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Feldtheoretische Konstruktion der Jordan—Brans—Dicke-Theorie
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Fieldtheoretic Construction of the Jordan-Brans-Dicke-Theory

In the framework of Lorentz invariant theories of gravitation the fieldtheoretic approach of the 
generally covariant Jordan-Brans-Dicke-theory is investigated.

It is shown that a slight restriction of the gauge group of Einstein’s linear tensor theory leads 
to the linearized Jordan-Brans-Dicke-theory. The problem of the inconsistency of the field equations 
and the equations of motion is solved by introducing the Landau-Lifschitz energy momentum tensor 
of the gravitational field as an additional source term into the field equations. The second order 
of the theory together with the corresponding gauge group are calculated explicitly. By means of 
the structure of the gauge group of the tensor field it is possible to identify the successive orders 
of the scalar-tensor theory as an expansion of the Jordan-Brans-Dicke-theory in flat space-time. The 
question of the uniqueness of the procedure is answered by showing that the structure of the gauge 
group of the tensor field is predetermined by the linear equations of motion. The mathematical 
proof of this fact confirms formally the meaning of the equations of motion for the geometry
of space.

Einleitung

Die Einsteinsche Gravitationstheorie ist auf zwei 

Weisen abgeändert worden: Erstens im Riemann­

schen Raum z.B. von Jo rda n1, Brans und D ic k e 2, 

zweitens im flachen Raum u. a. von Capella 3, Bel- 

infante und SwiHART4. Die Frage nach der Zu­

ordnung dieser beiden Klassen von Gravitations­

theorien läßt sich in einer Richtung positiv beant­

worten: Den genannten allgemein-kovarianten Theo­

rien entsprechen eindeutig ihre linearen Näherungen 

im Minkowski-Raum. Eine eindeutige Zuordnung in 

umgekehrter Richtung ist bisher nur im Fall der 

Einstein-Theorie nachgewiesen worden 5> 6. Ähnliches 

für die Jordan-Brans-Dicke-Theorie (J.-B.-D.) 7 zu 

versuchen, scheint nach den Untersuchungen von 

Sexl 8 aussichtslos, der behauptet, daß in linearer 

Näherung die Theorien 1) —4) identisch sind. Denn 

dann wäre die linearisierte J.-B.-D.-Theorie ebenso 

wie die von Capella konsistent und es gäbe keine 

Motivation für die sukzessive Rückkehr zu ihrer 

kovarianten Form.

Tatsächlich wird die lineare J.-B.-D.-Theorie durch 

Eichung identisch mit der Theorie von Capella; die 

entsprechende Eichkonvention — die bei Capella 

fehlt — muß man dann aber zusammen mit den

1 P. J o r d a n ,  Schwerkraft und Weltall, Braunschweig 1955.
2 C. B ra n s  u. R. H. D icke , Phys. Rev. 124, 925 [1961].
3 A. C a p e lla ,  Nuovo C im . 42 B, 321 [1966].
4 F. B e l in f a n t e  u. J. S w ih a r t ,  Ann. Phys. New York 1,

168 [1957].

Feldgleichungen berücksichtigen und erreicht auf 

diese Weise doch eine Unterscheidung der Fälle.

Die allgemeinen Prinzipien, die bei der feldtheo­

retischen Konstruktion einer Gravitationstheorie zu 

beachten sind, übernehmen wir aus 5), 6) aller­

dings nicht alle, denn die Postulate

a) Lorentz-Invarianz,

b) Herleitung der ganzen Theorie aus einer La- 

grange-F unktion,

c) Beschränkung auf höchstens zweite Ableitun­

gen der Feldgrößen in den Feldgleichungen,

d) Spineindeutigkeit (d. h. die Gravitation soll 

nur durch eine Teilchenart mit Spin 2 und Masse 0 

übermittelt werden),

e) Aquivalenzprinzip

führen eindeutig auf die Einsteinsche Theorie6. Wir 

müssen also mindestens eine Forderung aufgeben; 

und zwar werden wir im Sinne der im Thema ge­

nannten Aufgabenstellung d) ersetzen durch

d’) Zugelassen sind ein Spin 2- und ein Spin 0- 

Feld, beide mit der Masse Null.

Um die dadurch verlorengehende Eindeutigkeit des 

Verfahrens wiederherzustellen, nehmen wir die For­

derung

5 W . Wyss, Helv. Phys. Acta 38, 469 [1965].
6 J. B. B a r b o u r ,  Dissertation, Köln 1968.
7 Für r j= — 1 stimmt die Jordan-Theorie mit der von Brans

und Dicke überein.
8 R. U. S e x l, Fortschr. Phys. 15, 269 [1967].



600 H. v. GRÜNBERG

f) Die Einsteinsdie Theorie soll für bestimmte 

Wahl der Parameter enthalten sein 

hinzu.

Wir werden zeigen, daß man zur Erfüllung von 

d') nicht notwendig eine Skalar-Tensortheorie von 

vornherein anzusetzen braucht, sondern daß man, 

ausgehend von einer Tensortheorie mit eingeschränk­

ter Eichgruppe, zwangsläufig auf die Hinzunahme 

eines Skalarfeldes geführt wird. Hierbei spielt die 

Eichinvarianz der Bewegungsgleichung eine wichtige 

Rolle, die man nur durch Einführung einer Ord­

nungsdefinition der einzelnen Terme erklären kann.

Genau diese Ordnungsrelation löst auch das Pro­

blem der Inkonsistenz von Feld- und Bewegungs­

gleichungen, welches bisher 5> 6 als Ausgangspunkt 

für Größenordnungsbetrachtungen verwendet wurde. 

Die Forderungen nach gleichen Invarianzeigenschaf­

ten und nach Konsistenz von Feld- und Bewegungs­

gleichungen sind also äquivalent als Begründungen 

dafür, daß die lineare Theorie eine Näherung ist.

Die Skalar-Tensortheorie in zweiter Ordnung kon­

sistent zu machen, ist ungleich komplizierter als im 

Einsteinschen Fall. Man kann sich aber mit einem 

Trick helfen: Durch Eichung läßt sich das Skalar­

feld in der linearen Theorie eliminieren, und durch 

Berücksichtigung des Landau-Lifschitz-Energie-Im- 

puls-Tensors des Tensorfeldes als zusätzlichem Quell­

term in den Feldgleichungen erreicht man gerade 

Verträglichkeit von Feld- und Bewegungsgleichun­

gen, wie man es physikalisch erwartet.

Daran anschließend zeigen wir zunächst die Exi­

stenz und später die Eindeutigkeit einer Theorie 

zweiter Ordnung mit den Eigenschaften a) — f) . Da­

bei geht die Verwendung der Eichgruppen wesent­

lich ein; mit ihrer Hilfe gelingt es — durch Bestim­

mung ihrer Lie-Algebren und damit ihrer Struk­

tur —, das Verfahren der schrittweisen Behebung 

der Inkonsistenz zu systematisieren und seine phy­

sikalische Bedeutung zu klären: Die sukzessive Er­

weiterung der behandelten Skalar-Tensortheorie von 

einer Ordnung zur nächsthöheren ist die Entwick­

lung der J.-B.-D.-Theorie im flachen Raum.

In einer formal so komplizierten Theorie läßt sich 

der Eindeutigkeitsbeweis nur gruppentheoretisch 

führen. Man stellt fest, daß die Bewegungsgleichung 

der linearen Theorie die Struktur der Eichgruppe 

des Materiefeldes zu bestimmen erlaubt. Da sich be­

weisen läßt, daß die Eichgruppe zweiter Ordnung 

des Tensorfeldes von derselben Struktur sein muß, 

gilt die „physikalische Eindeutigkeitsaussage“, daß

es zwar formal verschiedene Erweiterungen zweiter 

Ordnung gibt, die aber alle die J.-B.-D.-Theorie re­

präsentieren, entwickelt im flachen Raum mit ver­

schiedenen Ansätzen für den metrischen Tensor.

Lineare Tensortheorie

Der allgemeinste Ansatz für eine Lagrange-Funk- 

tion, die eine Lorentz-invariante Gravitationstheorie 

mit höchstens zweiten Ableitungen der Feldgrößen 

in den Feldgleichungen beschreibt, ist 5

L(V) = Z a il i  (1)
i=i

mit I1 = y%yZ, h  = W  » h  = V W  ¥ n',a »

1 4 =  VAuv,a , / 5 =  V'l^,<7 W *  » A ) =  V '/ ‘ >® V* '

Wenn man Invarianz der zu L(y) gehörigen Feld­

gleichungen

£ ( W )  L ( V )  = d e f— -X~ =  - G uv( y )  = 0
<?W

gegenüber der Eichtransformation

W  VV = W  + (2)

fordert, wird man bekanntlich5 eindeutig auf die 

linearisierte Einsteinsche Theorie geführt.

Die Invarianz der Theorie gegenüber (2) ist eine 

starke Einschränkung, denn sie erlaubt, wie Wyss 

zeigt, mit speziell gewählten Aß zur Hilbert-Eichung 

mit zusätzlicher Spurfreiheit,

= xp-u\ = 0 (3)

überzugehen. In der Eichung (3) sind drei der vier 

bezüglich der Untergruppe der räumlichen Drehun­

gen irreduziblen Darstellungs-Komponenten ausge­

schlossen, nämlich die Vektordarstellung und beide 

Skalardarstellungen; y) ist also ein reines „Spin 2“- 

Feld.

Wir wollen nun die durch (2) gegebene Eich­

gruppe dahingehend einschränken — die Theorie 

also verallgemeinern —, daß die mit ihrer Hilfe er­

reichbaren Eichungen zwar die Vektordarstellung 

und eine Skalarkomponente auszuschließen ermögli­

chen, nicht aber die zu gehörige Skalardar­

stellung. Dazu wird man zweckmäßig zu (2) die Be­

dingung

4 .,"- 0  (4)

hinzunehmen. Denn ausgehend von vVr mit v£+0 

ist die Eichung y)/iV mit V>£= 0 mit (2) und (4) nicht
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erreichbar; der zu xp̂  gehörende „Spin 0“-Teil läßt 

sich also durch Eichung im allgemeinen nicht besei­

tigen.

Invarianz von — G^v (xp) gegen (2) mit (4) be­

deutet — Guv(xp) + G^v(xp) =0, nach Zusammenfas­

sen der Terme

- Gfiv (xp) + Guv (xp) (5)

= 2 a, (A^v + Av-U) - (2 a3 + o4) A*'?

— (2 a3 + a4) Av’’?  = 0.

Infolge der Zusatzbedingung (4) werden nur­

mehr zwei Forderungen an die at gestellt,

a2 = 0, 2a3 + a4 = 0, (6)

so daß nach Festlegung des gemeinsamen Faktors 

durch

a3= |  (7)

noch drei Konstanten frei bleiben. Zu ihnen gehört 

der Koeffizient des Masseterms rjuv xp%, den wir 

durch Einschränkung auf masselose Gravitations­

felder ax = 0 setzen. Damit und mit (6) und (7) 

erhält man

_  (xp) = - 1 + i  xp*  + \

- 2 a5 t]uv xfil - a6 i f  xpe°’00 - a6 xp^v = 0 . (8)

Wir wollen (8) noch durch die Eichung

= (9)

vereinfachen. Den Übergang von xpßV zu xpMV mit (9) 

vermittelt eine Transformation mit

A^v=xp^-^-xp^v.

(9) ist invariant gegenüber (2), wenn

A«j = A x-$( 2d  — 1)

gilt. Man sieht, daß nur im Fall # = ̂  die Einschrän­

kung (4) nicht nötig ist und daher „Spineindeutig­

keit“ erreicht werden kann.

Mit (9) wird (8)

-G^(xp) = - + (0 _ fl6) xpf»'1

- (2 a5 + #2) ijt'xfil = 0. (10)

(10) ist invariant unter (2) mit den Bedingungen 

(4) und, nach der Eichung (9),

□ 4 ,  = o. ( i i )

Mit der Festsetzung a6 = # erhält man aus (10)

_  G m* (xp) = _  \ ipf l v - (2  a5 + # 2) r)uv xpee’Tr = 0  ,

( 12)

das ist die „Flache Theorie“ von C a p e l l a  3 in 

vacuo, abgesehen davon, daß xpßV hier zusätzlich 

den Koordinatenbedingungen (9) unterworfen ist.

Wir bemerken, daß in (12) noch immer die li- 

nearisierte Einsteinsche Theorie enthalten ist: Für 

$ =  | und a5 = — j  sind (12) die linearen Feld­

gleichungen in Hilbert-Eichung

= l . (9'>

- c - (v) = - i  (</’■; - i  > r y fi) = o • (i2')

Ebenso wie (12/) ist (12) invariant unter (2) mit 

(11).

