unge-
dndert und gestattet die Gruppe (2), (25). Wir erwarten daher die gleichen Invarianzeigenschaften bei
den Feldgleichungen zweiter Ordnung (101). Wir miissen allerdings damit rechnen, da} (2) nur die erste
Naherung der wirklichen Eichtransformation ist, die auch hohere Ordnungen enthdlt [vgl. (60), (62)].
Bisher bestand kein Anlaf} zu dieser Frage, da die hoheren Terme von if,, in den linearen Feldgleichun-
gen und in der Bewegungsgleichung keine zu beriicksichtigenden Beitrége liefern. Auch das Transformations-
verhalten von & wird in (101) wesentlich. Fiir infinitesimale Eichtransformationen konnen wir uns auf li-
neare Glieder in A beschrianken und setzen an

‘Qpll)' - @lli’ = 1}’/1)’ + Au,l’ + AI',H + a w#o ‘/19"” + a w"g Ag’ﬂ + b w#ﬂ AV)D + b wvo A.une
teyg Ay +evg 4, +dy,, A2, (102)
E—>E=E+f(5,4),
9,—~3,=9,-4",9,.
Aus (25) iibernehmen wir L—>71=2+o0(y?). (103)

Die Konstanten in (102) sind mit Hilfe der Invarianzforderung von (101) zu bestimmen. Dazu betrach-
ten wir (101) speziell in vacuo und setzen zur Abkiirzung

1 I o LM £y
Kw — @0 (t”"’—n"’&ﬁ) _‘3177‘”1/’%50 +(‘31“ 5(15 )lpﬂvg +231 N P, & +( 2(1) )ual &

1
uo, &y
‘at oy 2<1>0>”’ s (104)
2

d

D

1 ( 1 1 1

— vo, &,u __ —— vo &M e uy 0,0t &

(“*‘@JW Al z@)w o= (1 2@)” ”*(“ 2¢J" A
1 1 » 2e

+(2et g ) vortam (2ot g ) vt s - g

w

¢2

)I/’:’v‘S"u‘*“ﬁ1/’35"""—611/#’"5’—6 Yot &t <e1+
0

(87— hy 264,

Die Vakuum-Feldgleichungen werden damit — G+ G+ K =0, (105)

Wir wenden (102) zunichst auf K#* an und erhalten fiir die Differenz des transformierten und untrans-
formierten K*

1
2@

L 1
+ {2 e+ & ) 17.'0' ALZ $7t+2 e Aa’a E,yv_ (2 e+ zi{) A,”” E’r
: 0

1 1
B, U0 & e, ou Ly - 0 E.u
" Aas —{—(61—{—2@0)/10 (91+2¢0> PES

o) A&

)Auv5 +(€1 )Avu}:”

1
29,

1 (106)
2P,
oy = 1, _) Av,afv#_(e 4 — ,_) Au,vé:,#_){_(ze A ,L) uv /10‘1 c
17 29, VTR, ST ST T O
1
D

1 1
)A#,Vof.a_i_ (el‘l‘ 2@ )Av HOE <2cl+ 6;) T]U.V 0,00;0
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Wenn (1A05) unter (102) invariant sein soll, miissen die Terme in (106) durch die Eichzusitze von
— G* + G*” kompensiert werden, was nur infolge der Feldgleichungen erster Ordnung geschehen kann, da
in —Gw 4+ Cm— (-G* + GA’“') das &-Feld nicht auftritt.

Mit diesen Uberlegungen laBt sich auch e, bestimmen: Weil die Feldgleichungen erster Ordnung erste
Ableitungen von & nicht enthalten, mul} das Verschwinden der Koeffizienten aller Terme mit &7, & gefor-
dert werden. ,,Glucklicherweise“ ist das fur alle Koeffizienten gleichzeitig moglich, und wir erhalten

—(1/2 D) (107)
als Folge der Invarianzforderung.
Mit (107) wird (106)
Riv Ko = (1/By) (# — " [)
T (U By) (> Ayd EG— Aww E5— A Es — A2 g 4 Mmoo &5 4 Ao E8). (108)

Zur Transformation von G* braucht man die K onstanten a, b, ¢, d in (102) noch nicht zu kennen, da
G von zweiter Ordnung ist. Ausgehend von (80) findet man

6;4)’ o E;uv =—1 waa Aau % Iplé-g Aﬂ,v Ay, ,q)I“"U - l ‘/,‘; lpw' 7 You w Ao _1_ Y, n faor _% y’gu.r Aason
- 1/17,'“ 1/’}9’ _ %_ ‘,1%;11' oy g /1 v QW‘ 4 % wga 11(1 “4 IP&U /111 g 1 wg; ‘1/:’ o4+ 3 1 w#v” Aﬂ,g
Syho AP + § A, w""’ +3 A,” u'“‘” + 3 A, p*0h + oyt A%+ Fyph AP0+ dypt AP
=y *'l,UﬂUht/ ru_'_ Ay, '0#+ A l‘wm + ,uy)l’(’)' ’7m wa,ga 41 0 m 1/0:0 11 (109)
—y w Ars : y,no o — 2 7711) 14}1,06 y)na b =B ,r];l y‘,ga’g A2 + nuv Wou,o Aaseo I n'uv ‘/1 " wg % _+_ 1 nm /1%‘; l}’)g‘y
= % Av,ﬂ wuﬂg — %Av,ﬂ wzwﬁ_’_ %A”’ﬁ ‘Pﬂo’g‘F % /1)"6 Wﬁa"; o %Ay,y W, + 3 L Agru /,gg_ 1 Aqus wav,g
¥ PER, 5 4 . bd L

