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The correlation factor for impurity diffusion by a vacancy-mechanism is a function of the
vacancy-jump frequencies in the surroundings of the diffusing atom. Since in Si and Ge the
vacancy can act as an acceptor, a long-range Coulomb interaction between donor atoms and
vacancies exists. The usual assumption, that only a few vacancy-jump frequencies in the im-
mediate surroundings of the vacancy are different from the jump frequency in the pure matrix,

is not justified in this case.

A very general expression for the correlation factor of impurity-diffusion in the diamond
structure is deduced. Vacancy-jump frequencies for jumps which originate from first-, second-,
and third-nearest neighbours are treated explicitely. For more remote jumps the Coulomb force
is taken into account as a drift force operating on the migrating vacancy. After specializing the
general expression it is compared with the well-known ,,four-frequency-model” of Manning.

1. Introduction

Many impurities in silicon and germanium diffuse
by a vacancy mechanism (see e.g. ). This means
that a diffusor pursues a correlated and not a
random walk in the lattice and introduces the so-
called correlation factor into the Einstein-Smolu-
chowski relation of the diffusion coefficient 2.

The correlation factor is a function of the va-
cancy-jump frequencies in the surroundings of the
diffusor3-5. If one neglects the small difference
between the mass of the tracer atom and the mass
of the matrix atoms in the case of self-diffusion all
vacancy jump frequencies are equal. The correla-
tion factor is then merely a geometrical quantity.
CompaaN and HAVENS have calculated geometrical
correlation factors for various coordination lattices
including the diamond structure.

In the case of impurity diffusion the vacancy-
jump frequencies in the solvent depend on position
and jump direction of the migrating vacancy with
respect to the impurity atom. This is due to the
interaction of vacancy and impurity. Often this
interaction is only poorly known. The usual proce-

* This paper is published both in Z. Naturforsch. and in
the Proceedings of the Marstrand Conference on Atomic
Transport in Solids and Liquids, Verlag der Zeitschrift
fiir Naturforschung, Tiibingen 1971.
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dure is to assume that the interaction is short-ranged
and that only a few vacancy-jump frequencies in the
neighbourhood of the impurity are altered. Manning
has proposed a four-frequency-model for the cor-
relation factor of impurity diffusion in the diamond
structure?-8. In his model frequencies for vacancy-
jumps which originate from third-nearest or more
remote neighbours are not influenced by the pre-
sence of the impurity.

Group V impurities in silicon and germanium
behave as donors. A vacancy can act as an acceptor.
Therefore, under certain conditions, a long-range
interaction between charged vacancies and charged
impurities exists. We shall discuss in Section 5 that
there is strong experimental evidence that this
interaction can be well described by a Coulomb
potential.

The present paper attempts to include the Cou-
lomb interaction into the calculation of the correla-
tion factor. The calculation, which is based on a
method recently proposed by BAKKER?, takes into
account different vacancy-jump frequencies for each
different vacancy-jump. Vacancy-jumps which ori-
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DIFFUSION OF CHARGED IMPURITIES IN THE DIAMOND STRUCTURE

ginate from first-, second-, and third-nearest neigh-
bours of the impurity are treated in detail. For more
remote jumps the Coulomb force is taken into
account as a drift force acting on the migrating
vacancy.

2. Classification of Sites.
Notation of Vacancy-jump Frequencies

The correlation factor f for diffusion of impurity
(tracer)-atoms (abbreviated by 7') by a mono-
vacancy mechanism in cubic crystals is given by

f=Q0+9/[(1—1). (2.1)

According to MULLEN10 ¢ equals the probability
that after a 7-jump the next 7'-jump has the same
z-component minus the probability that the next
T-jump has the opposite x-component. If the
plane x = 0 is a mirror plane of the lattice structure
t may be interpreted even simpler. As outlined by
BAXKKER? in this case ¢ equals the probability that
the vacancy causes the next ,minus“ 7-jump
without ever having been on the plane x = 0. In
other words: it suffices to take into account in the
calculation of ¢ vacancy trajectories with positive
x-coordinates.