Damit die nach dem Norther-Theorem aus dieser 

Invarianz von (12) folgenden Identitäten eine mög­

lichst einfache Form annehmen, wählen wir

a5 = ~  i  $ ($+ i )  • (13)

Damit wird (12)

_  G""(xp) = - \ □ (xpuv - # r f  xpl) (14)

und

- G(xp)f,v\= — | \3(xpav’v-'&xi%M) =0  (15)

wegen (9). Nur mit der Wahl (13) von a5 und 

a6 = # bleibt die Einsteinsche Theorie als Grenzfall 

für # =  ^ enthalten. Die Lagrange-Funktion zu (14) 

ist

L(xp) = l  Y W  WfiV,a ~ 4 & WeQ° • (16)

Ankopplung an das Materiefeld

Entsprechend dem Äquivalenzprinzip koppeln wir 

G“v (xp) direkt an den symmetrischen Energie-Im- 

pulstensor der Materie Tuv(q) mit einer Kopplungs­

konstanten 8 7i/0o und schreiben die Lagrange- 

Funktion des Systems von Materie mit Gravitations­

feld als

L = L(xp) + A(q) + Lw (17)

mit der Lagrange-Funktion A(q) des Materiefel­

des q und der Wechselwirkungs-Lagrange-Funktion

Lw = (8a/&0) xpßV Tuv (q) .

Aus (17) folgen die Feldgleichungen

- iy T - i + iO r r v i ' i  - - ^  ^ ’ (j) (18)

und die Bewegungsgleichungen

d f  L d4z
e(q0) L = def s--- = £(q0) M q) +c(q0) Lw = o. 

°q0
(19)
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Wegen (15) erhalten wir aus (18)

T(q)“'\ = 0. (20)

(19) und (20) sind aber, wie B a r b o u r  6 gezeigt 

hat, inkonsistent, und zwar unabhängig vom Mate­

riemodell. Diese Inkonsistenz ist eine Folge von (9), 

liegt also im Grunde genommen daran, daß wir die 

Theorie aus einem allgemeinen Ansatz mit der For­

derung nach Invarianz unter (2) mit (4) gewonnen 

und durch die Eidikonvention (9) spezialisiert ha­

ben. Bei Capella, der seine Theorie ad hoc formu­

lierte, tritt obige Inkonsistenz nicht auf, und die 

lineare Theorie ist in sich geschlossen. In unserem

Fall sehen wir uns gezwungen, wie Wyss und Bar­

bour, die Feldgleichungen als Anfang einer Entwick­

lung einer konsistenten Theorie aufzufassen.

Eichinvarianz der linearen Theorie

Um die Bewegungsgleichung (19) genauer zu un­

tersuchen, wählen wir als Materiemodell das skalare 

Klein-Gordon-Feld 9, also

Ä = { l6 n /& 0)L (x ) , L(x) = L J ' “- "i2Z2 (21)

mit dem kanonischen Energie-Impulstensor

Tuv(x) =2 X'f> / f  ~ V'uv Z,a - m2 x2) ■ (22)

(23)

Der Faktor 16^/0,, von L(x) in A  wurde so gewählt, daß die Bewegungsgleichung 

S f I d4r
« W t . «  ’- j-  = (16*/# ,)*(*) (H x ) + iw r " " a ) )  = o

die Kopplungskonstante nicht enthält. (23) lautet ausgerechnet 

e(z) L(X) +£(X) 2

= - 2 (3„ 3“ + m2) X + H 2  w'v (3,. 3“ + m2) X - 4 3„(^ur X,v) + 2 y^,v yf] = 0 • (24)

Nach Konstruktion gestattet (18) Eichtransfor- 

mationen (2) mit (11), die Feldgleichungen (18) 

bestimmen also die Potentiale y /n, nur bis auf Eich- 

zusätze der Form Afiv -(- Av%ß mit \Z\Atl = 0. Da die 

Bewegungsgleichung (24) aber offensichtlich diese 

Invarianzeigenschaft nicht besitzt, entspricht jeder 

Umeichung der Potentiale eine andere Bewegung 

der Materie. Diesen scheinbaren Widerspruch kann 

man beseitigen, wenn man in (24) gleichzeitig mit

ip.uv + (2)

die Transformationen

X ^ X  = X,

3/i-^3 /. = d/t- A \ d r , (25) 

3« _> 3/« = 3« _  3>-

vornimmt, die für infinitesimale A eine Gruppe bil­

den. Die Invarianz von (24) unter (2) und (25) 

hängt unmittelbar mit einer Ordnungsdefinition der 

einzelnen Terme zusammen. Wenn man Tuv(x) nach 

Definition als von nullter Ordnung betrachtet, sind 

nach (18) (/’.«>• und seine Ableitungen von der Ord­

nung l/0 „ . Da y\,, und i/V die gleiche Ordnung 

haben sollen, ist nach (2) ebenfalls Afl = o(l/& 0) .

Nimmt man nun auf der linken Seite von (24) die 

Ersetzungen (2) und (25) vor, so findet man als 

Ergebnis

-2 (3 ,  3“ + m2) X + I  [2 xf, (3, 3“ + m2) X 

- 4 3 , ( f vz,r) + 2 < , f ]  +o($52). (26)

Wenn man voraussetzt, daß (24) nur bis auf Terme 

o ($ 0“2) gilt, ist die Bewegungsgleichung invariant 

gegenüber (2), (25). Konsequenterweise wird man 

auch nach dem Verhalten von (18) gegenüber der 

erweiterten Eichgruppe [mit (25) ] fragen. Man 

sieht, daß die Invarianz von (18) unter (2), (11) 

bei gleichzeitiger Anwendung von (25) durch Zu­

satzterme o (0 o~2) zerstört wird. Mit der Forde­

rung, daß (18) nur in der Ordnung l / ^ 0 gelten 

soll, sind auch die Feldgleichungen invariant unter 

der erweiterten Eichgruppe.

Diese Konvention bedingt dann die Abänderung 

von (20) in

(27)l/4>0)

und stellt mit Hilfe der Beziehung

T(x)M\ =  - r “£(z) H z ) (28)

Alle im folgenden gewonnenen Ergebnisse hängen aber 
nicht von der speziellen Wahl des Materiemodells ab. Die 
Verwendung des Klein-Gordon-Feldes vereinfacht die Rech­

nungen und verbessert die Übersichtlichkeit des Verfah-
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die Konsistenz der Feldgleichungen (18) und der 

Bewegungsgleichung (24) in erster Ordnung von 

l/<£0 sicher.
Ausgehend von der Bemühung, die scheinbare 

Abhängigkeit der Bewegung der Materie von den

— auf Grund der Feldgleichungen unwesentlichen — 

Eichzusätzen Aß<v + Av<fl zu beseitigen, haben wir 

die erweiterte Eichgruppe (2), (25) gefunden. Da­

bei ist zu beachten, daß in der Eichtransformation 

(2) von ip/tv die für die Invarianz der Feldgleichun­

gen nötige Einschränkung LH Aß = 0 bei der Bewe­

gungsgleichung nicht gemacht werden muß. Das ver­

anlaßt uns zu fragen, ob es aus einer Lagrange- 

Funktion ableitbare Feldgleichungen

Hur = - (8 j i /& 0) T r

mit divergenzfreiem Huv gibt, die wie die Bewe­

gungsgleichung invariant gegen (2), (25) ohne Ein­

schränkung sind und die in der Eichung (9) gerade 

die Form (18) annehmen.

Der in Frage kommende Ansatz für Huv ist eine Linearkombination der zweiten Ableitungen von ipßV,

R r  = a y/lv’aa + b v#'"’ + c yf°’va + d + e r v VQO'0o + / »T v4'°* • (29)

Wegen der Symmetrie von H“v, die ihrerseits aus der Symmetrie von \pßV und der Ableitbarkeit aus einer 

Lagrange-Funktion folgt, gilt

c = d. (30)

Die Forderung, daß Huy durch die Eichkonvention (9) in die linke Seite von (18) übergeht, führt auf die 

Gleichung

H ^ = a ^ v'l + ^ v(b + 2c^) + r vV%o(e# + f) = - \ yT'° \ ^  y>ee'% •# , (31)

also auf die Koeffizientenbedingungen

a=  — i  , 6 + 2 c # = 0 , e # + / = | # . (32)

Die zweite Forderung, nämlich daß Huv invariant unter (2) sein soll, bedeutet natürlich, daß H/tv ein Viel­

faches des aus der linearisierten Einsteinschen Theorie bekannten Tensors

_  = i  ( _  ̂  - y t r  + yf°'va + - r v +* r  v W  (33)

sein muß, also, wenn man a=  — ^ aus (32) hinzunimmt, H'"'= — G“r . (34)

(34) und die letzten beiden Gleichungen in (32) sind offenbar nur verträglich für # = \, d. i. der Einstein­

sche Fall. Wir sehen, daß sich die beiden Forderungen für #4= I  mit Hilfe eines Huv in der Form (29) 

nicht realisieren lassen. Der einzige Ausweg ist die zunächst rein formale Einführung von „nicht-geometri­

schen“ Hilfsfeldern 8 in Hr. Wir werden sehen, daß wir in unserem Fall mit einem Skalarfeld auskommen.

Statt einen neuen Ansatz für R r  zu machen, der neben den Termen (29) aus einem Skalarfeld gebildete 

Ausdrücke enthält, wollen wir einen direkteren Weg einschlagen. Dazu subtrahieren wir von Huv in (29) 

den eichinvarianten Teil, d. i. wegen a = — \ gerade — Guv, und versuchen, den Rest, Huv + Gr, durch 

ein Hilfsfeld auszudrücken. Hf(v + Guv läßt sich mit (32) schreiben als

#«>■ + G ^ = ( _ 2 c 0 + i )  WoßV + (c -  \) Y ia'l + (c -  J) V a’f‘

+ (e+ £) + (^ d - e ft-  |) rjftv . (35)

Die Koeffizienten c und e in (35) lassen sich bestimmen, wenn man die Bedingung //"*’,, = 0 hinzunimmt. 

Damit folgt

(H r + G^) ,„ = (* 0 - 2 cü-e ft) iftT  + (c - i ) + (c + e) yßa'f‘a = 0 , (36)

also für die Koeffizienten

c = i ,  e = - \ . (37)

Aus (32) und (37) erhalten wir jetzt auch

& = _ # ,  / = # (38)
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Hur + Qu„ = (1 + (# _  1) rjuv > (39)

Jetzt wollen wir (39) durch einen aus einem Skalarfeld £ und seinen höchstens zweiten Ableitungen auf­

gebauten Tensor AMV(£) ausdrücken. Wir versuchen es mit dem einfachsten Auy(£), das wie Huv + Gu” 

divergenzfrei ist, und setzen

HM* + Qm* =  (1 _  ) yftV + ( # _ ! )  i f  via = ( l/#o) f j)  ■ (40)

Wegen des Faktors l / ^ 0 ŝt £ von nullter Ordnung im Sinne unserer Ordnungsdefinition. Damit

H u v  =  _  Q uv  +  _  yjnv £  j )  =  _  ( 8  n / ( P o) ( 4 1 )

bei Anwendung der Eichtransformationen (2), (25) invariant bleibt, darf £ sich dabei, wenn überhaupt, 

nur u m o ( l / ^ 0) ändern. Wir haben uns also in (41) Feldgleichungen verschafft, die die gleichen Invarianz­

eigenschaften besitzen wie die Bewegungsgleichung und die mit der Eichkonvention (9) in (18) übergehen. 

Die physikalische Bedeutung dieses rein formalen Verfahrens ist, daß wir annehmen, daß die sich auf (18) 

reduzierenden eichinvarianten Feldgleichungen zu einer Skalar-Tensortheorie gehören, und daß wir, statt 

die richtige Lagrange-Funktion L(xp, l;, %) und die entsprechenden Feldgleichungen e(xpMV) L(yj,^,x) = 0, 

£(i) L(xp,^,i) = 0 zu raten, sie induktiv zu konstruieren versuchen. In diesem Sinne gewinnen wir aus 

der Definition (40) von £ durch Verkürzung die I-Feldgleidiung

( i/a > ,) f .ä - - (0 -  i ) « ,  (42)

allerdings wegen der Herleitung aus H ^ + G^’ nur in beschränkter eidiinvarianter Form ( 0 ^  = 0). 