A!‘-a y)g’w' + —%—A#’a waa’g + %A.“ya y)"avg — T12_ /lu v Vyon. l A wgyz = % Iiu.a Tpﬂ"’g + ‘L“a quu‘“’
‘1%(1 wlw,; — % A/iu'a 1,‘1"6"; = % ,'7,uv A.u,a u)ga,go . nlll 1 1/)9 o

Nachdem K —K* und G» — G festliegen, kann man aus der Forderung — G + G + K =0 [vgl.
(105)] die Werte von a, b, ¢, d bestimmen. Das Ergebnis ist

a= —1, b=c=d=0. (110)

Mit (110) reduziert sich — G + G auf
—Gw 1 G = Fyld Ave qgg AP 4 A S+ 3 A, St g A% 4§ i A% 4 S, Amen
+ %4 v+ Ayt + 1 A,y — %w"'é Aor— w:,a Awsr _ ] “é:, Abe
— by AP+ é Who AP — § Ar oy — § Ay g7 — 3 A7y — hygs A= (111)
w;,«:; Ao Yyt APT+ Jyh g Aber % Am vy —1 A;,.ﬁ wor — & A, 4y
+ 0 PG ea ABE+ NP Yoo A% g AV B, F ATy, O, — P g A0
— P Yoo A — e AV wGs — Ay o yR7

B po=

Zusammen mit (109) 1aBt sich das in eine einfache Form bringen:
— (GP —G") + G — Gw — —Gub Ay — G A%, +G* 4,°. (112)
Andererseits kann man unter Benutzung von [vgl. (41)]
(1/DBy) (&# — = ) = H 4 G (113)
(108) umschreiben zu
Rur_ Ko — (1) @y) (o —qp ) + (Ho 1 Gob) drog 4 (H= 4 G™) Ao — (H +Gw) A,%. (114)
Addition von (112) und (114) ergibt

- (-é_m' - G.uv) + Eln- o ayv + I(Tu- . K/n' - _E;uv + &/u' +I—<;u'
— (1/@0) (j,.ur . n‘uv f»)’) 53 Huﬂ 41)-.1_} i H> ‘111." _ Hw 4'1/1,0 X (115)
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Wenn in (102) f(&,4)=0 (116)
gesetzt wird, verschwindet (115) als Folge der Vakuum-Feldgleichungen erster Ordnung
Hw=0. (41"

Man iiberzeugt sich leicht, dal die Feldgleichungen zweiter Ordnung (101) auch in Anwesenheit von
Materie eichinvariant gegeniiber der Gruppe (102), (103) sind.

Prinzipiell ist es natiirlich moglich, nun noch die &-Feldgleichung zweiter Ordnung anzugeben und da-
nach zur dritten Ordnung der Theorie uiberzugehen. Man wiirde die aus L** in (94) folgende Bewegungs-
gleichung dritter Ordnung anschreiben und wegen ihrer Inkonsistenz mit den Feldgleichungen zweiter Ord-
nung (101) auf Feldgleichungen dritter Ordnung gefithrt werden. Die Eichgruppe (102), (103) wiirde
sich allerdings dabei nicht dndern. Um das zu erkennen, braucht man aber die Rechnungen nicht explizit
durchzufiihren, vielmehr wollen wir versuchen, die gefundene Eichgruppe, oder eine Untergruppe von ihr,
als Automorphismengruppe einer geometrischen Struktur zu interpretieren, um auf diese Weise nach Mog-
lichkeit eine iibersichtlichere Formulierung der Theorie zu erhalten.

Zunachst mufl man die Struktur der abstrakten Gruppe ermitteln, deren ,lineare Darstellung® (102) ist.