We choose the (110)-symmetry-plane of the lat-
tice as the plane x = 0. After having just exchanged
its position with a vacancy, 7' is situated at the
origin of the coordinate system. We classify the
lattice sites with respect to 7' in the way shown in
Fig. 1. Sites which can be reached in at least one,
two, three, four etc. jumps are called A-, B-, C-, D-,
etc. “‘shells”. In the present case the A-shell consists
of only one site. Therefore this site will be occupied
by the vacancy immediately after the initial jump
of 7. With the exception of the A-shell we recognize
within each shell different ““sets of equivalent sites®,
for which the probabilities of being occupied by the
vacancy are the same.

We use a classification of sites which is slightly
different from Bakker’s paper. His classification
would introduce a D-site instead of By and E-sites
instead of Cz and C3. Notwithstanding we use Bak-
ker’s formalism. This procedure will be justified by
the results (see Section 7) and has the advantage

10 J. G. MuLLEN, Phys. Rev. 121, 1649 [1961].
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Fig. 1. Classification of sites around an impurity (tracer)

atom 7' in the diamond lattice. Only the A-, B-, C-, and

D-shells have been represented. The numbers denote i-th

nearest neighbours. a) Sites with z-coordinates = 0,
b) Sites with z-coordinates =< 0.

that vacancy-jump frequencies near T do not
enter the P (CC)-matrix of Section 5 and therefore
enables a rather straight-forward treatment of the
Coulomb interaction.

As mentioned in the Introduction in the presence
of T-atoms the vacancy-jump frequency in the
solvent depends on the position of the vacancy
before and after the jump. We denote by »;; the
jump frequency for a vacancy-jump from an i-th
nearest neighbour site of 7' to a j-th nearest neigh-
bour site of 7' 11. Some of the vacancy-jump fre-
quencies in the neighbourhood of 7' have been
indicated in Fig. 2.

The probability that a vacancy at site ¢ will jump
to site j is

pij = (vis/ 1) , (2.2)

11 We use a notation for the vacancy-jump frequencies
which is different from the usual one (e. g. in MANNINGS
7.8 calculations) but which has the advantage of being
systematic.
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Tracer or impurity atom
1 first-nearest neighbours
2 second-nearest neighbours
3 third-nearest neighbours

Fig. 2. Vacancy-jump frequencies in the surroundings of 7'.

where [ is the sum of vacancy-jump frequencies
for jumps which originate from a certain ¢-th
nearest neighbour site. For example we have

I'n = vir + 3712,
I = vo1 + 2 w23 + w25
2.3)

where »17 denotes the vacancy-7' exchange fre-
quency.

3. General Equation for the Correlation Factor

In order to calculate ¢ we use the formalism devel-
oped by BARKER?Y. Applying his Eq. (2.3) to our
problem we obtain

piT

l= = 1 q(dB) P(BB) q(BA)

(3.1)

where g (A4 B) and q(BA) denote row and column
matrices

2 p21
q(AB) = (p12,0,p12), q(BA)= 0] (3.2)
P21

and P(BB) denotes the square matrix

P(BB) = | P(By B1) P(B; Bz) P(B: Bs)

P (By By) P(B1 Bs) P(By Ba)]
(3.3)
P(B3 B;) P(B3 Bs) P(B3 Bs)

The elements P (B; Bj) of P(B B) are the sums of the
probabilities that a vacancy arrives once, twice, ...
at a certain site of the set B; avoiding the A-site
and provided that set B; is completely occupied at
the beginning.
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Inserting Eq. (3.2), (3.3) and (2.2) into (3.1) we
obtain
t = — vir/(vir + 3vi2 Fa) (3.4)

where

Fs=1— 3”;‘2 : (3.5)

[2 P(B1B1) + P(Bs Bs) + 2 P(Bs B1) + P (B1 Bs)].
F3 is a function of all vacancy-jump frequencies in
the solvent with the exception of »12. The quantity
v12F3 may be considered as an effective escape

frequency of the vacancy. With (3.4) the correlation
factor (2.1) can be written as

f=3v12F3/(2vir + 3%12F3) .