Wir verfahren daher ähnlich wie bei der Behandlung von (18) und schreiben unter Benutzung von (9)

( l f t )  f  j  = - ( < ? -  i  + a) ytf, + (a l» ) if**». . (43)

a bestimmen wir so, daß (43) invariant ist unter (2) und erhalten

~ ~ i > ’ (44)

bzw. mit der Abkürzung
# =  (l- co )/(l-2co ) (45)

(2 w/<P0) f i  - v ia - V ^ V -  (46)

Die Feldgleichungen (41) und (46) folgen aus der Lagrange-Funktion

L  =  L M  -  (<u/<V) f jf .»  + ( 1 /0 O) - V ?  + J +  (8jt/<f0) y ,„  T "  (X) (47) 

mit L(y>) =  1 V   - i  V'“”’’' + 5 Vi'" — J V?,» V'I'" ■ (48)

Das Ergebnis ist überraschend angesichts dessen, daß wir das Lagrange-Prinzip bisher nicht benutzt haben, 

und ist eine Folge der Eichinvarianz von (41) und (46), vor allem aber davon, daß zur Einführung der 

erweiterten Invarianzgruppe (2), (25) in die Theorie (18), (9) gerade ein Skalarfeld gemäß (40) her­

genommen wurde. Das Auftreten des ^-Feldes zusammen mit der Gruppe (2), (25) war nach den Über­

legungen im 1. Kap. in gewissem Sinn zu erwarten, denn mit Hilfe von (2) ist bezüglich des Tensorfeldes 

„Spineindeutigkeit“ erreichbar.

Die Konvention (9) läßt sich durch (42) in die Form

(x,fß -  £ n°evd) ,1 =  -  ( l/<2>o) f ’“ (49)

bringen. Wenn man (46) durch oj dividiert und den Grenzwert co-> oc bildet10, erhält man u.a. die 

Lösungsmannigfaltigkeit £ = const. Damit geht (41) in die linearisierte Einsteinsche Theorie über, und 

(49) wird die Hilbert-Eichung. Andererseits gilt für c o oo nach (45) $ = 2 , wie erwartet.

10 D. B r i l l ,  in: Evidence fo rGravitational Theories, Academic Press, New York 1962.

und damit



FELDTHEORETISCHE KONSTRUKTION DER JORDAN-BRANS-DICKE-THEORIE 605

Die Konsistenz in zweiter Ordnung

Die Einführung der gleichen Invarianzgruppe in Feld- und Bewegungsgleichungen hat natürlich nichts 

zur Konsistenz beigetragen.

Die Inkonsistenz von (41) und (23) rührt von dem Term zweiter Ordnung e(x) Lw in (23) her. Da­

her liegt es nahe, zur Erreichung der Konsistenz ein zusätzliches Wechselwirkungsglied von dritter Ord­

nung Lw(ip, x) in die Lagrange-Funktion einzuführen. Damit erhält man an Stelle von (47)

L' = L (V) - (<«/<V) f-J + (l/^o) - v fr )  +-4+ (8*/<*><,) V^Tx-ix) + t ;  (V-.Z) (50)
o(y2) o(lf2) o(ip2) o(xp) o{ip2) o(ip3)

und die daraus folgenden Gleichungen

-G '" + (l/<2>0) ( f . - _ ^ £ i )  + (8 ji/0 o) T^(x) + e (w ) L'w (%p,x) =0  (51)

o{y) o(y>) o(xp) o{xp2) 

bzw. e(x) Ä+  (8ji/<P0) e(x) rp^T ^ (x) + £(*) L'w (xp,x) = 0 . (52) 

o(ip2) o{y2) o(xp3)

Die £-Feldgleichung (46) bleibt ungeändert. Wir haben die Ordnungen der Terme mit angegeben, wobei 

wir gemäß unserer Ordnungsdefinition o(xpn) statt o(0Qn) geschrieben haben.

Aus (51) entsteht durch Divergenzbildung

(8tt/#o) T{%)•**>, + 3r e (w ) L'w (ip,x) = °  (53)

und daraus wegen (28) und (21)

- i  r u £(x) ^  + 3*e(w ) L'w (yj,x) = °- (54)

Wenn man (52) mit x,fl multipliziert und mit (54) gleidisetzt, erhält man die Konsistenzbedingung 

der zweiten Ordnung

3„e(YVr) (V.Z) = - ? E(%) VnvTuv(x)+ o(y3). (55)

Diese Gleichung ist dieselbe wie im Einsteinsdien Fall, und wir können das Ergebnis übernehmen, daß das 

gesuchte Lw(y,x), unabhängig vom Materiemodell 6, nicht existiert.

Wir wollen deshalb als nächstes außer L^ (xp, x) Terme dritter Ordnung in xp allein L(xp) und eine Wech- 

selwirkungs-Lagrange-Funktion Lw( xp, £), ebenfalls dritter Ordnung, zu L in (47) hinzunehmen. In Lw(xp, £) 

sind z. B. quadratische Glieder in xp, multipliziert mit l / ^ 0 (und £)> und in ty lineare Glieder, multipliziert 

mit l/<£02, zugelassen. Die genaue Gestalt aller neueingeführten Lagrange-Funktionen muß natürlich, wenn 

möglich, aus der Konsistenzbedingung bestimmt werden. Der Vollständigkeit halber müßte man noch 

Lw(xp, £, x) hinzufügen; wir wollen aber versuchen, darauf zu verzichten, da bisher keine direkte Kopp­

lung des ^-Feldes an die Materie aufgetreten ist. Wir setzen also an mit

L‘  = K V) - (»/$„*) (i/®o) W v f 1 -v£") + ^+  (8n/® .) v„T<"(x)
o(ip2) o(xp2) o(ip2) o(xp) o(ip2) 

+ L'W (xp, x) +L(ip) +Lw(y>,£) (50')

o(xp3) o(ip3) o(xp3) 

und erhalten die Feldgleichungen

l/^o) (£,fiV ~ r]flv + £(w )  Lw(xpJ) + (8 j i / $ 0) T ^ (x ) + e(xptiV) L 'w (v>> X) =  0 (51') 
o(ip) o(ip2) o{ip) o(xp2) o{ip) o(ip2)

mit Gftv = e(xp//iv) L(xp). Die Bewegungsgleichung (52) bleibt bestehen. Die Änderung der £-Feldgleichung 

infolge Lw(xp,£) ist von zweiter Ordnung und wird bei den Konsistenzuntersuchungen keine Rolle spielen. 

Die Divergenz von (51r) ist

- \ x,/i£(x) A  + Gt">v + dv e(xpllv) Lw(xp,£) +3„e(w) L'w (xp, x) =°- (53^ 
o(xp2) o(xp2) o(xp2) o(xp2)
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(53') muß der Bewegungsgleichung (52) äquivalent sein. Gfn'\, ist nach Konstruktion aus Termen 

aufgebaut, 3„ £ (w )  Lw(ip, £) aus (l/<£0) y £, (1 /0 O2) £ •£ , . . .  . Falls einige dieser Glieder sich auf 

Grund der £-Feldgleichung erster Ordnung (46) heben, wollen wir unter Bu den aus Guv\. + 3V e (w ) Lw(yj, £) 

durch Elimination der sich kompensierenden Glieder entstehenden Ausdrude verstehen. Damit

- \ r ^ £(z) A + B“ + dv e (w ) C  (v^Z) +o(v?3) = 0  (53")

äquivalent zu (52) werden kann, dürfen y y ,  (1/0O) \p £ in 5" nur in der Kombination t/.’ // auftreten, 

wobei

Ht” = - Guv + (1/0O) ( f  “v - tjuv f l )  . (41)

Denn dann nehmen die Terme in Bu mit Hilfe der Feldgleichungen erster Ordnung die Form (l/<50) y X X 

an (s. u.), die auch die Glieder zweiter Ordnung der Bewegungsgleichung haben. Der allgemeinste Ansatz 

für Bu ist daher

ß.“ = mt y j^ 0 Ha + m2 y>“g'° Hea + m3 yjße’fl H° + m4 xp-,â  HQO + m5 yjf*s H„>e + m6 yeg’a H'a

+ m7 xjJQ<3\ Hßa + m8 \j)QQ Haa'ß + m9 y Q0 H ^ f  + m10 xpe° //„>e . (56)

Bei dieser Wahl von Z?“ wird der symmetrisierte kanonische11 Energie-Impulstensor des ^-Feldes Tuv(y’) 

entsprechend dem Äquivalenzprinzip berüdcsichtigt 6.

T“ sei der Vektor, in den Bu bei Ersetzung von Huv durch — (8^r/0o) Tuv(x) übergeht. Wegen (51/) 

gilt

Huv = - (8 ji/0 o) Tur(x) +o(yj2), (57)

und wir wissen daher, daß B11 und Tu in zweiter Ordnung übereinstimmen:

B“ = T« + 0(yj3) . (58)

Damit wird (53")

- h r u £(x) Ä + + 3„ e (w )  L'w (y,x) + °(y 3) = 0 , (53"')

und der Vergleich mit (52) liefert die Konsistenzbedingung

Tu+ dve(y/lv) L'w (\p,x) = ~ £(z) W 7>>'(x) +o(y3). (59)

(59) stimmt mit der entsprechenden Gleichung in der Einsteinschen Theorie überein, und ihre Lösbarkeit 

mit dem Ansatz (56) ist demnach gesichert. Man könnte hier fortfahren und, allerdings weniger eindeutig 

als im Einsteinschen Fall, eine in zweiter Ordnung konsistente Theorie aufbauen; wir wollen das aber nicht 

tun, weil das bisher benutzte Verfahren, das zu (56) führte, physikalisch zu undurchsichtig ist; insbeson­

dere ist z. B. unklar, ob in (56) der Energie-Impulstensor des I-Feldes miterfaßt wurde.

Statt dessen wollen wir in die Eichung (49) zurückgehen, in der die linearen Feldgleichungen die Form 

(18) annehmen. Das beruht auf der Überlegung, daß für die Konsistenz der Skalar-Tensortheorie in zwei­

ter Ordnung die Konsistenz der durch Eichung reduzierten Theorie notwendig ist und daß, ausgehend von 

der reinen Tensorfeldtheorie (18), alle erforderlichen Rechnungen viel übersichtlicher sind. Der wichtigste 

Punkt dabei ist, daß die Bewegungsgleichung zweiter Ordnung (23) der Skalar-Tensortheorie mit der der 

reduzierten Theorie übereinstimmt und daß, da ja Konsistenz Äquivalenz der Divergenz der Feldgleichun­

gen mit der Bewegungsgleichung bedeutet, die Divergenz der Feldgleichungen in beiden Fällen dieselbe 

sein muß. Das vereinfacht den Übergang zur eich invarianten Skalar-Tensortheorie nach Erreichung der 

Konsistenz.

Bei der Eichung der Feldgleichungen zweiter Ordnung ist zu beachten, daß (49) zunächst nur in linearer 

Näherung sinnvoll ist. Die Invarianz von (49) gegenüber (2) läßt sich durch die Zusatzbedingung 0 ^  = 0 

erreichen. Es ist keineswegs klar, ob (49) auch in zweiter Näherung zu einer invarianten Gleichung ge­

11 Der Einfluß der speziellen Wahl des Energie-Impulstensors auf das Verfahren wird am Ende des Kapitels erwähnt.
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macht werden kann, denn dazu müßten nun auch die Eichzusätze zweiter Ordnung durch eine geeignete Be­

dingung an Aß zum Verschwinden gebracht werden können. Sicherheitshalber setzen wir an Stelle von (49)

(xpaP- \ rjaß rp\) j  = - ( l / 0 o) £’a + o(ip2) (s. Anm. 12). (60)

Unabhängig hiervon läßt sich die Gültigkeit der Eichkonvention (9) untersuchen. (9) folgt aus (49) 

zusammen mit der £-Feldgleichung (46). (46) ist nur bis auf Glieder zweiter Ordnung richtig,

(2 co/ $ 0) f i  =  w°A -  rpe°'00 + o(y j2) , (61)

so daß auch (9) durch

Wttv\ = wl'ß ■^Jro{xp-) (62)

ersetzt werden muß.

Angesichts der unbekannten Terme o(ip2) erscheint es aussichtslos, die Eichung der Theorie in zweiter 

Ordnung durchführen zu können. Den Ausweg bildet die Divergenz (53r) der Feldgleichungen, deren sämt­

liche Summanden o(xp2) sind. Denn wenn wir in Gliedern zweiter Ordnung (49) und (9) statt (60) und 

(62) verwenden, ist der Fehler o(xp3).

Wir wollen uns daher vorstellen, daß die Gl. (53*) in der Eichung (49) vorliegt. Damit (53r) der Be­

wegungsgleichung (52) äquivalent sein kann, müssen die Summanden in G“y\ + 3.„ f i(w ) Lw(y, £) mit 

Hilfe der linearen Feldgleichungen die Form (l/<£0) rp % % annehmen. In der Eichung (49) haben wir in 

erster Ordnung nur die v’-F'eldgleichungen (18), woraus wir schließen, daß + 3„ £ (w )  Lw(xp, £)

durch (49) in einen Vektor D“ übergehen, der nur aus Ausdrücken y y  aufgebaut ist. Wir haben es also 

wieder mit einer reinen Tensorfeldtheorie zu tun.