Vir = Py =V + Ay + 4, — 9, A%, —p,, 4, (102")
ist eine infinitesimale Transformationsgruppe im Funktionenraum der v, (2). Zur Vereinfachung betrach-
ten wir v, (z) und 4,(x) an einem festen Punkt z,; dadurch wird (102") zu einer Transformations-
gruppe im R0 der vy, (2;). Um die Elemente der zugehorigen Lie-Algebra zu berechnen, nehmen wir an,
daB A4,(x) (i=1,0) Tangentenvektoren der abstrakten Gruppe sind. Dann sind

Yir = P (A) =W+ *,/1/4.1' ot + /,l'v.u 0 —y,, /_19’1/ ot -y, /,19’/4 ot (117)
2 ? 7 7 2
fiir infinitesimale 0t einparametrige Untergruppen von (102") und daher
A, (4;1)
P (v, él) =det 38, ,” +/L, Wuo "y = Yo }4"’,‘ (118)

(i=1,0) Elemente der Lie-Algebra der Vektorfelder von (102"). Bekanntlich 18 jst der Kommutator
zweier Vektorfelder gegeben durch

oP,, (y, A) P, (v, /11)
P(y, A A)] = —a—— P, A) — —5—— , A). (119)
[ (w = )aP(W’ 1)]uv awaﬁ uﬂ(W: 1) alpag Puﬂ(w 0)
Wenn man (119) bis zur zweiten Ordnung ausrechnet, erhélt man
[P("‘IUQ A) ] P(w’ A) ]I“l’ = = Ag’?’ Au,o - Ag,l‘ AV:Q + AQ’V AM;D +A9,I‘ AV,O . (120)
0 1 0o 1 0 1 10 1 0

Da die P,, eine Lie-Algebra bilden sollen, muf} gelten
[P(IP9€1),P(W’ fl)]uv=P/4v(W7 [{)19111])9 (121)
wobei [A, A] der Kommutator der Lie-Algebra der abstrakten Gruppe ist, die gemaB (102") als Trans-
0 1

formationsgruppe im Raum der v, dargestellt ist.

P, (y, [4, A]) bedeutet entsprechend der Definition (118)
0 1
P, (y,[4,4]) =[4,4],,+[4,4],,. +o(y®). (122)
0 1 0 1 0 1

Zum Vergleich mit (122) formen wir (120) um:
[P (v, /01) 2 P (y, 1/1) T
= (Au,o AQ - Au,g AQ) R =t (Av,g AQ - Av,g AQ) N7 += Ag (Au,o:' + Av,ou) . AQ (Au,or + Ar,o/t) . (123)
0 1 1 0 0 1 1 0 0 i 1 1 0 0

18 L. S. PONTRJAGIN, Topologische Gruppen, Leipzig 1958.
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Man erkennt, dafl (122) und (123) nur vertraglich sind, wenn
AL’ (‘/1;4.,(»' + Al',ou) - ‘/19 (Au.(w + A—v,g;z) . O' (124')
0 1 1 10 0

Nur in diesem Fall bilden die P,, eine Lie-Algebra und die infinitesimale Gruppe (102") 148t sich zu einer
lokalen Lieschen Transformationsgruppe fortsetzen. Wenn andererseits (124) erfillt ist, folgt

[/01, /11]#:61/4,0 /119’—‘/11;4,0 ‘619; (125)

die /1 sind also Vektorfelder. (125) bedeutet, dal} die ,,abstrakte Gruppe ebenfalls eine Transformations-

1
gruppe ist, und zwar die Gruppe der allgemeinen Koordinatentransformationen

ot — Tt ="+ A", (126)
(124) gilt insbesondere, wenn an der Stelle z, (s. o.)
A2 (zy) =0 (i=1,0). (127)

Offensichtlich liegt die Diskrepanz von (122) und (123) daran, da} nach Voraussetzung alle Felder fiir
festes Argument z, betrachtet werden sollen, wihrend in Wirklichkeit in (102") das Argument von v,
entsprechend (126) mittransformiert wird 1%:

’l]U/LV (x) = "I’;u(i) = l11/'111'(‘7:) + A,u,v(x) + Ar,u(x) - Il‘y/tg(x) ‘/19.'1'(2:) - 1;“vg (I) Ae’u (x) ) (128)
d. i. fiir infinitesimale A
1}’,w(x) - l});ur (I) = '/'u)'(x) + */l_uw(x) + A:'.u (I)
- lI"/to(x) 119’,, (IE) —"l/)'ro (.’L') AQ,M(Z) —1/«";”,9 (IL‘) 119(x) . (128’)
Der Spezialfall (127) wird durch (102") richtig beschrieben. Auch im allgemeinen Fall A?(z,) +0 kann
man, ausgehend von (128"), mit dem oben angegebenen Verfahren zeigen, daB die A Vektorfelder sind.

2
Nachdem die Struktur der Eichgruppe bekannt ist, liegt die gesuchte geometrische Interpretation der Theo-
rie nahe: In der Lie-Algebra der Vektorfelder A ist die Menge der Killing-Vektorfelder als Unteralgebra

enthalten 2°; die von dieser Unteralgebra erzeugte Gruppe ist die Isometriegruppe des Raumes ?!. Da, wie
wir sahen, mit den Eichtransformationen (102) eine Koordinatentransformation (126) verbunden ist, muf}
in den invarianten Feldgleichungen die Metrik des Raumes bereits auftreten. Als einzig in Frage kom-
mende GroBe mull v, mit dem Fundamentaltensor zusammenhidngen. Wir setzen daher die Isometrie-
gruppe als Symmetriegruppe von 1, an, die gegeben ist durch

O =Yoo — Wpow = A+ Ay = Wi 4%, — 0 A% — ), 42=0. (129)
Offenbar sind (129) nach der Substitution
Gy = Nur = Wy (130)
die Killing-Gleichungen der Metrik g, :
O = Gup A%, + G A% + G0 A= —dg,,=0. (131)
Durch Transformation z. B. des Ausdrucks g,, & &” gemal} (102) verifiziert man, daf} g,, der Fundamental-
tensor unserer Theorie ist.