(3.6)

4. Calculation of P (B B)

The calculation of F3 requires the determination
of the matrix P (B B) which may be obtained from

P(BB)=[1 — p1(BB)]"". (4.1)

An element p; (B; Bj) of the matrix p; (B B) denotes
the probability that a vacancy arrives once at a
certain site of set Bj; starting from an occupied set
B; and avoiding the A-shell.

In the diamond structure direct vacancy-jumps
between B-sites are not possible if only jumps be-
tween nearest-neighbour sites can occur. The
vacancy can therefore arrive at B; only by trajec-
tories which cross the C-shell. Thus we obtain

P1(Bi B;) = q(B:C) P(CC) q(C By) .

In the present case P(CC() is a 6 times 6 square
matrix. An element P (CyC);) denotes the sum of
probabilities that a vacancy arrives once, twice, ...
at a certain site of set (; starting from an occupied
set O and avoiding the 4- and B-shells.

The q's denote the following row and column
matrices:

q(B10) = (p23, 0, O,

(4.2)

p2s, O, 0 )

q(B20)=(0, p2s, 2pe3, 0, pe3, 0 )
q(B3 C) - (03 Oy O’ Oy P23, p25)
(4.3)
P32 0 0
0 P52 0
0 P32 . 0
q(CB1)4 p52 ’ ‘I(CBZ) = 0 ’ Q(CB3) a= 0
0 P32 2 32
0 0 P52
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Table 1. The P; (BB)-matrix for the diamond lattice.
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B B B3
By Q1 P(C10y) @1[P(C103) 4 P(C105)] 2Q1 P(C105)
+ @2 P(C4Cy) + Q2 P(C4C3) —+ @2 P(C4Cs)
+ Q3 P(C10Cy) + @3 P(C1C2) + @3 P(C1Cg)
+ Q4 P(C4Ch) + Qa[P(C4C3) + P(C4C5)] + 2 Q4 P(C4C5)
B; Q1[2 P(C3C1) 4+ P(C5Ch)] @1[2 P(C3C3) 4 P(C5C3) 2@1[2 P(C3C5) + P(C5C5)]
+ 2 P(C3C5) 4+ P(C5C5)]
+ Q2 P(C204) + @2 P(C2C2) + Q2 P(C2Cs)
+ @3[2 P(C304) + P(C5C4)] + Q3[2 P(C3Cs) + P(C50C3)] + Q3[2 P(C30s) + P (C5C6)]
+ Q4 P(C2Cy) + Q4[P(C2C3) + P(C2C5)] +2Q4 P(C2C5)
Bs @1 P(C5Ch) Q1[P(C305) + P(C5C5)] 2Q1 P(C505)

+ Q2 P(CgCy)
+ @3 P(C504)
+ Q4 P(CeCh)

+ Q2 P(C2C6)
+ @3 P(C5C5)
+ Q4[P(CeC3) + P(CsC5)]

+ @2 P(Cs Cs)
+ Q3 P (C5Cs)
+2Q4 P(CsC5)

The matrix p; (B B), which is obtained by inserting
(4.3) and (4.4) into (4.2), is tabulated in Table 1
using the following abbreviations:

Q3 = P23 P52, (4.5)

Q1= pas5p3z.

Q1= pa3 P32,
Q2 = P25 P52,

Up to this point our calculation is completely gene-
ral with respect to the vacancy-jump frequencies in
the solvent. The P(CjC;) contain all transition
probabilities for vacancy-jumps which originate
from the D-shell and more remote shells and also
the transition probabilities for jumps which connect
the C-shell with the D-shell.