Bei der Wahl von D** wollen wir uns vom Äquivalenzprinzip leiten lassen: Ausgehend von der linearen 

Tensortheorie (17), (18) erwarten wir, daß der Energie-Impulstensor des V’-Feldes [mit der Lagrange- 

Funktion L(xp)] als zusätzlicher Quellterm in der zweiten Ordnung der Theorie berücksichtigt werden 

muß. Als T^v(xp) soll das symmetrische Landau-Lifschitz-Objekt genommen werden. Zu seiner Berechnung 

müssen wir vorübergehend die pseudo-euklidischen Koordinaten mit der konstanten Metrik verlassen 

und uns vorstellen, daß wir die Theorie ebensogut in einem Inertialsystem mit z. B. Polarkoordinaten als 

räumlichen Koordinaten hätten ansetzen können. Wir wären auf diese Weise zwangsläufig zur allgemein­

sten Formulierung einer Lorentz-invarianten Feldtheorie gelangt14, in der alle gewöhnlichen Ableitungen 

durch „kovariante“ ersetzt sind und die Metrik gßV (statt r)ßV) die Bedingung RßVOO = 0 erfüllt15.

T̂ ,v(ip) läßt sich dann aus der Definition

bestimmen 3. Wenn wir anschließend wieder in pseudo-euklidische Koordinaten zurückgehen, erhalten wir

Tuv (y) = \ yjoav \p-°'v - i  -& xp^y/ß’v - \ v f  yjatt0 xpor,e + i#  v f  V*,q + £ W™ V’°e + h W™ Wo’l

- | Y ° Wog — i  W°'q + \ V/a’“ Vo,q + ? Y a'v V%,e ~ i  Y°'o V#1* ~ \ V%v (64)

- \ Wo + ft v£ i  W'lv - i  Vo•

Uns interessiert in der Divergenz der Feldgleichungen

T (xp) t*\ = i  ip^r xpea'vv - \ D xp*'M x/pl - xpua V’oqv - Y w,q Wal + ft WH* + ft V’a o

= - 2 | YV/*) ~GQV - 2 VK (65)

12 Insbesondere ist fraglich, ob es zulässig ist, beim  Einstein- 14 J. L. A n d e r s o n , P rinc ip les of R e lativ is tic  Physics, Aca- 

schen G renzfa ll in  zweiter O rdnung  die H ilbert-Eichung dem ic Press, New Y ork  1967.

(xpaß— i  rjzß xp^) ,ß =  0 zu verwenden, wie W e s tp fa h l  13 15 G em eint ist na türlich  die allgemein-kovariante Schreibweise

es tut. Besser n im m t m an die bis zur zweiten O rdnung  ent- im  flachen R aum , d. h. m it der (inhom ogenen) Lorentz-

wickelte de Donder-Bedingung. G ruppe als Invarianzgruppe . Diese Begriffe wollen w ir aus

13 K. W e s tp f a h l ,  Fortschr. Phys. 15, 309 [1967]. methodischen G ründen  vermeiden. W ir  schreiben g^v zur

Unterscheidung von gflv in  (130).
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[im zweiten Schritt wurde (14) eingesetzt]. Wegen (62) gilt an Stelle von (15)

Daraus folgt G/*v\ = o(ip2) . (66)

yfo&% = o(yjS) (67)

und deswegen T (ip) fiV\ = - 2 (\p%>v — \ VW,1“) G5V + o (y3) . (68)

Diesen Ausdruck nehmen wir als Ansatz für Z)-“ in der aus (SS'’) durch Eichung entstehenden Gleichung

- h ' " £(z) Ä + Du + dve(ip/xv) L'w (yj,x) +o(^’3) = 0, (69)

und zwar mit einem Proportionalitätsfaktor d: Du = dT(ip) fiV\. (70)
[Dies ist ein Ansatz von der Form (56)]. Zusammen mit den linearen Feldgleichungen (18) folgt

T^\ = de{-d{ l6  7i/(P0) « , - J  V )  T&ix) = D'i + o(ip3) (71)

[vgl. (58)]. Damit lautet die Konsistenzbedingung von (69) und der Bewegungsgleichung (52)

f “% + 3„£ (w )  L'w (tp,x) = - e(x) + o(xp3). (72)

Die Gl. (72) stimmt mit der entsprechenden in der Einsteinschen Theorie überein5’6. Wir wissen daher, 

daß sie lösbar ist und können die Rechnungen übergehen. Bei unserer Wahl der Kopplungskonstante 8 

müssen

L'w (y>*x) =  (8 n ! *o) ( i  m2 f  Vnv V‘uy -  i  m2 X2 v# Wvv ~ i  Z.* Z,fl V™ Y°

+ l  x,* Z* V’v Wo -  Z f Wro Z,a + 2 r u Vßv Y °  Z,°) (73)

und d=\ gesetzt werden. Diese Gemeinsamkeit der (durch Eichung) reduzierten Skalar-Tensortheorie und 

der Einsteinschen liegt einerseits daran, daß die Bewegungsgleichung, mit der die Feldgleichungen verträg­

lich sein sollen, in beiden Fällen dieselbe ist, andererseits daran, daß wir mit der unmittelbaren Einfüh­

rung des „gravitierenden“ Landau-Lifschitz-Tensors offenbar formal das gleiche getan haben, was bisher 

im Einsteinschen Fall auf anderen Wegen erreicht worden ist. Man hätte auch von dem nach der BELINFANTE- 

Methode 16 symmetrisierten kanonischen Energie-Impulstensor zur Lagrange-Funktion L(xp) ausgehen kön­

nen. Dieser Tensor läßt sich zwar berechnen, ohne vorübergehend die Minkowski-Metrik aufzugeben, führt 

aber nur auf einem Umweg zur Konsistenz (in der Bezeichnungsweise von Barbour: a = b ' = c' = 0 , aber 

d! 4= 0). Da die Einstein-Theorie in allen Rechnungen für $ = \ enthalten ist, gelten diese Ergebnisse ins­

besondere auch dort.

Die Feldgleichungen zweiter Ordnung

Die Einführung von T (xp) z u r  Erreichung der Konsistenz kann solange nur als Ansatz gelten, wie 

nicht nachgewiesen ist, daß der Ausdruck aus einer Lagrange-Funktion abgeleitet werden kann. Wir wollen 

diese Frage an Hand der eichinvarianten Skalar-Tensortheorie untersuchen, da dann die gefundenen Ergeb­

nisse insbesondere für die reduzierte Theorie gelten.

Als Ausgangspunkt dient die zur Konsistenz führende Divergenz der Feldgleichungen (69), die mit 

(70) und d = \ übergeht in

(8 7i/<P0) T(x)‘uv\+ 2 T(yj)uv\ + dve(xpßV) L'w (ip, x) +o(y3) = 0 , (74)

oder mit (68)

(8 n /0 o) T(x)!XV\- ( y & - £ W /0  G^ + S ^ W )  Lw (V>*Z) +o(*p3) = 0. (75)

Da die richtige Eichkonvention (60), die die Behandlung auch linearer Terme erlaubt, nicht bekannt ist, 

muß man schon an dieser Stelle in die eichinvariante Theorie zurückgehen. Wir fragen also nach einer Glei­

chung, die die Form einer Divergenz hat und mit (49) in (75) übergeht. Die einfachste Möglichkeit ist,

— O v durch Huv [vgl. (41)] zu ersetzen:

(8ti/$o) T(z)ßV,v+ « ,  - l  ’/WO + {y,z) +o(y3) = 0. (76)

18 F. J. B e l in f a n te ,  Physica 6, 887 [1939].



Wir wissen wegen der Äquivalenz zur eichinvarianten Bewegungsgleichung, daß

{8tz/<P0) T(x)flv\ + T'X\ + 3 ,e (w ) L'w (y>,x) + o (y s) =0  (77)

gegenüber der erweiterten Gruppe (2), (25) in der entsprechenden Ordnung invariant ist. Daraus folgt, 

daß auch (76) diese Eigenschaft hat. Damit ist gezeigt, daß zwei der Forderungen, die man an (76) stel­

len muß, erfüllt sind, nämlich die Reduktion auf (75) mit (49) und Eichinvarianz. Die dritte geforderte 

Eigenschaft, daß (76) Divergenz von Feldgleichungen ist, die aus einer Lagrange-Funktion folgen, wird 

noch nachgewiesen.

Aus Gründen der Allgemeinheit muß man in (76) zusätzlich zu (Ve% —2 W/*) Ausdrücke der Form 
((2 co/<£0) S’i —We'o+W9°'oa)Lu, die wegen der £-Feldgleichungen (46) verschwinden, und

die bei Eichung durch (49) =0  werden, sowie Ausdrücke, die durch Kombination von (46) und (49) 

zum Verschwinden gebracht werden, zulassen; dabei sollen und F£ Tensoren erster Ordnung sein. Da 

(76) bereits die drei genannten Forderungen erfüllt, müssen die Zusatzglieder allein es ebenfalls tun. Man 

kann auf diese Weise versuchen, die Zusatzglieder auszuschließen und Aussagen über die Eindeutigkeit 

des Verfahrens zu gewinnen. Wegen der Kompliziertheit dieser Methode wollen wir vorläufig nur den 

„Existenzbeweis“ von (76) führen.

(76) muß in zweiter Ordnung mit (53') übereinstimmen. Das zwingt uns zu setzen

= - (v£„ -  \ VV/*) G* . (78) 

3„ e (w )  f) = (!/^o ) (Ve.v “  2 W /O  ( f ’** -  V™ f i )  • (79)

Gleichung (78) für GMV\ ist genau dieselbe wie im Einsteinschen Fall, und es ist von dorther bekannt, 

daß damit £■“*’ und L(y) (bis auf Divergenzen) eindeutig bestimmt sind6. Wir geben G“’’ für spätere 

Rechnungen an:

Guv =  -  \ v t s  V s -  i  We,<* V 0,a ~\Wq W"e'* ~ i  Waß W ^’aß + iw Xv,/x W^,a -  1 W%A + 2 Wlv W a/‘

+  \  x fß  ipaß^  +  |  y/a« -  \  yjf“  y jla a -  ± t/;“ A

+ V “ Wi«,av - i  waß’v v W  + i  r ß v£ß + i  wVT < ’r - 1 wvr W a r w u\ w*a + i  W^\ V« T (80)

+ \ yjßw yl'ß + \ Ve'a Wo + 1 Tj^ WeA V’a“ + \ l f  W*ß Wo,aß ~ \ W°° V*? + 2 i f  Wo° föjL 

-  \ rf* Wo Win™ -  \ VMV Waß Va oß -  I  i f  V C T  WaT -  4*TV Wßa,a Wua.fi + IW ^  Wo a ~ 2 W^ Wao™ 

~ iW x i -  V ^a  ~ Wa,>iV + Wa^ + Va’“” + Wo a ~ Wao™) ■

Es bleibt die Aufgabe, Lw(yj, £) zu finden. Wenn wir uns auf höchstens zweite Ableitungen in den Feld­

gleichungen beschränken, kommen für Lw(xp, £) wegen (79) nur Skalare in Frage, die quadratisch in xp 

oder seinen ersten Ableitungen und linear in £ (oder £,T) sind; es gibt also die drei Typen

Vh,o Vl'a I  und

Die letzte Klasse kann man ausschließen, da sie überhaupt keine Terme, wie sie in (79) gesucht sind, lie­

fert. Der allgemeinste Ansatz, den man aus Skalaren vom ersten Typ bilden kann, ist

L i (w J)  = 2  Ei (81)

FELDTHEORETISCHE KONSTRUKTION DER JORDAN-BRANS-DICKE-THEORIE 609

i= 1

mit konstanten e; und

E! = W» Wl,r £’T, E2 = w  y uv’T f>r , £3 = V’« WßrJ1 f ’r »

£4 = Wßv Vr’*’ £’T , £5 = WßT Wa11 f ,r , = £’T • (82) 

Die möglichen Kombinationen des zweiten Typs sind

£7 = ^8 = Wtiv,oWua,v £, = Wm,o Wv° s , E10 = y-̂ a rpv\ ^ , En  = w ^’nW'o,* f  • (83)
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Die Ek (k = 1 , . . . ,  11) sind jedoch nicht Lagrange-unabhängig: Man kann ein E^ bis auf eine Divergenz 

als Linearkombination der übrigen darstellen; z.B. ist En

En = W .« s - I  3Ö (Wßv Wuo,v ~ Wl V“r'v) =E* + %AVßv Y w,v - Wl Y"'\) ~ 3 *[£(w  y “°'v - </’“%) ] 

= E8 + E4 - £ c - 30 [£( w  ̂ 0,v - wl Yuv\) 1 • (84)

Wir lassen deswegen En  in Z4-(i/’, £) weg:

io
L i ( y j )  = l e ; ^ .  (85)

i= l

Für die spätere Verwendung in den Feldgleichungen geben wir die Eulerschen Ableitungen von L\v{yj,£) 

+ Ll(y\£) an,

e ( 'Pur) [Li ('l>, I) + £w ( I) ] = - sct - e2 y)** £'Z + (e3 - e5 - e10) rjuv y.'0,t e f T

+ I  (e5 - e3 - eio) V#" £’r + i  (c5 - e3 - elo) V « - <?3 <  + 2 (e4 - e6 - 2 e8) V#’ f r 

+ i(e4 - e6 - 2 e8) y#1* f T + $ (e6 - e4) yjf*\ £’v + | (e6 - e4) P  - £ (e4 + e6) yj*0 &

— I  (e4 + e6) yfa f  a - e5 f]uy y)0T - 2 e7 v'4” a £ - 2 e7 £>ö (86)

- e8 y. '̂o i- e 8 yjva’% £ - 2 e9 r]uv y%a„ £ - 2 e9 jf*' v4’a f t0 - e10 r}“v V’?%s £ - e10 y f1"  $ .