Wenn man die Ersetzung (130) in den Feldgleichungen (101), (46) und in der Bewegungsgleichung
(52) vornimmt und

D=P,+¢ (132)
19 Vgl. auch 3, — 3,=0,— A", 3, . 2t . P. EiseNHART, Continuous Groups of Transformations,
20 R. HErRMANN, Differential Geometry and the Calculus of Dover Publications, New York 1961.

Variations, Academic Press, New York 1968.
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1,2.

setzt, erhalt man in der jeweiligen Ordnung die Gleichungen der Jordan-Brans-Dicke-Theorie

— — 8:
V=g(Re—3goR) = V=g o T

— —1
4 V __g @2 (Q’)._u (p,v o % g'zu' (I),l @,1) _ V o g q; (dj,lu;v o g‘uv (p,}';l) . (133)
2w w
= Do — & b, D*+R=0, (134)
Tw3,=0 (135)

mit dem Wirkungsintegral

W S((DR+ 167 Ly—w g‘;”f) V—g diz. Gl

Dabei ist zu beachten, dal wegen (130) und g,, 2=02
g.uv = n‘uv A u)/w + ,ll,le‘ ,ll)rg +o (1/}3) (137)

gesetzt werden muf}. Die behandelte Lorentz-invariante Skalar-Tensortheorie ist also die Entwicklung der
J.-B.-D.-Theorie nach v,, =%,, — ¢,, im Minkowski-Raum.

Eindeutigkeit

Bisher ist auf Eindeutigkeitsaussagen ausdriicklich verzichtet worden, da die erforderlichen Untersu-
chungen, besonders in der zweiten Ordnung, sehr kompliziert waren. Man wird deswegen bestrebt sein,
die J.-B.-D.-Theorie nicht erst an Hand der Feldgleichungen zweiter Ordnung, sondern schon wesentlich
frither zu identifizieren.

In Zusammenhang mit der Bewegungsgleichung (23) hatten wir die Eichgruppe (25) gefunden, nach
der sich x,, wie

Ko™ Z,u =Xu— ‘liy’u y (138)

transformiert. Man kann versuchen, dhnlich wie bei (102"), die Struktur der infinitesimalen Gruppe (138)
zu bestimmen. Dazu betrachten wir wieder x,(z) und A, (x) bei festem Argument z, und erhalten als
Definitionsbereich der Transformationen den R* der y ,(x,). Mit den Tangentenvektoren A, (i=1, 0)
erhdlt man zwei einparametrige Untergruppen von (138) in der Form ¢

L™ i,u =X~ ‘,1,"/1 Lo ot (139)
und deren infinitesimale Erzeugende
di.,u (‘/1)
Pult ) =t —g 5o =~ At (140)

Damit 1at sich der Kommutator der Vektorfelder
P, (x, A) AP, (y, A)

P(,A),P( A)]u=—n— " Po(zy A) — —a— P,(1, 4 141
0P Gt P Y I == Pl == Bl ) (141)
explizit angeben
[P(Xv ‘/1)7P(X’ /1)]/t: (‘/1V’u A/l”yr_ll";“ ‘/1‘7’1') Lo (142)
0 1 0 1 1 0

Das Lie-Produkt (142) muB sich schreiben lassen als
[P(X’ ‘1)7 P(X? A) ]u = P,u(x’ [/1’ ‘1]) el [‘/13 ‘/1]"7;4 Lo (14’3)
0 1 0 1 0 1
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Das zwingt uns nach Umformung von (142),
[P(Z~ 41) ’ P(x’ A) ] = (‘/1051' Al' i -/10’;' Av) N Z.n i (Av ‘/107)';4 . 4"1” 11071’;4) 7..0 (14'4')
0 1 0o 1 1 0 0 1 10

zu der Annahme
A Ao, — A A%, =0. (145)
0 1 10
Wenn (145) gilt — was insbesondere fiir A¢(x,) =0 [vgl. (127)] der Fall ist —, folgt aus (143) und
(144) ¥
[A4, A]° = A%, A — A%, A (146)
0 1 0 1 10