5. Calculation of P (C C) including a Long-range
Coulomb-interaction of Vacancy and Impurity

Long-range diffusion of an impurity (tracer) in the
diamond structure is possible only if the vacancy,
after having exchanged its position with 7', disso-
ciates to at least a third-nearest neighbour site of 7'
and that it afterwards approaches 7' from a different
direction. Otherwise the correlation factor would be
zero. Such a ,minimal® vacancy-trajectory is
characterized by the jump sequence

Y12 —> V23 —> V32 —> V21

and a typical one has been illustrated in Fig. 2. In
Sections 2, 3, and 4 we have treated explicitely the
vacancy-jumps between the A-, B-, and C-shell

12 F. Wmnr1ams, Phys. Stat. Sol. 125, 493 [1968].

13 M. GERSHENZON, Physics of III-V Compounds, Vol. 2,
Chap. 13, Eds. R. K. WiLLiarpsoN and A. C. BEER,
Academic Press, New York 1966.

which include the above mentioned jump frequen-
cies.

The usual procedure in calculating impurity cor-
relation factorsistotreat moreremote jumps as a self-
diffusion problem, i.e. to assume that all frequencies
for remote vacancy-jumps are equal to the vacancy-
jump frequency »¢ in the pure solvent. This assump-
tion fails to be a good approximation if a long-range
interaction between 7' and the vacancy exists.

The interaction between a charged vacancy and a
charged impurity contains an elastic and an electro-
static contribution. Both interactions influence the
vacancy-jump frequencies in the solvent. Although
the elastic interaction may be complicated in its
details, it is short-ranged and therefore affects only
those frequencies in the very vicinity of 7.

The electrostatic interaction between charged
impurities in semiconductors can be studied in con-
siderable detail in the so-called ,,pair spectra‘ (see
e.g. 12:13) These spectra originate in the radiative
recombination of electrons and holes at donor-
acceptor pairs. The energy of the luminescence
radiation depends on the electrostatic interaction
energy and hence on the pair distance. Numerous
experimental investigations especially in the case of
GaP (see e.g. 14) have shown that the electrostatic
interaction can be represented to a good approxima-
tion by the Coulomb potential if the pair-distance
exceeds a few lattice constants. It appears therefore
justified to expect a long-range Coulomb interaction

14 D. G. Tuomas, M. GErsHENZON, and F. TRUMBORE,
Phys. Rev. 133, A 269 [1964].
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also between charged vacancy-impurity pairs in
silicon and germanium, although in these cases ex-
perimental studies are not available.

In Fig. 3 a division of the surroundings of 7' into
an inner region and a ,,Coulomb-region* has been
indicated schematically. We take the C-shell as the
boundary between these two regions and we assume

S
oij
. ~~<p vacancy
,.Coulomb,, / i
region AN 9_2 ri
F-tr7

o & N\

O
O
vacancy trajectory

Fig. 3. Division of the surroundings of 7' into an inner
region and into a Coulomb region.

that a vacancy which migrates within the Coulomb-
region is attracted only by the Coulomb force of 7.
We denote by r; the position of the vacancy before
the jump and by s;; the jump vector of the vacancy.
The coulomb force is given by

Fo=_2m

e 73

(5.1)

where & denotes the dielectric constant of the
material and 4-¢ the charges of impurity and
vacancy.

The Coulomb force F; operates as a drift force on
the migrating vacancy and favours vacancy-jumps
which lower the Coulomb energy. The barrier height
of the saddle point pertaining to the jump vector s;;
is altered by

AEy = c &y (5.2)
where ¢ is an abbreviation for
c=(¢%/2¢a) (5.3)
and
Ei]' =a (sij s ri/ri3) (54)

is a geometrical factor, which is characteristic for
each jump. a denotes the cubic lattice constant.
Some of the quantities &;; have been tabulated in
Table 2. In (5.4) we have assumed that the force on
the vacancy is constant during the jump and is
given by (5.1). This is probably a very reasonable
approximation, since the net effect of the Coulomb
interaction on the correlation factor will turn out
to be small.

