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The correlation factor for impurity diffusion by a vacancy-mechanism is a function of the 
vacancy-jump frequencies in the surroundings of the diffusing atom. Since in Si and Ge the 
vacancy can act as an acceptor, a long-range Coulomb interaction between donor atoms and 
vacancies exists. The usual assumption, that only a few vacancy-jump frequencies in the im­
mediate surroundings of the vacancy are different from the jump frequency in the pure matrix, 
is not justified in this case.

A very general expression for the correlation factor of impurity-diffusion in the diamond 
structure is deduced. Vacancy-jump frequencies for jumps which originate from first-, second-, 
and third-nearest neighbours are treated explicitely. For more remote jumps the Coulomb force 
is taken into account as a drift force operating on the migrating vacancy. After specializing the 
general expression it is compared with the well-known ,,four-frequency-model” of Manning.

1. Introduction

Many impurities in silicon and germanium diffuse 

by a vacancy mechanism (see e.g. *). This means 

that a diffusor pursues a correlated and not a 

random walk in the lattice and introduces the so- 

called correlation factor into the Einstein-Smolu- 

chowski relation of the diffusion coefficient2.

The correlation factor is a function of the va­

cancy-jump frequencies in the surroundings of the 

diffusor3~5. I f  one neglects the small difference 

between the mass of the tracer atom and the mass 

of the matrix atoms in the case of self-diffusion all 

vacancy jump frequencies are equal. The correla­

tion factor is then merely a geometrical quantity. 

C o m p a a n  and H a v e n 6 have calculated geometrical 

correlation factors for various coordination lattices 

including the diamond structure.

In  the case of impurity diffusion the vacancy- 

jump frequencies in the solvent depend on position 

and jump direction of the migrating vacancy with 

respect to the impurity atom. This is due to the 

interaction of vacancy and impurity. Often this 

interaction is only poorly known. The usual proce­

* This paper is published both in Z. Naturforsch. and in 
the Proceedings of the Marstrand Conference on Atomic 
Transport in Solids and Liquids, Verlag der Zeitschrift 
für Naturforschung, Tübingen 1971.

1 A. Seeger and K. P. Chik, Phys. Stat. Sol. 29,455 [1968].
2 J. B a r d e e n  and C. H e r r i n g ,  Imperfections in Nearly 

Perfect Crystals. Eds. W. S h o c k le y ,  J. H . H o l lo m o n ,  

R. M a u r e r ,  and F. S e i t z ,  J. Wiley and Sons Inc., New 
York 1952.

3 A. D. l e C l a i r e  and A. B . L id i a r d ,  Phil. Mag. 1, 518 
[1956].

dure is to assume that the interaction is short-ranged 

and that only a few vacancy-jump frequencies in the 

neighbourhood of the impurity are altered. Manning 

has proposed a four-frequency-model for the cor­

relation factor of impurity diffusion in the diamond 

structure7,8. In  his model frequencies for vacancy- 

jumps which originate from third-nearest or more 

remote neighbours are not influenced by the pre­

sence of the impurity.

Group V impurities in silicon and germanium 

behave as donors. A vacancy can act as an acceptor. 

Therefore, under certain conditions, a long-range 

interaction between charged vacancies and charged 

impurities exists. We shall discuss in Section 5 that 

there is strong experimental evidence that this 

interaction can be well described by a Coulomb 

potential.

The present paper attempts to include the Cou­

lomb interaction into the calculation of the correla­

tion factor. The calculation, which is based on a 

method recently proposed by B a r k e r 9, takes into 

account different vacancy-jump frequencies for each 

different vacancy-jump. Vacancy-jumps which ori-

4 J. R. M a n n in g ,  Diffusion Kinetics of Atoms in Crystals, 
Van Norstrand, Princeton 1968.

5 A. D. L e  C l a i r e ,  Correlation Effects in Diffusion in 
Solids. Solid State, Vol. X , Chap. 6, Physical Chemistry
— An Advanced Treatise, Academic Press, New York, 
to be published.