[vgl. (125)]; die <1 sind dann Vektorfelder der Gruppe der Koordinatentransformationen (126) und ent-

sprechend hat man an Stelle von (138) genauer

2u(@) = Lu(®) = 1. (2) = 47,(2) 2,5(2), (147)
oder nach Entwicklung von %, (z)
1 (2) = 2 (@) = 2,4(2) = 20 (2) A4 (2) = e (2) A2(2). (148)
Wegen des Auftretens von x,, in (148) mufl man bei unserem Verfahren die Transformationsformel
Toro = Zoua = (lor 42 .5 = (g 42) (149)

hinzunehmen und erhélt entsprechend die vierzehnkomponentigen infinitesimalen Erzeugenden P’(y, A)
1

der einparametrigen Untergruppen von (148), (149); die 4+ 10 Komponenten von P’(y, A) sind ge-

geben durch

/ dy ()
Pll (7n /Ll) =def d‘éti = =X /il"’.n — L.uo ‘/}07 (150)
bzw. ,
, dy uo (A)
le (Zs Ai) = def - d ot - = —Xwo {11‘.u — X ‘4)‘.’/10 — X.ueo Ag — Xue "_/10'0 . (151)
Damit lassen sich die ersten vier Komponenten des Kommutators
OPu(1: ) ELAPY
‘P’ 7A 9P’ 34'1 w= A 7P; ,A A= Pt; 9A
[P 4, P AV = 5~ Paln ) + 5, " Pl (2, )
3P, (1, 4) 3Pu(z, 4) (152)
o - - ’ 41 o N ’ P
3 i Pa(}'y ) ax’a Paﬁ (% 1)

bestimmen zu
[P, (Z’ ‘/1) 9 P' (X$ 4/1) ] " = ‘4v’u ‘/1“1' Z.t e ‘/1)”;4 111.»’ Z‘r + At Ay’/u Z,v + At ‘1"[’1 Z,ug i ‘/1t A;’,l” Z.r - ‘1t 110.1 X,uo N
0 1 0 1 1 0 0 1 0 1 1 0 1 0
(153)

(153) kann man zusammenfassen zu

[P’ (2, 4)s P’ (2, A) 1 u=Pu (1, [4, 4]) = — 2,14, 41", — g.40[4, A]? (154)
0 1 0 1 01 0 1

mit [ A, A]” aus (146). Dies Ergebnis zeigt, daB (148) und (128) lineare Darstellungen derselben Gruppe
01

(126) sind, im ersten Fall im Raum der y,, im zweiten Fall in dem der v,,. Die einzelnen Eichtransfor-
mationen entsprechen den jeweiligen Tensortransformationsgesetzen einer im Riemannschen Raum kovariant
formulierten Theorie, und zwar nicht nur in zweiter Naherung, sondern exakt.
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Falls die Feldgleichungen zweiter Ordnung (101) und deren Eichgruppe (102), (103) schon bekannt
sind, 14Bt sich daher folgendes aussagen: Wenn man das — nach der zweiten Ordnung abgebrochene —
Verfahren der schrittweisen Behebung der Inkonsistenz unter Beibehaltung der Eichgruppe fortsetzt, erhalt
man genau die nichsten Ordnungen der Entwicklung der J.-B.-D.-Theorie nach Potenzen von .

Wir wollen jetzt ein dhnliches Resultat ohne Kenntnis der zweiten Ordnung der Theorie gewinnen: Mit
Hilfe der Bewegungsgleichung (24) war es moglich, die Struktur der Eichgruppe von y, zu bestimmen.
Man kann dann ohne Benutzung der Feldgleichungen zweiter Ordnung beweisen 22, daf} die vollstindige
Eichgruppe von v, dieselbe Struktur haben muf}; das 1aBt sich unter Verwendung eines physikalischen Ar-
guments plausibel machen: (23) ist die Gleichung einer geodéatischen Bewegung im Riemannschen Raum
mit der Metrik g, = 9,, — Y., 2, die sich auch in der Form 7", = 0 schreiben ld3t. Die Forderung der Kon-
sistenz von Bewegungs- und Feldgleichungen bedeutet, dal 7., =0 aus den Feldgleichungen mit Hilfe
von Identitdten folgt, die sich aus Invarianzeigenschaften des Wirkungsintegrals gemafl dem Noetherschen
Theorem ergeben. Man weifl aber 24, da} hierfiir als Invarianzgruppe nur die Gruppe der Koordinaten-
transformationen in Frage kommt; daraus ergibt sich wieder, daf} die Strukturen der Eichgruppen von vy,
und yx, ubereinstimmen.

Aus der Kenntnis der Struktur 1a6t sich eine Eichgruppe zweiter Ordnung von v, leicht angeben [z. B.
(102)]. Dieses wichtige Ergebnis, daB bereits die Bewegungsgleichung (24) die Struktur der Invarianz-
gruppe vorherzubestimmen gestattet — was insbesondere im Einsteinschen Fall gilt und auch in der Arbeit
von Wyss iibersehen wurde —, steht im Einklang mit der Bemerkung von THIRRING 2%, daf} sich in der im
Zusammenhang mit der linearen Theorie aufiretenden Bewegungsgleichung g¢,, =7,, —,, als observable
Metrik herausstellt und sich der Ubergang vom flachen zum gekriimmten Raum zwangsldufig vollzieht.