H. MEHRER

Table 2. Some of the geometrical factors &; which
characterize the Coulomb interaction.

Jumps from i-th

nearest neigh- &g
bours of 7'

1=3 &3,4 = 0.1096 £3.6 = 0.3289

=4 E43=—0.25 E47=0.25

§=5 &5.6 = 0.0483 Es5 = 0.2415

i=6 foa=—02722  Es5=—0.1381

£67=0 £6,9 = 0.1361

&6,11 = 0.2722

1=1 &7.4 = — 0.1996 &6 = — 0.0855
&7,10 = 0.1426 &7,12 = 0.2566

i=8 bop=—00708 Bug=0
£g,13 = 0.1768

i=9 f96= —0.1352  Egg = — 0.0580
Bggp= —00198  Fg1q=10.1739

1 =10
ete.

B1g.9 = — 01265
&10,13 = 0.0632

&10,9 = — 0.0632
£10,15 = 0.1265

For elevated temperatures 7' we have

k denotes Boltzmann’s constant. In the case of
silicon (¢ = 14, a = 5.43 A, ¢ = ¢) we obtain from
(5.3): ¢ = 0.09 eV. We conclude from Table 2 that
even for the biggest value of &;; (£3¢6) the inequality
(5.5) is satisfied for temperatures above room tem-
perature. For most other jumps | AE;;| is even much
less than £ 7. Since diffusion is usually investigated
at high temperatures, (5.5) appears to be no serious
limitation.

To first order we obtain for the vacancy-jumps
frequencies

vig=vo(1 — &is(c/k T))

where »¢ denotes the vacancy-jumps frequency in
the pure solvent.
From Eq. (2.2) we obtain for the vacancy-jump
probabilities:
pis =11 — &y(c/kT)).

In order to calculate P(C C)we have to invert the
(I — T) matrix and to pick out those elements
which are needed for P(C'C). T denotes the one-
jump transition matrix for the Coulomb region. The
elements 7';,, are the vacancy-jump probabilities
of Eq. (5.7) which carry numerical factors given by
the number of sites of set m that are nearest neigh-
bours of a certain site of set n. A small part of the
matrix (I — T), which, in principle, is infinite, has
been tabulated in Table 3.

(5.6)

(5.7)
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Table 3. Part of the (1 — T)-matrix for the diamond structure. (Only matrix elements which are not equal zero have
been printed).

(051 Cs C3 Cy Cs Cs D

Dy D3 Dy Ds D¢ D; Dg Dy Dy

Cy 1

— P36

— P34
— P56 - P58
— P36
— P56
— P36

— P56 — P58

— P58 —2pse

— P34

— P63 1
— P65
— P43 — P43
— P85
— P85
— Peé5
— P63
— P65 —2pes
— P63
— P85

Since in a numerical calculation only finite matri-
ces can be handled, we can take into account only
vacancy trajectories over a limited region of the
crystal. If a vacancy wanders away beyond a
certain boundary we shall assume that it returns
randomly to 7' and hence gives zero contribution to
the correlation factor. Actually we neglect all
vacancy trajectories which go outside the G-shell.
The choice of this boundary is determined by the
storage capacity of the computer available. (We
then have to handle 86 x 86 matrices.) The error
introduced by this boundary is very small.

According to Eq. (5.7) the transition matrix may
be written as a sum of two terms:

T=TO — (c/kT) TO. (5.8)

The second term accounts for the Coulomb inter-
action whereas the first term equals the transition
matrix which one obtains by treating remote
vacancy-jumps as a self-diffusion problem. In the
validity range of the inequality (5.5) the second
term is a small correction term. We are therefore
justified to determine the inverse of the matrix
(I — T) in the following way:

1—=T)1=1—TO)l _ (c/kT)(1 — TO®)-1
-TMH (1 — TO)-1, (5.9)

The matrix operations on the right hand side of (5.9)
can be performed by a computer. Afterwards those
elements of (1 — T)~1 can be picked out which are
needed for the matrix P(C'C). Each element of this
matrix can be written as

P(CrCy) = PO (CrCY) — (c/k T) naa (5.10)

where the numerical values of P (Cy(C}) and 7y,
are known after the evaluation of (5.9).