6 K. C o m p a an  and Y. H a v e n ,  Trans. Faraday Soc. 52, 
796 [1956].

7 J . R. M a n n in g ,  Phys. Rev. 116, 819 [1959].
8 J. R. M a n n in g ,  Phys. Rev. 136, A 1758 [1964].
9 H .  B a r k e r ,  Phys. Stat. Sol. 38, 167 [1970].
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ginate from first-, second-, and third-nearest neigh­

bours of the impurity are treated in detail. For more 

remote jumps the Coulomb force is taken into 

account as a drift force acting on the migrating 

vacancy.

2. Classification of Sites.

Notation of Vacancy-jump Frequencies

The correlation factor / for diffusion of impurity 

(tracer)-atoms (abbreviated by T) by a mono­

vacancy mechanism in cubic crystals is given by

/ =  ( i + i ) / ( i - 0 -  (2.1)

According to M u l l e n 10 t equals the probability 

that after a T-jump the next T-jump has the same 

^-component minus the probability that the next 

T-jump has the opposite x-component. I f  the 

plane x =  0 is a mirror plane of the lattice structure 

t may be interpreted even simpler. As outlined by 

B a r k e r 9 in this case t equals the probability that 

the vacancy causes the next ,,minus“ T-jump 

without ever having been on the plane x — 0. In  

other words: it suffices to take into account in the 

calculation of t vacancy trajectories with positive 

:r-coordinates.

We choose the (IlO)-symmetry-plane of the lat­

tice as the plane x =  0. After having just exchanged 

its position with a vacancy, T is situated at the 

origin of the coordinate system. We classify the 

lattice sites with respect to T in the way shown in 

Fig. 1. Sites which can be reached in at least one, 

two, three, four etc. jumps are called A-, B-, C-, D-, 

etc. “shells“ . In  the present case the A-shell consists 

of only one site. Therefore this site will be occupied 

by the vacancy immediately after the initial jump 

of T. W ith the exception of the A-shell we recognize 

within each shell different “sets of equivalent sites“ , 

for which the probabilities of being occupied by the 

vacancy are the same.

We use a classification of sites which is slightly 

different from Bakker’s paper. His classification 

would introduce a D-site instead of B 2 and E-sites 

instead of C2 and C3. Notwithstanding we use Bak­

ker’s formalism. This procedure will be justified by 

the results (see Section 7) and has the advantage

10 J . G. M u l l e n , Phys. Rev. 121, 1649 [1961].

Fig. 1. Classification of sites around an impurity (tracer) 
atom T in the diamond lattice. Only the A-, B-, C-, and 
D-shells have been represented. The numbers denote i-th 
nearest neighbours, a) Sites with z-coordinates ^  0, 

b) Sites with z-coordinates 5̂  0.

that vacancy-jump frequencies near T do not 

enter the P  (C(7)-matrix of Section 5 and therefore 

enables a rather straight-forward treatment of the 

Coulomb interaction.

As mentioned in the Introduction in the presence 

of T-atoms the vacancy-jump frequency in the 

solvent depends on the position of the vacancy 

before and after the jump. We denote by vy the 

jump frequency for a vacancy-jump from an i-th 

nearest neighbour site of T to a 7-th nearest neigh­

bour site of T n . Some of the vacancy-jump fre­

quencies in the neighbourhood of T have been 

indicated in Fig. 2.

The probability that a vacancy at site i will jump 

to site j  is

PH — (vijlFi) , (2.2)

11 We use a notation for the vacancy-jump frequencies 
which is different from the usual one (e. g. in M a n n in g s

7,8 calculations) but which has the advantage of being 
systematic.

O  Z = 0
®  Z = a/4-
3  Z = a /2

Z  = 3a/4
Z=  a

O z
©  Z=-o/4
CZ a/2
C  Z= -3a/4

Z - -a
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7 firs t-n e a re s t neighbours
2 se con d -n ea re s t neighbours
3 th ird -n e a re s t neighbours  
• • • • •

Fig. 2. Vacancy-jump frequencies in the surroundings of T.

where .T* is the sum of vacancy-jump frequencies 

for jumps which originate from a certain i-th 

nearest neighbour site. For example we have

A  =  v\t + 3ri2 ,

A  =  V21 + 2 V23 + 2̂5

where vit 

quency.