Natiirlich ist eine Liesche Transformationsgruppe durch Angabe ihrer Struktur nicht vollstindig bestimmt;

die Darstellung von (126) im Raum der Lorentz-Tensoren zweiter Stufe ist noch weitgehend willkiirlich.
Fiir die von BARBOUR ¢ diskutierte Substitution

w;w = Cuv + il Cug Cg + i2 Cuv CS + i3 77;411 EQU Cgu + i4 77;4» CLQ) é‘(ﬂ, (155)
wird die Eichgruppe in zweiter Ordnung

C/w = Zuv = C/w Sk Au,v + A-v.u = é‘m; 4o, — Cvo Ae’u — iy 3 Au,o —1y &3 Ao,u — 1 Cu@ Ao, — iy Cuo Av,o
- i2 Cg Au,v - i2 Cg ‘/1»'.;4 -2 i2 :uv Ao.g -4 i3 Nuv é‘oo Ao —4 i4 Nuy Cg Ao.e +o (1/')3) 5 (156)

(156) ist von derselben Struktur wie (102’). Auch eine Ersetzung von v,,, die in zweiter Ordnung das
Skalarfeld & enthalt, ist moglich, z. B.

Yyur = ﬁuv - ("S/@o) 0;4;» . (157)

(155) und (157) édndern die lineare Theorie und deren Eichgruppe nicht; die Feldgleichungen zweiter
Ordnung sehen allerdings anders aus als (101). Man erhélt jedoch auf diese Weise nichts wesentlich Neues.
Denn die Untersuchung aller nicht-linearen Erweiterungen von (41), (46) mit Eichgruppen der Struktur
(125) lduft hinaus auf die Frage nach kovarianten Theorien im Riemannschen Raum, deren lineare Nahe-
rung bei der Entwicklung von g,, =,, —,, die Gln. (41), (46) bilden. Hierfiir kommt offenbar nur die
J.-B.-D.-Theorie in Frage. Wenn man also in den zu (155) und (157) gehorigen Feldgleichungen zweiter
Ordnung mit der Beziehung ¢,, =,, — ¥, [, wie in (155) bzw. (157)] Terme zusammenfaft, erhalt
man in beiden Féllen das gleiche Ergebnis.

In diesem Sinn ist die Frage nach der Eindeutigkeit einer konsistenten Erweiterung zweiter Ordnung zu
beantworten: Zwar ist das Verfahren formal nicht eindeutig — das Auftreten weiterer quadratischer Terme

22 Der Beweis wird im Anhang gegeben. Die Bewegungsglei- 23 P. MITTELSTAEDT u. J. B. BARBOUR, Z. Phys. 203, 82

chung, mit deren Hilfe schon die Ordnungsdefinition ein- [1967].
gefiihrt wurde, spielt also die entscheidende Rolle bei die- 2* A. TRAUTMAN, in: Gravitation: An Introduction to Cur-
sem zweiten Weg zur Konstruktion der kovarianten Theo- rent Research, New York 1962.

rie. 25 W. THIRRING, Ann. Phys. New York 16, 96 [1961].
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kann nicht ausgeschlossen werden —, aber die dabei entstehenden Theorien — mit Eichgruppen gleicher
Struktur — sind physikalisch dquivalent.

Durch Beriicksichtigung des Landau-Lifschitz-Tensors (64) des y-Feldes haben wir gerade die einfachst-
mogliche Erweiterung der linearen Theorie gefunden.

Anhang

Strukturbestimmung der Eichgruppe von v,, aus der linearen Bewegungsgleichung
Die lineare Bewegungsgleichung [vgl. (24) ]
—2% —2mP gl A mE =29, o — 2 L + Vi X7 =0 (¥?) (A1)
ist invariant unter den infinitesimalen Eichtransformationen [vgl. (2), (25)]

Yur = Yy =W + Au,v + ‘1t'-/t ’
ro=>X =1
Xw = i,u =X — X Af’u ’ (A 2)
Xy = i,uv =Xt — /19’/4 Xwvoe — ‘/19'1' oo — ‘/10*/0' Lo
Die zur Erreichung der Konsistenz erforderlichen Feldgleichungen zweiter Ordnung miissen aus physikali-

schen Griinden ebenfalls eine Eichgruppe besitzen, die sich, von den Transformationen fiir & abgesehen, von
(A 2) nur durch einen Term zweiter Ordnung v,, (v, A1) in ¥, unterscheiden kann

Yy —> I/J/w w;;v ‘/1/4,1’ + A‘a',y + Yur (W’ ‘1) . (A 3)

[Bei Kenntnis von y,, (v, A) 1at sich die Struktur von (A 3) direkt bestimmen.] Hohere Ordnungen in
%> Zus X.r waren von der Form o(A42?) und werden in infinitesimalen Transformationen nicht beriicksich-
tigt.