Zunächst aber brauchen wir deren Divergenz:

3,, £(!/-’„,) [Z-w (V’> s) + (v. £) ] = - (ct + e3) 1/4 f  7  + (e3 - e4 - c5 - e10) VV.e f  r/‘

+ | ( — e3 + e5 — 4 e9 — 3 e10) y>%’v £,v + ^ ( — 2 ej — e3 + e5 — e10) yf£ß 

^  i(  — es + e 5 — 4 e9 — e10) £,/{ + i  ( — 3 e3 + e5 — 4 e9 — e10) t/-’«’

+ | (e4 - e6 - 4 e7 - 2 e8) y>t'1 £’T + ( - e6 - 2 e7 - e8) y%’v $'l (87)

+ \ (2 e3 + e4 — 2 e5 — eG — 4 e8 — 2 e10) v£rf,T + i  (c4 - 2 e5 - e6 - 2 e8) yjvr'M ̂

+ I ( - e4 + e6 - 4 e7 - 2 e8) ” + \ ( - 2 e2 - e4 + c6) y'"7’., £’l

2 ( ~ e 4 + e6 — ̂  e10) y-’'°\.0 £’•“ — ^ (2 e2 + e4 + e6) yjfW $’av ~ ^ (e4 + 2 e5 + e6) y)vo £'fdv

— (2 e7 + e8) ^ a„ £ — (e8 + e10) y.’ £ — (2 eg + e10) f •

Wir wollen versuchen, durch Vergleich mit (79) die Konstanten e-, zu bestimmen. Gleichsetzen der Koeffi­

zienten der vier Terme, die in (79) auftreten, ergibt

— e6-2 e7-e8= (l/<£0)> e\ ~ 2 e3 - e6 - 2 es = - (l/& 0),

-2e1-es + es-e10= ( l / # 0), - 2 e2 - e4 + e6 = - (2/0o) . (88)

Alle übrigen Klammern in (87) sollten =0 sein. Auf jeden Fall wollen wir das Verschwinden der sechs 

Terme mit dritten Ableitungen fordern, da dve(y)uv) [Llw(xp, £) + (L̂ -iy), |)] Bestandteil einer physikali­

schen, nämlich zur Bewegungsgleichung äquivalenten, Gleichung ist. Diese Forderung liefert die sechs Be­

dingungen

C\ + e3 = 0, 2 e2 + e4 + e6 = 0, e4 + 2 <?g-|-eg = 0, 2 e7 + e8 = 0, = 0, 2cg + êQ = 0. (89)

Die Lösung der zehn Gleichungen (88), (89) enthält noch eine freie Konstante, da nur neun von ihnen 

unabhängig sind:

e2 = -et + (1/2 0„), e3 = -e1, e4 = 2 et , e5 = - ex + (1/2 @0) , (90)

'’o = — (V^o) e~ = ~~ ei~  (1/4 ^o)» e8 = 2^! + (1/2 0 O) , e9 =e1+ ( l / 4 0 o), e10 = —2e1— (1/2 0 O) .

Die Koeffizienten der bis jetzt nicht berücksichtigten Terme in (87) lassen sich jedoch für keine Wahl von 

ex gleichzeitig zum Verschwinden bringen. Das bedeutet, daß es keine Lagrange-Funktion Lw(y’, £) gibt, 

die genau (79) erfüllt. Die bisher getroffenen Annahmen sind also zu eng gefaßt. Da wir die mit der 

Bewegungsgleichung verträgliche Divergenz der Feldgleichungen in der Form (76) behalten wollen, bleibt 

nur die Möglichkeit, den Ansatz (50r) für L* zu erweitern. Statt mit einem allgemeineren Ansatz von vorn 

anzufangen — was rechnerisch kaum durchführbar ist —, wollen wir die nötigen Erweiterungen konstruk­

tiv aus der Forderung gewinnen, die bisherigen Widersprüche zu beseitigen.
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Der einzige Ausweg aus der genannten Schwierigkeit — daß Lyv(xp, f) die Terme in (79) nur in Ver­

bindung mit anderen liefert, die die Konsistenz zerstören —, besteht darin, weitere Wechselwirkungsglie­

der hinzuzufügen, die infolge der Feldgleichungen erster Ordnung die störenden Glieder gerade kompen­

sieren. Um festzustellen, ob das möglich ist, wird (90) in (87) eingesetzt. Man erhält [mit Lw(yj,£) 

= Ll(y', f | + L% I v, f ) ]

3 , , ( ' / ’■ f )  -  i  ( 2e : + ( l/ $ o )  ) V-K £ ’’ + (1/2 rI ‘») 't’l “ f  { - >h V Ü  i ‘"

+ i ( 2  e, + (1/Ü>,)) v «  ?■' + (1/<P0) v T  «  -  i  (2 e, + (1 /® » )) v W

- (1/2 <?>„) - * (2 «, + d/<p0) ) r " v  f  - d/®») <r\ fr  + (9i) 

= (2 e, + (l/4>0) ) G "  f., + (1/2 <P„) v f ' f i  + (1/2 3>„) y K f ’*

+ (1/Ü>0) v?’’ «  - (1/2 <2>„) V * * «  - (1/®.) V"“’. «  - (1/2 4>0)

[im letzten Schritt wurde die Definition (33) von G“" verwendet]. Die unerwünschten Terme in (91) sind

{2et + ( l/0 o)) + (1/2 0 O) xpYv^- (1/2 <Z>0) Y \ o^-  (92)

Der erste Summand läßt sich offenbar mit Hilfe der Feldgleichungen (41) umschreiben, die beiden anderen 

enthalten nach Zusammenfassung gerade die rechte Seite der £-FeldgIeichung (46). Daher gilt

2 e ‘  +  * , )  °  ’ t £ " +  2 '[>„ V"  ~  2 <bn
= + + +o(v»). (93)

Um diese Glieder zu kompensieren, muß man (ÖO'’ ) erweitern zu

L** _L(v) - ”2 fj ±  + -1+ ^  W  T’-(x)

o(ip2) o(ijJ2) o(xp2) o(xp) o(xjr) (94)

+ Ly, (y>,x) +L(y>) +Lw(xp,g) +LW(rp,g,x) + (y, £) ,

o(y3) o(yj3) o(yj3) o(yj3) o(yj3)

wobei die beiden hinzugekommenen Wechselwirkungs-Lagrange-Funktionen die Beziehungen

3„ e (w ) £w(V>» f, Z) = - 2 ^ 2 ~  8 71 ^  (Z). (95)

(96)

[bis auf o(i^3)] erfüllen müssen. Unter der Voraussetzung, daß Lw(i/j,£,x) und L%(xp, |) existieren, be­

schreibt L**, unabhängig von e1 17, eine in zweiter Ordnung konsistente Erweiterung der Skalar-Tensor- 

theorie (47). Denn nach Konstruktion ist

0 = 3„e (w ) L** = (8 7t/0O) T(x)>‘'\ + G“\

+ d/^o) (K-- I  W/O ( f ^ - ^ f l )  + 3,.e(w) L'w (yj,x) +o(yj3) (97)

äquivalent zur Bewegungsgleichung (52), die sich beim Übergang zu L** in zweiter Ordnung nicht ge­

ändert hat.

Zur Untersuchung von (95) überlegen wir uns zunächst £(ipliv) Lw(y, f, x) • Man findet sofort die Lösung

«(v..) M v . f .z )  = - — i V -  8 ^ ^ r “'(Z). (98)

17 et kann erst im nächsten Kapitel mit Hilfe von Invarianzforderungen festgelegt werden.
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Denn daraus folgt wegen T (%) = o (yj),

3,. e (w )  (v, £,%) = -  - ^ Cg-+1 8 n i iV T“y(%) + o(y3) .

Ähnlich einfach läßt sich £(t/^„) L%(y,t;) hinschreiben, da im ersten Summanden von (96) (£’/or — rj^v £ \) 

divergenzfrei ist und der zweite Summand 2 £ « enthält, d. i. die Divergenz des (kanonischen) Energie- 

Impulstensor des ^-Feldes.

Man erhält

e (w ) L& (y,£) = - 2 ^ l el>+1 H £’-uv - Vttv H )  - (w/^o2) h  £’*) • (99)

Weil in den rechten Seiten von (98), (99) das Tensorfeld nicht auftritt, ist die Existenz der Lagrange- 

Funktionen Lw(y;,£,x) und Lw(y;,£) evident (Multiplikation mit xp̂ v und Verjüngung über ju und v) .

Die bisher gestellten Forderungen — Konsistenz, Existenz einer Lagrange-Funktion — haben aber nicht 

ausgereicht, die Konstante ex in L** festzulegen. Wir müssen daher noch die Feldgleichungen zweiter Ord­

nung und ihre Invarianzeigenschaften untersuchen. Wenn man (86) mit (90) ausrechnet und zusammen 

mit (98), (99) in £ (w )  L** = 0 einsetzt, erhält man

_  G‘uv + “  (£’";v - rjuv f l )  - rjuv y l  &  + (e* - + 2 ?f >’ y 0Tß p

+ \ei+ 2  0 O) +r 1 + j w , } s * +ei - ei Vt’v |,r “ ei ^ * ,r

- (e*+ 2 y ^  ■ (ei + 2 w ) '  - [e>- 2 y r "'*  - (** - 2 k ) ^  ̂

+ (e‘ - 2 $ , ) r f ' f '*'+ -  (2 e i +2 y (i oo>

+ 2 (2 «,+ 2 ^ ) ^ - +  ^  r ( Z)'" + £(v „) z4 (V,z) - - * f f t + 1 8 » f r ' » ( it)

- 2 0 ^ + 1  =0 

y 0  ̂0

mit Lw(if>, y) asu (73). Nach Zusammenfassen einiger Glieder mit Hilfe von (41) haben wir schließlich

_  + 6'"' + (f.“” - >r ( i )  - >;■" V>1 ( i  + ( f, - 2 ~  j  v"" fS + 2 e, Vs,e £•'

U l +  2 k

(«! + ^ - )  <■" f ” + (e, + V-r #•" + «i Vä f ’"  - V f' f ” - «1 V** f "

_ )  v , % p  - (e, + f., _  «  (101) 

*, -  2y  v ' ° w + ( e* ■ 2y  ^ f - + ( 2 e‘ + 2y ^

- (2e,+ 2 ^ )  < r v T  #-+ ^  8 n f r ^ ( Z) + ~  r * - «

+ £(vv) C  (V, z) - ( !’“ f*’ - I  Vuv £.1 + o(y3) = 0 

als Feldgleichungen zweiter Ordnung.
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Eichinvarianz in zweiter Ordnung und die exakte Theorie

Ausgangspunkt unserer Behandlung der Skalar-Tensortheorie waren die Feldgleichungen (18), die xp  ̂

nur bis auf AMtV + Ay>fi mit CH Aß = 0 bestimmen. Wir forderten daher diese Freiheit von xpMV auch in der 

Bewegungsgleichung und fanden die erweiterte Gruppe (2), (25). Hier, in der zweiten Ordnung der Theo­

rie, gehen wir den Weg in umgekehrter Richtung: Die Bewegungsgleichung zweiter Ordnung blieb unge- 

ändert und gestattet die Gruppe (2), (25). Wir erwarten daher die gleichen Invarianzeigenschaften bei 

den Feldgleichungen zweiter Ordnung (101). Wir müssen allerdings damit rechnen, daß (2) nur die erste 

Näherung der wirklichen Eichtransformation ist, die auch höhere Ordnungen enthält [vgl. (60), (62)]. 