.................................... (2-3)

denotes the vacancy-T exchange fre-

3. General Equation for the Correlation Factor

In  order to calculate t we use the formalism devel­

oped by B a r k e r 9. Applying his Eq. (2.3) to our 

problem we obtain

t =  —
P i t

1 -  q(AB)P(BB)q(BA)
(3.1)

where q(AB ) and q(B A )  denote row and column 

matrices

q{AB) =  (pi2 , 0 , p iz ), q {BA) =  

and P(BB) denotes the square matrix 

P{BB) =

(3.2)

rP (B x B 1)P (B 1 B 2 )P (B 1 B3)-\ 

P{B 2 Bi) P{B 2 B2) P{B% B 3 ) 

{P (B 3 B 1)P (B 3 B 2 )P (B 3 B3))

(3.3)

Inserting Eq. (3.2), (3.3) and (2.2) into (3.1) we 

obtain

t = — v itI(v it  + 3vi2 F 3) (3.4)

where

F  3 =  1 —
V21
3T2

(3.5)

The elements P  (Bi Bj) of P (B  B) are the sums of the 

probabilities that a vacancy arrives once, twice, ... 

at a certain site of the set Bj avoiding the A-site 

and provided that set Bi is completely occupied at 

the beginning.

[2 P (B l B ^  + P ( £ 3 £ 3) + 2 P (B 3 B ^  + P (B  15 a)].

F 3 is a function of all vacancy-jump frequencies in 

the solvent with the exception of V12 ■ The quantity 

V1 2 F 3 may be considered as an effective escape 

frequency of the vacancy. W ith (3.4) the correlation 

factor (2.1) can be written as

/ =  3v\2FzI{2v\t + 3 V1 2 F 3 ) . (3.6)

4. Calculation of P(B B)

The calculation of F 3 requires the determination 

of the matrix P (B B ) which may be obtained from

P{BB) =  [ l- p i(B B )]~ i.  (4.1)

An element p\ (Bi Bj) of the matrix p i(B B )  denotes 

the probability that a vacancy arrives once at a 

certain site of set Bj starting from an occupied set 

Bi and avoiding the A-shell.

In  the diamond structure direct vacancy-jumps 

between B-sites are not possible if only jumps be­

tween nearest-neighbour sites can occur. The 

vacancy can therefore arrive at Bj only by trajec­

tories which cross the C-shell. Thus we obtain

Pl (Bi Bj) =  q (Bi C) P (C C )q  (C B j). (4.2)

In  the present case P(CC) is a 6 times 6 square 

matrix. An element P(CkCi) denotes the sum of 

probabilities that a vacancy arrives once, twice, ... 

at a certain site of set Ci starting from an occupied 

set Ck and avoiding the A- and 5-shells.

The q s denote the following row and column 

matrices:

q (B iC ) =  (P2 3 , 

q (B 2 C) =  (0, 

q (B 3 C) =  ( 0,

q(CB  1) =

0 ,

P25-.

0,

0,

2 P 23 j 

0,

P 25-

0,

0,

0, 0 )

P 23 , 0  )

P 23 , P 25)

(4.3)

^3 2 0 ' 0 '

0 P52 0

0

P52
, q(C B2) =

P32

0
, q (C B 3) =

0

0

0 P32 2  p 32

0 0 P h 2 j

(4.4)
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Table 1. The P i (/J£)-matrix for the diamond lattice.
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Bx b 2 b 3

B x QxP(CxCx) Qi [P(C i C3) +  PtfxCs)] 2 Ql P (C l C5)
+  Q2 P  (C4 C4) +  Q2P (C4C2) +  Q2 P (C4Cß)
+  Qs P (Ci C4) +  QzP (C iC 2) +  Qz P  (C i Cß)
+  Q4P (C4C1) +  Q4[P(C4C3) +  P (C 4Cb)\ +  2 Q4 P (C 4C$)

B2 e i [ 2 P ( C 3 C 1 ) +  P ( C 5 C ,1)] Q1\2 P (C3C3) +  P (C 5C3) 2 Q1[2 P (C 3C5) +  P (C 5C5)]
+  2 P (C3C5) +  P (C5C5)]