Die Feldgleichungen zweiter Ordnung folgen aus einer Lagrange-Funktion dritter Ordnung L**, deren
Kenntnis wir aber ausdriicklich nicht voraussetzen. L** liefert eine Bewegungsgleichung zweiter Ordnung
(nach Multiplikation mit @), die wir symbolisch schreiben wollen als

—2xh —2mPytyy s mE =2y, — 2w Lk, " e(x) Ly, &) =o(y?). (A4)

Ebenso, wie wir aus Konsistenzgriinden wegen der Invarianzeigenschaften von (A 1) die Eichgruppe (A 2),
(A 3) fir die Feldgleichungen zweiter Ordnung gefordert haben, folgern wir nun aus der Invarianz der

Feldgleichungen zweiter Ordnung die von (A 4) gegeniiber (A 2), (A 3).

Wir wollen zunéchst beweisen, da} die Invarianz von (A 4) gegeniber (A 2), (A3) impliziert, dal}
(A 4) die Gruppe der entsprechenden ,lokalen Variationen® gestattet, also die infinitesimalen Transfor-
mationen

1/’111' = l{f’fw = Ily/uv + ‘lu.r + “/1)'.u + yur('/" ‘1) - '/'/n'.o ‘/1? )
X X =1—1.4%
Xnw —> X?;l =Xu— Xy ‘/1"’u — Xuo Ae ’ (A 5)
Xowr = Zi”’ =Xour — AQ’.U- Koo — ‘/19’,, Lo — *19'“ Xo— Lo ‘1"] J
Wir haben also zu zeigen
=27 —2m? Ty LS mP T = 29, 2 = 29T
+ 9y 27+ [e(1) Ly, & 2)1° =o(y?). (A6)

Berticksichtigt man, dal} es in zweiter Ordnung gleichgiiltig ist, ob man (y) L(vy, &, 7) mit (A 5) oder mit
(A2), (A3) eicht, da ¢(y) L(y, &, %) von zweiter Ordnung ist,

[6(1) L(q's 55 Z)]zzf(l) L('/'v &, Z) +0('/'3)7
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so bleibt nach Subtraktion der vorausgesetzten Identitat
—20% —2mPr i A M =29, 0, =297 L+ Pas k7 +8(0) Ly, & 1) =o(y?) (A7)
von (A 6) noch zu zeigen

27 A +2m? g, A0 —vyig A yls — i yip A2 — o A0 mP g —yim® y, A0+ 2y, A2y,
+2 U"‘m’xt Xove e +2 l:‘"'“"’a e L T 2 Y X uve A9 — "Pf«‘,w e g = w‘:.v ZS A2=o0 (Ws) ¥ (A 8)
(A 8) laBt sich zusammenfassen zu der Beziehung
— 423, (=274 —2mP g+ gl + WM =29 2 —2Y e+ Wy 27) =0 (), (A9)
die wegen (A 4) richtig ist, q. e. d.

Wir wollen annehmen, dal} v,,— v}, die infinitesimalen Transformationen einer Gruppe endlicher
Transformationen sind. (Da es schlieSlich moglich wird, die endlichen Transformationen anzugeben, ist
diese Annahme gerechtfertigt.) Beziiglich der infinitesimalen Transformationen yx,— %% haben wir im
letzten Kapitel gezeigt, daf} die durch sie definierten Vektorfelder eine Lie-Algebra bilden, womit auf Grund
des Existenz- und Eindeutigkeitssatzes fiir Liesche Transformationsgruppen !® bewiesen ist, dal x,— 3"

die infinitesimalen Elemente einer Gruppe endlicher Transformationen sind. Dasselbe 1a8t sich, ausgehend
von (AS5), fir y— % und g ,,— %% zeigen. Wir geben die endlichen Transformationen symbolisch an

Yy —> Tz,v (A) Yur =Wur + Au,v + Av,u +yuv(w’ A) — Wur,o A° +04 (A2) ’

x > Ty(4) g =1~ 1., 4°+0,(47),

Lo > Ty A) 2w =2 — 2o Au — Lo 4% + 03(A%), (A10)
Kowr = Tlvu'v(A) Xowr = Xour — Ag,“ Xovo — Ag’v Xowo — Ag’uv Xo — Xuro A2 + 04 (‘42)

(A ist hier zwar ,endlich“, aber natiirlich immer noch von der Ordnung v). Bekanntlich 2! folgt aus der
Invarianz von (A 4) unter (A 5) die Invarianz von (A 4) unter den von (A 5) erzeugten endlichen Transfor-
mationen (A 10). Wenn wir die zu T(A) inversen Transformationen mit 7(A)~! bezeichnen, bleibt also die
Bewegungsgleichung zweiter Ordnung (A 4) bei gleichzeitiger Anwendung von T(A) T(A) T(/l) 1T (/1) =i

auf alle FeldgroBlen invariant. Dies bedeutet explizit

~ ~ ~ ~ ~” ~ ~ ~ ~ ~ ~ -~ ——,
—2xh —2mP e mP g =29, =29 L+ Vi X7+ (1) Ly, &, 1) =o(v?), (A1l)
wobei wir zur Abkiirzung
i)l“’ = Tw(él) T‘w(jl‘l) Tw(/zl) —1 Tw (‘{1) —1 w;w ]