Bisher bestand kein Anlaß zu dieser Frage, da die höheren Terme von xp^ in den linearen Feldgleichun­

gen und in der Bewegungsgleichung keine zu berücksichtigenden Beiträge liefern. Audi das Transformations­

verhalten von £ wird in (101) wesentlich. Für infinitesimale Eichtransformationen können wir uns auf li­

neare Glieder in A beschränken und setzen an

W  Wur = W  + A „  + AVtfi + a xpM A\ + a xpVQ + b xpM Ave + b xpvo

+ cxpQe AM', + cxp9Q Av<fi + d xpßV A*'q , (102)

e ^ l= e + n § ,A ) ,

3a. 3„ = 3„.

Aus (25) übernehmen wir %—*• x = % + o(xp2) . (103)

Die Konstanten in (102) sind mit Hilfe der Invarianzforderung von (101) zu bestimmen. Dazu betrach­

ten wir (101) speziell in vacuo und setzen zur Abkürzung

» = ' (?■"• - r r  f i )  - e, ir  yt f  •? + ( <•,- f{  +2e, >,“■ y,„* f.« + (e, + 2\ j  VlJ‘

+ («.+ 2\ )v>? $* + elrtt*’ -eiv4'e”-elvr £■'- (e,+ (1Q4)

- (C' + 2 W ) f '" - (e‘ - 2 ^ )  «  -  (“  - 2 W )  Y ° M  + (*‘ "  i W )  r ’ ̂  

+ (2 «,+ 2V ) r ' - ’ f ,.-  (2 «,+ A - ) < r v r f , .+

A

Die Vakuum-Feldgleichungen werden damit — Guv + Guv + K^v = 0 . (105)

Wir wenden (102) zunächst auf K*** an und erhalten für die Differenz des transformierten und untrans- 

formierten K^v
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Wenn (105) unter (102) invariant sein soll, müssen die Terme in (106) durch die Eichzusätze von

— Guv + Guv kompensiert werden, was nur infolge der Feldgleichungen erster Ordnung geschehen kann, da 

in — Guv + Guv — ( — Guv + G-uv) das £-Feld nicht auftritt.

Mit diesen Überlegungen läßt sich auch ex bestimmen: Weil die Feldgleichungen erster Ordnung erste 

Ableitungen von £ nicht enthalten, muß das Verschwinden der Koeffizienten aller Terme mit £,r, £i0 gefor­

dert werden. „Glücklicherweise“ ist das für alle Koeffizienten gleichzeitig möglich, und wir erhalten

e ,--- (1/2 <P0) (107)

als Folge der Invarianzforderung.

Mit (107) wird (106)

R>"-K»v= { 1/0o) — yfv f’i)

+ (1/0O) ÄXtx £* - - A '* i ’a - Aa“ + A»° + Ar’° f  £). (108)

Zur Transformation von braucht man die Konstanten a, b, c, d in (102) noch nicht zu kennen, da 

Gf,v von zweiter Ordnung ist. Ausgehend von (80) findet man

Q.U, _  Q.UV = _  1 yßO J a,u _  1 Jß,v _  J ^  _  1 j^ a  ^ uv,y _  Ja,o _  1 Ja,or _  1 ^ r  Ja,ofl

-  \A,r rfi*  -  i  A , r  v f  - 1 A :  v t "  + i  C  A"'" + * * ’ + i  VA  + i  ̂  Aß-z
-  i  yfß,„ AK-" + iA r> ' yT *  + i  A y’ y f *  + J  A ,’ yT% + i  v£S A + i  V’/ J  A f* + J vr  A f*

-  i  Vß,v A f’-r + i  A\ yT* + * A-,% y ° 'r + 1 A , “ Vr 'i ~ rr  K « «  -1“"  - 'fl.- A' i  (109)

-  r r  A ’\ v,f% . - ä <f' Ay-„ yji\ + rf" y„"„ A°* + V W  + 1 f  A\ y4* + i  tf"  A r%

- 4 A ’;  y f“'% -  h A”,  y&*+  i  A ’ ;  y ?°i + £ A-; y f- f -  i  A ”> y”>\„ + i  Ar* V «  -  i  A h . yT*

-  i  A*’„ y T ’ + i  A * . y T l + i  A * . yT* - i  A”  yr-„ + i  A”  + i  A.,- yT «  + 4 , “ V»“’

-  i  A , “ V "  ~ i  A ,°  '/"'S + i  i r  A , “ -  i  A ."  vth ■

Nachdem K!XV — K^V und G^v — G^v festliegen, kann man aus der Forderung — Gf,v + Guv + Kuv = 0 [vgl. 

(105)] die Werte von a, b, c, d bestimmen. Das Ergebnis ist

a=  — 1, b = c = d = 0. (110)

Mit (110) reduziert sich — G>*v + Gflv auf

_  Qur + G"v = i  V’«a -I"’“ + i  Yß'a ^  W '̂v + I  + W ^  ̂  + \ W ^  ̂  + l  Wo* Aa,Q>>

+ i  A yp if fyv + \ A yr  w eQ y  + 2 A y;  yfQ’yfi -  | C  Aa’V -
-  1 7 $ '” ;1*S + i  - i  A\ - k AyZ xp^y - \ A y;  y f *  -  \ y fä  A** (111)
_  l,,,»/ /|/?,o 1 1,,/. /|y?,0/< 1/1?', i/,eâ  — I  /I f* llfo,y _  1 A II v,va,Y 2 Tß a / i '1 — 2 Tß yl a i 2 VAS.a 2 o Y Y 2 yiy,CT V7 2 yly, V7 <r

+ wleo Aa* + V«,a vla| + » r  ^ ° Vo + I  - r V Vea,c Aa.5

-  VQa,o A\ yjg'y -  i  I f ' A,a ^ ’y •

Zusammen mit (109) läßt sich das in eine einfache Form bringen:

_  (Quv _  Qfir) + Qfxv _  Qnv = _  Qnß Jv,ß _  Qar Jfi^ + Quv J^a  _ (1X2)

Andererseits kann man unter Benutzung von [vgl. (41)]

( l / # 0) ( f ^ - ^ f l )  =//■"”+ G^' (113)

(108) umschreiben zu

^/ir _  = (1/0O) (/,/«■ _  r f  f'\) + (H ^  + G*t) Ay’ß + {Hav + Gav) A ^a - [H^ + Guv) A a? . (114) 

Addition von (112) und (114) ergibt

_  (Qßv _  £/*”) + G^ - + Kuv - K"v = - Guv + G"y + Kf,r

= ( i /0 o) (f’ur - vuv H) + H“ß Av'ß + Hav -1",« - Hav A».a ■ (115)



FELDTHEORETISCHE KONSTRUKTION DER JORDAN-BRANS-DICKE-THEORIE 615

Wenn in (102) f (£ ,A )= 0  (116)

gesetzt wird, verschwindet (115) als Folge der Vakuum-Feldgleichungen erster Ordnung

H“v = 0 . (41')

Man überzeugt sich leicht, daß die Feldgleichungen zweiter Ordnung (101) auch in Anwesenheit von 

Materie eichinvariant gegenüber der Gruppe (102), (103) sind.

Prinzipiell ist es natürlich möglich, nun noch die £-Feldgleichung zweiter Ordnung anzugeben und da­

nach zur dritten Ordnung der Theorie überzugehen. Man würde die aus L** in (94) folgende Bewegungs­

gleichung dritter Ordnung anschreiben und wegen ihrer Inkonsistenz mit den Feldgleichungen zweiter Ord­

nung (101) auf Feldgleichungen dritter Ordnung geführt werden. Die Eichgruppe (102), (103) würde 

sich allerdings dabei nicht ändern. Um das zu erkennen, braucht man aber die Rechnungen nicht explizit 

durchzuführen, vielmehr wollen wir versuchen, die gefundene Eichgruppe, oder eine Untergruppe von ihr, 

als Automorphismengruppe einer geometrischen Struktur zu interpretieren, um auf diese Weise nach Mög­

lichkeit eine übersichtlichere Formulierung der Theorie zu erhalten.

Zunächst muß man die Struktur der abstrakten Gruppe ermitteln, deren „lineare Darstellung“ (102) ist.

yj/j.v ^  Wßv =  tyßv "f" WßO VVfl A ® ’u ( 1 0 2  )

ist eine infinitesimale Transformationsgruppe im Funktionenraum der yjuv(x). Zur Vereinfachung betrach­

ten wir yjßV(x) und Aß(x) an einem festen Punkt £0; dadurch wird (102r) zu einer Transformations­

gruppe im R10 der yjßV (a;0) . Um die Elemente der zugehörigen Lie-Algebra zu berechnen, nehmen wir an,

daß Aß(x) (i = 1, 0) Tangentenvektoren der abstrakten Gruppe sind. Dann sind
i

W  VVM ) = W  + A „  dt + A,tß dt - ipß0 dt - yVQ A%  dt (117)
i i i i i

für infinitesimale dt einparametrige Untergruppen von (102') und daher

dtp ßv (A)

P » v ( V , A ) =  d e f---1 * '  =  A ß,y +  A , ß -  Wm  Ä °'v - V v o AQ\i ( 1 1 8 )
i Q Ol i i i i

( i = l ,  0) Elemente der Lie-Algebra der Vektorfelder von (102r). Bekanntlich18 ist der Kommutator 

zweier Vektorfelder gegeben durch

3P„,(y', -1) dP„(y>,A)

[P(v,A ) ,P (y ,A )] „ ~ --5-- t - P ^ A )  - --ä-- l— P ^ , A ) .  (119)
0 1 O y aß 1 OVaß o

Wenn man (119) bis zur zweiten Ordnung ausrechnet, erhält man

[P (y ,A ),P (y ,A )]ßV = - A ^vAßi0- A ^ A v̂ + A % A ß>0 + A ^ A v>0. (120)
0 1 0 1 0 1 1 0 1 0

Da die PßV eine Lie-Algebra bilden sollen, muß gelten

[P(yj,A),P{y, A)]ßV= P ßV(y, [A, A]), (121)
0 1 0 1

wobei [A, A] der Kommutator der Lie-Algebra der abstrakten Gruppe ist, die gemäß (102') als Trans-
o 1

formationsgruppe im Raum der ipßV dargestellt ist.

[-4, ^1]) bedeutet entsprechend der Definition (118)

PßV(y ,[A ,A ]) = [A ,A ]ßtV+[A,A]v>ß +o(v3). (122)
0 1 0 1 0 1

Zum Vergleich mit (122) formen wir (120) um:

[P(y>, Ä),P(xp, A )]ßV
0 1

= (Aßt0 Ae - Aßt0 A^) >v + (Av>0 As - AVtQ A*) ,ß + Ae (.AßtQV + Av<0ß) - Ae (Aßt0V + AVt0ß) . (123) 
0 1 1 0  0 1 1 0  0 1  1 1 0  0

18 L. S. P o n t r j a g in ,  Topologische Gruppen, Leipzig 1958.
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Man erkennt, daß (122) und (123) nur verträglich sind, wenn

(Äßt0V + Atm) - As (A,C* + A m ) = 0. (124)
0 1 1 i o  o

Nur in diesem Fall bilden die PßV eine Lie-Algebra und die infinitesimale Gruppe (102") läßt sich zu einer 

lokalen Lieschen Transformationsgruppe fortsetzen. Wenn andererseits (124) erfüllt ist, folgt

[A,A]ll = AM A e-A M Ae; (125)
0 1 0 1 1 0

die A  sind also Vektorfelder. (125) bedeutet, daß die „abstrakte“ Gruppe ebenfalls eine Transformations-
i

gruppe ist, und zwar die Gruppe der allgemeinen Koordinatentransformationen

xu -> xu = x“ + A^ . (126)

(124) gilt insbesondere, wenn an der Stelle x0 (s. o.)

Ae(x0) =0  (i = 1,0). (127)
i

Offensichtlich liegt die Diskrepanz von (122) und (123) daran, daß nach Voraussetzung alle Felder für 

festes Argument x0 betrachtet werden sollen, während in Wirklichkeit in (102') das Argument von %pßV 

entsprechend (126) mittransformiert wird19:

W (* )  VV(^) =Vvv{x) + A ^v{x) +Av,ß{x) -xpßQ{x) A%{x) - y yo(x) Ae'fi(x), (128)

d. i. für infinitesimale A

WßV{x) 1/V (ar) =Wnv{x) + AfltV(x) + Av,ß{x)

~ VmW  A*\{x) - xpvo(x) A^ß(x) ~Wnv,0{x) Ae(x). (128')

Der Spezialfall (127) wird durch (102') richtig beschrieben. Auch im allgemeinen Fall A-(xQ) 4=0 kann

man, ausgehend von (128'), mit dem oben angegebenen Verfahren zeigen, daß die A Vektorfelder sind.
i

Nachdem die Struktur der Eichgruppe bekannt ist, liegt die gesuchte geometrische Interpretation der Theo­

rie nahe: In der Lie-Algebra der Vektorfelder A  ist die Menge der Killing-Vektorfelder als Unteralgebra
i

enthalten20; die von dieser Unteralgebra erzeugte Gruppe ist die Isometriegruppe des Raumes21. Da, wie 

wir sahen, mit den Eichtransformationen (102) eine Koordinatentransformation (126) verbunden ist, muß 

in den invarianten Feldgleichungen die Metrik des Raumes bereits auftreten. Als einzig in Frage kom­

mende Größe muß xpßV mit dem Fundamentaltensor Zusammenhängen. Wir setzen daher die Isometrie­

gruppe als Symmetriegruppe von ipßV an, die gegeben ist durch

dyjßv — Wtuv VVv = Wßo Â \ xpvo A-'n Wßv,Q A® = 0. (129)

Offenbar sind (129) nach der Substitution

gßV = rjßy~Wßy (130)

die Killing-Gleichungen der Metrik gßV:

= gß0 A %  + gVQ A * m + gßV,0 A? =  -  dgßV = 0. (131)

Durch Transformation z. B. des Ausdrudcs gßV £,fi £,v gemäß (102) verifiziert man, daß gßV der Fundamental­

tensor unserer Theorie ist.