6. General Equation for F; including
Coulomb Interaction

As we have shown in Section 3, F3 is given by
Eq. (3.6) which contains four elements of the P(BB)
matrix. Their determination is described in Section4.
The main task is to invert (1 — p;). We refrain from
describing this laborious (compare Table 1) but
uninteresting work and at once report the result.
For F3 we obtain
vo1 Z
Fs=1=3nx:

where the following abbreviations have been used:

(6.1)

4 4
Z=3 +_Zl(oci Qi + o @i%) + 2 04 Qi @, (6.2)
t= )
>
4 4
N=1+ 'Zl(ﬂi Qi + i Q2 + Pu @®) + 2 Bis Qi @
1= :L’>7i
4 4 '
+ 2 Pis @2 Qs + Zkﬂiik Qi Qs Q- (6.3)
%) %)
jui i>i
E>j

If only linear terms in ¢/k 7' in accordance with (5.5)
are retained the coefficients «... and f... can be
written as follows:

... = a0 —a® (c/kT),

B...=BO — BW (c/kT).

(6.4)
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Table 4. The coefficients «(?) and B0,

H

. MEHRER

¢ 1 2 4
a® — 16.02 —17.16 — 0.259 — 0.259
a® 138 4.27 2.2-10-3 2.2-10-3
B — 71 —4.07 —0.17 —0.17
BY 12.35 5.44 4.7-10-3 4.7-10-3
o — 6.31 — 240 —3.1-10-5 —3.1-10-5
& oy =19.1 oy = 0.37 ol =0.37
agy = 0.31 ol = 0.31 afY =4.4-10-3
BY BY =195 W = 0.57 @ = 0.57
AR =045 BY = 0.45 © —8.9-10-3
O @, = —16.9 ©, = — 0.43 0, = — 0.43
o= —132 e = — 0.29 B = —0.29
0 = — 6.7-10-3 = —6-10-3 0, = — 8.7-10-5
9 = — 6.7-10-3 © = —6-10-3 ), = —8.7:10-5
@ © = — 0.74 Q= —0.74 @, = — 1.3-10-2
B, = —1.1-10-2
Table 5. The coefficients «(1) and 1),
i 1 2 4
oD 1.6-10-2 1.4-102 —3.5-102 5.3-10-2
ad —5.6-10-3 —1.6-10-2 6.4-10-4 —1.7-10-3
gL 4.3-102 6.1-10-2 —1.9-102 4.2-10-2
B —0.12 —0.15 1.5-10-3 —2.1-10-3
4 8.2-10-2 8.9-10-2 —2-10-5 2.3-10-5
ad a) = —5.4-10-2 af =  53-10°2 wfl) = —7-10-2
af) =  4.1-10-2 al) = —6.3-10-2 af) = —4.3-10-3
By By = —0.42 Q= 6.7-102 W = —0.15
R =  4.6-10°2 W = — 0.11 W = —24-10-4
) W, = 0.42 W = — 4.9-10-2 W, = 0.11
4 = 0.45 W = — 2.8-10-2 W= 7.7-10-2
W = — 1.8-10-3 = —1.6-10-3 W, =—8-10-6
W =3-10-3 = 2.7-10-3 W= 2.4-10°5
n 0 = — 7.9-10-2 Qo= 0.19 = 98-104
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The numerical values of the coefficients are tabu-
lated in Tables 4 and 5. From Table 4 we recognize
that the various coefficients «(® and B cover
several orders of magnitude. This property could be
used if one wants to simplify Eq. (6.1).