P =T T ) T() 7 Ty () 1y,
i.u = Tz.u ({)1) Tx,u(jll) Tx,u(él) . Tx,u(‘;l) i x,u ’ (A 12)
i.w' = Tx.uv(jz‘l) Tz,/n (/11) Tz,uv (/21) -1 Tz,/w ({1) -1 y

gesetzt haben. €(y) L(vy, &, 3) ist der bei der Transformation (A 12) aus &(y) L(w, &, x) entstehende Aus-
druck. Wichtig fiir das Folgende ist die Uberlegung, daf} b:G) L(y,& %) und e(y) L(y, &, %) in zweiter
Ordnung iibereinstimmen: Das Materiefeld y und seine Ableitungen werden bei Anwendung von (A 12)
in e(x) L(v, &, x) iiberhaupt nicht transformiert, denn die Eichzusdtze in T,(A) x, T, .(A) %us Tyor(A) Zuv
sind von der nichsthoheren Ordnung und ergeben Terme dritter Ordnung, da &(x) L(vy, &, %) von zweiter
Ordnung ist. Dasselbe gilt fiir das &-Feld [vgl. die Bemerkung im Anschlul an Gl. (41)]. Lediglich die
Transformationen von v,, und seinen Ableitungen liefern zu beriicksichtigende Beitridge zweiter Ordnung,
niamlich die von den Eichzusitzen A, , + 4, , herrithrenden Terme [fiir die hoheren Glieder in T, (A) v,
gilt das obige Argument]. Die Transformationen erster Ordnung

w[l'y = T'i'. (A) w[lv = w[l‘v + Au,'l’ + Al’,“ (A 13)
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sind aber kommutativ, so da} wir insgesamt

Ty (4) Ty (A) Ty (A2 Ty (AT ap=1 (A14)
2 1 2 1
erhalten [Th(A) 1y, =y, —4,,—4,,]. Es gilt also
Vr =Wy + 0 (9?) (A 15)
und daher _
e(2) L(w, & x) =e(x) L(w, &%) +o(y®). (A 16)

Weiterhin lassen sich x, Z,u, 7.u» angeben. Unter Beriicksichtigung des bekannten Zusammenhanges zwi-
schen dem Kommutator der Gruppe T'(A) T(A) T (A) *T(A) ™! und der Kommutatordefinition in der
2 1 2 1

zugehorigen Lie-Algebra der Vektorfelder erhalten wir aus der Strukturuntersuchung im letzten Kapitel
das Ergebnis

% =2— 1ol 4, AT +o(v?),
Xow =Lon— x,v[/lla A7 — Z.uo[‘;lv /21] ?+o(y?), (A17)
i,uv = Z,uv . x,x'g [{17 {1] g,# - x,uo[/ll’ ‘/21] & y 1,9[4;19 ﬁl] g’uv - x.,zu'g[/ll’ {)1]0 + o (wa) ?

wobei [4, /91]9 durch Gl. (146) gegeben ist [ (A17) laBt sich auch mit (A 10) unmittelbar nachpriifen].
Unter Béac};tung von z. B.
B xh=9 (Ol +o(y®) =% 24 +o(y?) (A18)
ergibt Einsetzen von (A 17) in (A 11)
=275 +4gv 4, A7+ 2 004, Alok +2 7% [4, A
—2m® g+ 2m? g LA, A1+ Pl Yum® =2 9y, (A19)

—29% 2+ Vo 27+ (1) Ly, & 7) =o(y?).

Wegen (A 4) gilt
-2x% —2m? z=o0(y). (A 20)

Daraus folgt
= [/11, éi]g 9, (—27u —2m?y) =2[/11, él]@x’,’ie +2 mz[{l, él]gx,o =o(y?) (A21)
und
oyntPem?y= 9 (i +m22) =@ +o(y?) (xk +m?2) =yixh +yim?r+o(y®) (A22)
[vgl. (A15)]. Mit (A21) und (A22) wird (A19)
—27k +4xs M4 AP+ 2204, A o —2m? y
FY L AU mE =29, g, =29 g, + ¥k, 27 +e() Ly, &, 7) =o(y?).  (A23)
Der Kommutator T, (A4) T, (A) T, (A)~*T,(4) ! ist ein Gruppenelement T, (A) mit einem bestimin-
ten A. Man sieht leicht, daf23 ' ’ '
Vi = Tw(éi) Tw(/ll) Tw(él) . Tw(*;l) Y =Y+ [{17 él] wy T+ [{1: ‘Z/l]v,u +o(y?)  (A24)

gesetzt werden mull [vgl. (A 15)], damit (A 23) aquivalent zu (A 4) wird. Mit (A 24) ist die Struktur
der Eichgruppe von v, festgelegt.

Ich danke Herrn Prof. Dr. P. MITTELSTAEDT fiir das Thema, seine Anregungen und sein Interesse.