Wenn man die Ersetzung (130) in den Feldgleichungen (101), (46) und in der Bewegungsgleichung 

(52) vornimmt und

<£ = <£(, + £ (132)

19 Vgl. auch 3  ̂—>■ 3  ̂= 3  ̂— Av’n 3V . 21 L. P. E is e n h a r t ,  Continuous Groups of Transformations,
20 R. H e rm a n n , Differential Geometry and the Calculus of Dover Publications, New York 1961.

Variations, Academic Press, New York 1968.
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setzt, erhält man in der jeweiligen Ordnung die Gleichungen der Jordan-Brans-Dicke-Theorie 2:

V^g(Ruv -  i guv R) = - V^g ^  Tuv

+ V Z 9 ^ ( ^ )-U(̂ v- If -1/Z7g]p (®’ft’v~gf'v<I>,x?), (133)

^ 2 ^ , a ^ a + Ä = 0, (134) 

7>% = 0 (135)

mit dem Wirkungsintegral

W=\j (<l>R+16xLn, - w ^ ^ jV ~ g A * x .  (136)

Dabei ist zu beachten, daß wegen (130) und gßV gr5 = S ®

g.UV _  yjUV ̂  yjflV yjV yjVO _|_ 0 j (137)

gesetzt werden muß. Die behandelte Lorentz-invariante Skalar-Tensortheorie ist also die Entwicklung der 

J.-B.-D.-Theorie nach xpßV = r\ßV — gßV im Minkowski-Raum.

Eindeutigkeit

Bisher ist auf Eindeutigkeitsaussagen ausdrücklich verzichtet worden, da die erforderlichen Untersu­

chungen, besonders in der zweiten Ordnung, sehr kompliziert waren. Man wird deswegen bestrebt sein, 

die J.-B.-D.-Theorie nicht erst an Hand der Feldgleichungen zweiter Ordnung, sondern schon wesentlich 

früher zu identifizieren.

In Zusammenhang mit der Bewegungsgleichung (23) hatten wir die Eichgruppe (25) gefunden, nach 

der sich x,n wie

= (138)

transformiert. Man kann versuchen, ähnlich wie bei (102'), die Struktur der infinitesimalen Gruppe (138) 

zu bestimmen. Dazu betrachten wir wieder X,n(x) un(  ̂ Aß(x) bei festem Argument und erhalten als 

Definitionsbereich der Transformationen den R4 der X,tAxo) - Mit den Tangentenvektoren Aß (i = l ,  0) 
erhält man zwei einparametrige Untergruppen von (138) in der Form 1

X,n -> X,ß = X,u - Av'ß X,r (139)
i

und deren infinitesimale Erzeugende

Ax.AA)

P J / ,A )  d a ’ = - A ‘\x,.- (140)

Damit läßt sich der Kommutator der Vektorfelder

dP „(x ,A ) 3Pr (x ,A )

[P (X ,A ),P (x ,A )] .=
0 1

explizit angeben

[P(X ,A ),P (X ,J1 )]»- — 5- — /’.(Z .- l)- — K(X ,A ) (141)
0 1 OX,a 1 OZ.« 0

[ P (X ,A ) ,P { x ,A ) ] lt = (A'\A\-A\A%)x,a. (142)
0 1 0 1 1 0

Das Lie-Produkt (142) muß sich schreiben lassen als

[P(X ,A ),P (X,A )]„ = P J X,[A ,A ]) = - lA ,A l\ x ..-  (143)
0 1 0 1 0 1
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Das zwingt uns nach Umformung von (142),

[P{X,A),P{.X,A)]„= - (A- A\„- A- A\„) x,. (144)
0 1 0 1 1 0  0 1  1 0

zu der Annahme
Av A°\.ß - Av A\ß = 0 . (145)
0 1 1 0

Wenn (145) gilt — was insbesondere für Ae(x0) =0 [vgl. (127)] der Fall ist —, folgt aus (143) und 
(144) i

[A, A]° = A% Av - A\ Av (146)
0 1 0 1 1 0

[vgl. (125)] ; die A  sind dann Vektorfelder der Gruppe der Koordinatentransformationen (126) und ent-
i

sprechend hat man an Stelle von (138) genauer

X,ß (x) X,ß (x) = (x) - A\ (x) x,v (*)» (147)

oder nach Entwicklung von X,n(x)

X,ß (x) Lß (*) = X,ß (x) - X,v (x) A% (x) - x,ne (*) As (x). (148)

Wegen des Auftretens von x.hq in (148) muß man bei unserem Verfahren die Transformationsformel

X,»o = X,ßo - (X,y Ay>fl) >ö - (x,w Ae) ,0 (149)

hinzunehmen und erhält entsprechend die vierzehnkomponentigen infinitesimalen Erzeugenden P'(x, A)
i

der einparametrigen Untergruppen von (148), (149); die 4 + 10 Komponenten von P'(x> A) sind ge-
i

geben durch
&x'AA)

K  (X, A) =  def —  * = - x,v A\ - x,uo Ae, (150)
t Q Öt i  i

bzw.
dx (A)

P/to (*, A) = de{ — T X 2 -  = - X.VO A\ - x,v A\o ~ X.ßoc Aq -  X,ßQ A?’a . (151)
u Ol i i i i

Damit lassen sich die ersten vier Komponenten des Kommutators

dP„(X,A) dP'ß(x,A)

[P '(X,A),P '(x,A )]tl=  ° P'a(x ,A )+  a 0 P'aß (x,A)
0 1 OX,a 1 OX,aß 1

3 P'Al A) 3 P'Ax,A) (152)

rs — K  (*, A ) ----«-- —  Paß ix, A)
&X,a o OX,aß 0

bestimmen zu

[P'(X, A) ,P'(x, A) ] „ = A\ A\ x,r - A\ A\ y.x + A * A\t x,v + A* A\ x,ß9 - A* A\t - A ' A«t x,w .
0 1 0 1  1 0  0 1  0 1  1 0  1 0

(153)
(153) kann man zusammenfassen zu

[/>'(x, A), P’ (x, A) ]„ = p ; (X, [A, A]) = - x,[A,A]-„ - x,M[A, A]« (154)
0 1 0 1  0 1  0 1

mit [A,A]V aus (146). Dies Ergebnis zeigt, daß (148) und (128^ lineare Darstellungen derselben Gruppe
o 1

(126) sind, im ersten Fall im Raum der x,m im zweiten Fall in dem der . Die einzelnen Eichtransfor- 

inationen entsprechen den jeweiligen Tensortransformationsgesetzen einer im Riemannschen Raum kovariant 

formulierten Theorie, und zwar nicht nur in zweiter Näherung, sondern exakt.
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Falls die Feldgleichungen zweiter Ordnung (101) und deren Eichgruppe (102), (103) schon bekannt 

sind, läßt sich daher folgendes aussagen: Wenn man das — nach der zweiten Ordnung abgebrochene — 

Verfahren der schrittweisen Behebung der Inkonsistenz unter Beibehaltung der Eichgruppe fortsetzt, erhält 

man genau die nächsten Ordnungen der Entwicklung der J.-B.-D.-Theorie nach Potenzen von y.

Wir wollen jetzt ein ähnliches Resultat ohne Kenntnis der zweiten Ordnung der Theorie gewinnen: Mit 

Hilfe der Bewegungsgleichung (24) war es möglich, die Struktur der Eichgruppe von ŷ ß zu bestimmen. 

Man kann dann ohne Benutzung der Feldgleichungen zweiter Ordnung beweisen22, daß die vollständige 

Eichgruppe von yjßV dieselbe Struktur haben muß; das läßt sich unter Verwendung eines physikalischen Ar­

guments plausibel machen: (23) ist die Gleichung einer geodätischen Bewegung im Riemannschen Raum 

mit der Metrik gßV = r]ßV — xpßV 23, die sich auch in der Form Tuv.v = 0 schreiben läßt. Die Forderung der Kon­

sistenz von Bewegungs- und Feldgleichungen bedeutet, daß T/*v.v = 0 aus den Feldgleichungen mit Hilfe 

von Identitäten folgt, die sich aus Invarianzeigenschaften des Wirkungsintegrals gemäß dem Noetherschen 

Theorem ergeben. Man weiß aber24, daß hierfür als Invarianzgruppe nur die Gruppe der Koordinaten­

transformationen in Frage kommt; daraus ergibt sich wieder, daß die Strukturen der Eichgruppen von xpßV 

und X'ß übereinstimmen.

Aus der Kenntnis der Struktur läßt sich eine Eichgruppe zweiter Ordnung von \pßV leicht angeben [z. B. 

(102r)] . Dieses wichtige Ergebnis, daß bereits die Bewegungsgleichung (24) die Struktur der Invarianz­

gruppe vorherzubestimmen gestattet — was insbesondere im Einsteinschen Fall gilt und auch in der Arbeit 

von Wyss übersehen wurde —, steht im Einklang mit der Bemerkung von Thirring25, daß sich in der im 

Zusammenhang mit der linearen Theorie auftretenden Bewegungsgleichung gßV = r\ßV — yj^v als observable 

Metrik herausstellt und sich der Übergang vom flachen zum gekrümmten Raum zwangsläufig vollzieht.

Natürlich ist eine Liesche Transformationsgruppe durch Angabe ihrer Struktur nicht vollständig bestimmt; 

die Darstellung von (126) im Raum der Lorentz-Tensoren zweiter Stufe ist noch weitgehend willkürlich. 

Für die von B a r b o u r 6 diskutierte Substitution

Wßv — Cßv + H ^  + l2 fßv Cq + Yjnv C0a + *4 Vßv fg Ca (155)

wird die Eichgruppe in zweiter Ordnung

CUV ~^ CUV ~ CßV "H Aß'V “H -A-V,ß CHQ CvQ i'j Aß,Q *1 Cv ~̂Q,ß l'l CHQ i| CßO 

-  i-2 £! -  H Ce ~ 2 i2 C„v A 0Q -  4 13 r]ßV CQO -  4 14 rjßV & A 0* + o (^ 3) ; (156)

(156) ist von derselben Struktur wie (102'). Auch eine Ersetzung von , die in zweiter Ordnung das 

Skalarfeld £ enthält, ist möglich, z. B.

VV- = < V - ( W ^ v .  (157)

(155) und (157) ändern die lineare Theorie und deren Eichgruppe nicht; die Feldgleichungen zweiter 

Ordnung sehen allerdings anders aus als (101). Man erhält jedoch auf diese Weise nichts wesentlich Neues. 

Denn die Untersuchung aller nicht-linearen Erweiterungen von (41), (46) mit Eichgruppen der Struktur

(125) läuft hinaus auf die Frage nach kovarianten Theorien im Riemannschen Raum, deren lineare Nähe­

rung bei der Entwicklung von g ßV == f] ßV — yj^ die Gin. (41), (46) bilden. Hierfür kommt offenbar nur die 

J.-B.-D.-Theorie in Frage. Wenn man also in den zu (155) und (157) gehörigen Feldgleichungen zweiter 

Ordnung mit der Beziehung gßV = rjßV — xpßV [yjßV wie in (155) bzw. (157)] Terme zusammenfaßt, erhält 

man in beiden Fällen das gleiche Ergebnis.

In diesem Sinn ist die Frage nach der Eindeutigkeit einer konsistenten Erweiterung zweiter Ordnung zu 

beantworten: Zwar ist das Verfahren formal nicht eindeutig — das Auftreten weiterer quadratischer Terme

22 Der Beweis wird im Anhang gegeben. Die Bewegungsglei­
chung, mit deren Hilfe schon die Ordnungsdefinition ein­
geführt wurde, spielt also die entscheidende Rolle bei die­
sem zweiten Weg zur Konstruktion der kovarianten Theo­
rie.