Table 5 shows that the relative importance of the
Coulomb interaction is greater for terms which
contain @3 and/or Q4. This is due to the fact that
only vacancy trajectories with four or more vacancy-
jumps within the Coulomb region can contribute to
these terms whereas terms which only contain @
and/or @ have important contributions from va-
cancy trajectories with fewer jumps within the
Coulomb region.

7. Application to the Four-Frequency Model
of the Correlation Factor

Eq. (6.1) to (6.3) can be used in connection with
Tables 4 and 5 to deduce simpler equations for F3
by specializing some of the vacancy-jump frequen-
cies. We confine ourselves to consider the well-
known ,,four-frequency-model*‘. In Mannings nota-
tion4- 7,8 this model takes into account the following
frequencies:

(wz = n17), (w3 =r12),
W4 = V21, W5 = V23 = V25 .

(7.1)

All other frequencies are assumed to be equal to the
vacancy-jump frequency in the pure solvent. (The
two frequencies wy and ws have been mentioned for
reasons of completeness. They are needed in the
Eq. (3.6) for f but not in F3.) Inspection of (4.5)
shows that the four quantities @; are equal and we
have

1 ws

Qizzm, :1,...,4.

(7.2)
If we neglect for the moment the Coulomb inter-
action we obtain by inserting (7.2) into (6.1)

23.5 4 24.9 o 4 6.29 a2

37 23.5+36.60+ 18.402+ 303

F (7.3)
with « = ws/ws. When o« goes to zero Fg = 1.
When « goes to infinity F3 = 0. In the case of self-
diffusion, where all vacancy-jump frequencies are
equal, Fgdeviates by +0.8%, from the exact value 2/3
which follows from the value f = 0.5 for the cor-
relation factor of CompaaN and HavENS. This de-
viation introduces an error of less than + 0.39, into
the correlation factor for self-diffusion. In the case
of impurity diffusion, the error is in the same order
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of magnitude. If even more accurate values are
required one has to consider in Section 5 vacancy
trajectories which extend beyond the G-shell.

Eq. (7.3) agrees in its algebraic form with the
expression for F3 derived by Max~ing8. In Fig. 4
(upper curve) 3 F3 as calculated from (7.3) has been
plotted. This curve practically would coincide with
the corresponding curve from Mannings expres-
sion. The deviations are not greater than 0.8%,.
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Fig. 4. 3 F3 for the diamond structure for different magni-
tudes of the Coulomb interaction.

By multiplying both the numerator and denominator of
Eq. (40) in MANNING's paper® by (x + 2.43)/(x + 0.89)
one obtains15
Fs 22.5 4 24.3a 4 6.17 a2

T 225+ 35.7a + 18.202 + 3a3
This expression is very similar to (7.3). Eventually the

agreement between both expressions could be improved by
taking into acconnt more shells.

Let us now include the Coulomb interaction but
retain the four-frequency-model for the inner jump
frequencies. We then obtain from (6.1)

2 3
Fg = Z Yi ai/z 6i g (74)
=0 =0

where the coefficients y; and §; can be written as

c
TN

S =00 — o o,

ri=n"—
(7.5)

and have been tabulated in Table 6. ;(® and ¢§;(©
of course agree with the values of (7.3). The in-
fluence of the Coulomb interaction is shown in

15 J. R. MANNING, private communication.
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Table 6. The coefficients y; and d; for the four-frequency-
model of the correlation factor including Coulomb interac-

DIFFUSION OF CHARGED IMPURITIES IN THE DIAMOND STRUCTURE

tion.

i 0 1 2 3
i 235 24.9 6.29 =
piP 0.44 0.37 0.08 -
o 23.5 36.6 18.4 3
o 0.44 0.41 0.09 0

Fig. 4 for different values of ¢/kT'. F3 is lower by
some percent and hence f is smaller than without
Coulomb interaction. As already mentioned in
Section 3, v12 F'3 can be interpreted as an effective
escape frequency. It appears plausible that the
Coulomb attraction diminishes the chance of a
vacancy to escape the surroundings of 7'.
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