23 P. M i t t e l s t a e d t  u. J. B. B a r b o u r ,  Z. Phys. 203, 82 

[1967].
24 A. T r a u tm a n , in: Gravitation: An Introduction to Cur­

rent Research, New York 1962.
25 W. T h ir r in g ,  Ann. Phys. New York 16, 96 [1961].
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kann nicht ausgeschlossen werden —, aber die dabei entstehenden Theorien — mit Eichgruppen gleicher 

Struktur — sind physikalisch äquivalent.

Durch Berücksichtigung des Landau-Lifschitz-Tensors (64) des ^-Feldes haben wir gerade die einfachst- 

mögliche Erweiterung der linearen Theorie gefunden.

Anhang

Strukturbestimmung der Eichgruppe von y/iv aus der linearen Bewegungsgleichung 

Die lineare Bewegungsgleichung [vgl. (24)]

- 2 - 2 m2x + yjv„ + yZm2x~ 2 %,v - 2 ip*** %,ßV + y ,̂v X'v = o (y2) (A l )

ist invariant unter den infinitesimalen Eichtransformationen [vgl. (2), (25)]

ty,uv ^  Wuv =  V̂ /ur "t" “t” 1

x -+x = x ,
X,ii X,n = X,n ~ X,v -A ’/u i (A 2)

X,fiV X,nv — X,fiv -A-Q'h X,vq A~ \ X,HQ A~’/lv X,0 •

Die zur Erreichung der Konsistenz erforderlichen Feldgleichungen zweiter Ordnung müssen aus physikali­

schen Gründen ebenfalls eine Eichgruppe besitzen, die sich, von den Transformationen für £ abgesehen, von 

(A2) nur durch einen Term zweiter Ordnung yßV (y, A) in xpßV unterscheiden kann

w  VV = W  + + Vnv iv>, A) . (A3)

[Bei Kenntnis von yjn,(ip,A) läßt sich die Struktur von (A3) direkt bestimmen.] Höhere Ordnungen in 

Xi X,ß, X,,tv wären von der Form o{A2) und werden in infinitesimalen Transformationen nicht berücksich­

tigt.

Die Feldgleichungen zweiter Ordnung folgen aus einer Lagrange-Funktion dritter Ordnung L**, deren 

Kenntnis wir aber ausdrücklich nicht voraussetzen. L** liefert eine Bewegungsgleichung zweiter Ordnung 

(nach Multiplikation mit <£0) » die wir symbolisch schreiben wollen als

- 2 X'ft‘ ~ 2 m2 x + Y* X’m + Yv ™2 X ~ 2 X,v - 2 xpuv x,& + X,v + e(x) L (v» ^  X) = o(ys) . (A 4)

Ebenso, wie wir aus Konsistenzgründen wegen der Invarianzeigenschaften von (A 1) die Eichgruppe (A 2), 

(A3) für die Feldgleichungen zweiter Ordnung gefordert haben, folgern wir nun aus der Invarianz der 

Feldgleichungen zweiter Ordnung die von (A4) gegenüber (A2), (A3).

Wir wollen zunächst beweisen, daß die Invarianz von (A4) gegenüber (A2), (A3) impliziert, daß 

(A4) die Gruppe der entsprechenden „lokalen Variationen“ gestattet, also die infinitesimalen Transfor­

mationen W + V.uv (V, A) -  A' i
X -+Xx =X-X,QÄQ,

X,ß -*X*n =  X.» -  X,v A'\ -  x,M A<?, ( A 5 )

X,nv  ̂X.,vv = X,r*v A-'n X,vq A-\, x,no A-'/lv x,o X.ßvo A- .

Wir haben also zu zeigen

- 2 f ’Z -2 m2 xx + Wrl x f’ß + Vxv ™2 Xx~2  xf- - 2 WXflv zf,,»

+ < »  Xx,v+ IX*) L{y>,£,x)]x = o ( ^ 3)- (A6)

Berücksichtigt man, daß es in zweiter Ordnung gleichgültig ist, ob man e(x) L(y',£,x) mit (A 5) oder mit 

(A2), (A3) eicht, da e(y) L(xp,^,y) von zweiter Ordnung ist,

[>(*) L (y jJ ,x )V  = £(x) L (y J ,x )  + o('/’3),
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so bleibt nach Subtraktion der vorausgesetzten Identität

- 2 r £  ~2rn2X + YvX't + Z - 2 - 2 y f  x,ßV + y%,, X,v + «(*) L (V’ & X) = °(V 3) (A 7)

von (A 6) noch zu zeigen

2 r£e + 2 m2 x,0 A? -  A* -  y i X’Zq A 0 -  y?VtQ Ä? m3 *  -  yfp m2 x,Q Aß + 2 y ^ % e Ae X,v

+ 2 v"%  X,ro A e + 2 t/^% ̂  + 2 - yfU X'v ~ vft* X'l A* =  o{W3). (A 8)

(A 8) läßt sich zusammenfassen zu der Beziehung

- Ae 30 ( - 2 x» ~ 2 m2 % + yi X’v + yi ™2 X ~ 2 V"% X.r ~ 2 W'uv X.*> + y%,* X'v) = o{yj3), (A 9)

die wegen (A 4) richtig ist, q. e. d.

Wir wollen annehmen, daß VV ̂  V'** die infinitesimalen Transformationen einer Gruppe endlicher 
Transformationen sind. (Da es schließlich möglich wird, die endlichen Transformationen anzugeben, ist 

diese Annahme gerechtfertigt.) Bezüglich der infinitesimalen Transformationen X,ßt—>~ X?i* haben wir im 
letzten Kapitel gezeigt, daß die durch sie definierten Vektorfelder eine Lie-Algebra bilden, womit auf Grund 

des Existenz-und Eindeutigkeitssatzes für Liesche Transformationsgruppen 18 bewiesen ist, daß X,n~* X*1* 

die infinitesimalen Elemente einer Gruppe endlicher Transformationen sind. Dasselbe läßt sich, ausgehend 

von (A5), für x~~> xx und X,nv~  ̂X̂ n* zeigen. Wir geben die endlichen Transformationen symbolisch an

W  -► Tw (A) y>ßV = w  + AMtV + A„tlx + yßV (yj, A) - y)ßVtQ A* + ox (A2) ,

X ~+Tx{A) x =X~X,eAe + o2(A2),

X,ß T (A) x,t< = X,n - X,v A% - x,M0 A? + o3(A2), (A 10)

X,ßv TXtflv{A) x,nv = Xynv A~'ß x,vq A-\x,no A-'ftvX,*} X,hvq A - o 4{A )

(A ist hier zwar „endlich“, aber natürlich immer noch von der Ordnung xp) . Bekanntlich 21 folgt aus der 

Invarianz von (A 4) unter (A 5) die Invarianz von (A 4) unter den von (A 5) erzeugten endlichen Transfor­

mationen (A 10). Wenn wir die zu T(A) inversen Transformationen mit T(A)~1 bezeichnen, bleibt also die 

Bewegungsgleichung zweiter Ordnung (A4) bei gleichzeitiger Anwendung von T(Ä) T(A) T(A)~1 T(A) -1 
auf alle Feldgrößen invariant. Dies bedeutet explizit 2 1 2  1

- 2 r £  -2 m2 x + V’lX'Z + V’*™2 X - 2 ^ 1% £ v -2y^v x,w+ T^7CV + e(x) L(y>,$,X) = o{y3), (A l l )

wobei wir zur Abkürzung

= TV(A)TV)(A)TW(A)~1 TV(A)_1 xp„v,
2 1 2  1

X =TX{A) TM ) T M ) ' 1 T M )-1 X,
2 1 2  1

Z.* =TX,M )T X,M ) Tm{A)-'Tm{A)-'x.** ( A 12)
2 1 2  1

X,ßv =Tx,ßM ) Tx,ßM ) TXtllM )~ 1Tx<ßM )~1 X,ßV
2 1 2  1

gesetzt haben. e(x) L(yj, £, x) ist der bei der Transformation (A 12) aus s(x) L(y),£,x) entstehende Aus-
/' 1 ' ' ^

druck. Wichtig für das Folgende ist die Überlegung, daß e(x) L(yj, £, x) und e(x) L(yj, £, x) in zweiter 
Ordnung übereinstimmen: Das Materiefeld x und seine Ableitungen werden bei Anwendung von (A 12) 

in e(x) L(xp, £, x) überhaupt nicht transformiert, denn die Eichzusätze in TX(A) x , TXtfl(A) x,n , Tx<fiV(A) x,ßV 
sind von der nächsthöheren Ordnung und ergeben Terme dritter Ordnung, da e(x) L(yj,£,x) von zweiter 

Ordnung ist. Dasselbe gilt für das £-Feld [vgl. die Bemerkung im Anschluß an Gl. (41)]. Lediglich die 

Transformationen von und seinen Ableitungen liefern zu berücksichtigende Beiträge zweiter Ordnung, 

nämlich die von den Eichzusätzen AßtV + Aytl/t herrührenden Terme [für die höheren Glieder in TV(A) W  

gilt das obige Argument]. Die Transformationen erster Ordnung

y*uv ^  Typ (A ) y)uv =  ŷ ßv “i- A ß̂ , -1- AVtß ( A 13)
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sind aber kommutativ, so daß wir insgesamt 

erhalten [Ti(A)~1 —AßiV —AVtfi\. Es gilt also

Ti (A) Ti (A) T i (A) 1 Ti (A) 1 yjßV = xpßV (A 14)
2 1 2  1

W  = W  + ° (v 2) (A 15)

und daher

e(x) L (y jJ,x ) = e(x) L (y ,£, %) + o(y3). (A 16)

Weiterhin lassen sich x > X*u > X,nv angeben. Unter Berücksichtigung des bekannten Zusammenhanges zwi­

schen dem Kommutator der Gruppe T(A) T(A) T (A )-1 T(A)~1 und der Kommutatordefinition in der
2 1 2  1

zugehörigen Lie-Algebra der Vektorfelder erhalten wir aus der Strukturuntersuchung im letzten Kapitel 

das Ergebnis

X =Z-X,Q[Ä’ Ä]e + ° (v S) ’
1 2

Z.M =Z,ß-X,r[Ä ’ ÄY ’ß -X.ßAA,Ay + o{y*), (A 17)
1 2  1 2

X,ßv -x.velAAle\ - xA A ,A ]* ’mv -X,ßvß[A,A]e + o(y3),
1 2  1 2  1 2  1 2

wobei [A,A]° durch Gl. (146) gegeben ist [(A17) läßt sich auch mit (A 10) unmittelbar nachprüfen].
1 2

Unter Beachtung von z. B.

=  # ( r £  +o(y2) ) = #  + o(v3) (Ais)

ergibt Einsetzen von (A 17) in (A l l )

- 2 x* + 4 X'v [Ä, A] %  + 2 x’Q [A  Ä] e% + 2 x'% Ä \e
1 2  1 2  1 2

- 2 m2 x + 2 m2 x,e A ]e + V* X’Z + V* m2 X - 2 X,v (A 19)
1 2

~ 2 VhVX,nv+ vis X,V + E(X) L(v>,£,x) =o(ip3).

Wegen (A 4) gilt
-2x% -2 m2x = o{W). (A 20)

Daraus folgt
- [ ^ , ^ ] « 3 „ ( - 2 r f - 2 m«z) =2[A,Ä]>X% + 2 m2[A, A]e %0 = o(r>) (A21)

1 2  1 2  1 2

und

Vv XS + Vv™2 X = (%’m + ™2 X) = (v£ + ° (V'2)) (*’£ + ™2 *) = V» X’v + Wv m2 X + o (v'3) (A 22) 

[vgl. (A15)]. Mit (A21) und (A22) wird (A 19)

- 2 xl +4 r t  U , A]-, + 2 r '[A , vl] - 2 m>z
1 2  1 2

+ vZ z ’m + ^ m2Z - 2 ^ u%Z,v - 2y 'lvX,l*r + V’»,vx,v + £(x) L(y,t;,z) = o(yj3). (A23)

Der Kommutator TV(A) TW(A) TXi,{A)~1 TW{A)~1 ist ein Gruppenelement TW(A) mit einem bestimin-
2 1 2  1 

ten A. Man sieht leicht, daß

V„ =  Tv{ A )T M )  Tv{A)-1Tv{A)-1H>*' = + [A,A]v̂  + o(yj*) (A24)
2 1 2  1 1 2  1 2

gesetzt werden muß [vgl. (A15)], damit (A23) äquivalent zu (A4) wird. Mit (A24) ist die Struktur 

der Eichgruppe von festgelegt.

Ich danke Herrn Prof. Dr. P. M i t t e l s t a e d t  für das Thema, seine Anregungen und sein Interesse.