+  Q2P (C2C4) +  Q2P (C2C2) +  Q2 P(C’2Ce)
+  Q3[2 P (C 3C4) +  P(C5C4)] +  Q3[2 P(C3C2) +  P (C 5C2)] +  Q3[2 P (C 3C6) +  P ( C 5Ce)]
+  Q4P (C2C1) +  Q4[P(C2C3) +  P (C 2C5)] +  2 Q4P (C 2C$)

b 3 Q iP (C 5Cx) Q i[P(C3C5) +  P (C 5C5)] 2 £ i P ( C 5 C'5)

+  Q2.P (C$C4) +  Q2 P  (C2 C$) +  Q2 P  (C*6 Cß)
+  q 3p ( c 5c 4) +  Q3 P(C$C2) +  Q3 P  (C^Ce)
+  Q4P (C§C\) +  Qi\_P (Cß C3) +  P ( C e C ' 5 ) ] +  2 Q4P (C 6C5)

The matrix p i{BB ), which is obtained by inserting

(4.3) and (4.4) into (4.2), is tabulated in Table 1 

using the following abbreviations:

Qi =  P23 P32 , Q3 =  P23 P52 , (4.5)

Q2 =  V2b P52 , Qa =  P25 P32 •

Up to this point our calculation is completely gene­

ral with respect to the vacancy-jump frequencies in 

the solvent. The P(CkCi) contain all transition 

probabilities for vacancy-jumps which originate 

from the D-shell and more remote shells and also 

the transition probabilities for jumps which connect 

the C-shell with the D-shell.

5. Calculation of P  (C C) including a Long-range 

Goulomb-interaction of Vacancy and Impurity

Long-range diffusion of an impurity (tracer) in the 

diamond structure is possible only if the vacancy, 

after having exchanged its position with T, disso­

ciates to at least a third-nearest neighbour site of T 

and that it afterwards approaches T from a different 

direction. Otherwise the correlation factor would be 

zero. Such a „minimal“ vacancy-trajectory is 

characterized by the jump sequence

V12 - >  V 2 3 - >  V 32 - >  V21

and a typical one has been illustrated in Fig. 2. In 

Sections 2, 3, and 4 we have treated explicitely the 

vacancy-jumps between the A-, B-, and C-shell

12 F. W i l l i a m s ,  Phys. Stat. Sol. 125, 493 [1968].
13 M. Gershenzon, Physics of III-V Compounds, Vol. 2, 

Chap. 13, Eds. R. K. W illia rd son  and A. C. Beer, 
Academic Press, New York 1966.

which include the above mentioned jump frequen­

cies.

The usual procedure in calculating impurity cor­

relation factors is to treat more remote jumps as a self- 

diffusion problem, i. e. to assume that all frequencies 

for remote vacancy-jumps are equal to the vacancy- 

jump frequency vo in the pure solvent. This assump­

tion fails to be a good approximation if a long-range 

interaction between T and the vacancy exists.

The interaction between a charged vacancy and a 

charged impurity contains an elastic and an electro­

static contribution. Both interactions influence the 

vacancy-jump frequencies in the solvent. Although 

the elastic interaction may be complicated in its 

details, it is short-ranged and therefore affects only 

those frequencies in the very vicinity of T.

The electrostatic interaction between charged 

impurities in semiconductors can be studied in con­

siderable detail in the so-called „pair spectra“ (see 

e.g. 12.13). These spectra originate in the radiative 

recombination of electrons and holes at donor- 

acceptor pairs. The energy of the luminescence 

radiation depends on the electrostatic interaction 

energy and hence on the pair distance. Numerous 

experimental investigations especially in the case of 

GaP (see e.g. 14) have shown that the electrostatic 

interaction can be represented to a good approxima­

tion by the Coulomb potential if the pair-distance 

exceeds a few lattice constants. I t  appears therefore 

justified to expect a long-range Coulomb interaction

14 D. G. Thomas, M. Gershenzon, and F. Trumbore,
Phys. Rev. 133, A 269 [1964],
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also between charged vacancy-impurity pairs in 

silicon and germanium, although in these cases ex­

perimental studies are not available.

In  Fig. 3 a division of the surroundings of T into 

an inner region and a „Coulomb-region“ has been 

indicated schematically. We take the C-shell as the 

boundary between these two regions and we assume

Fig. 3. Division of the surroundings of T into an inner 
region and into a Coulomb region.

that a vacancy which migrates within the Coulomb­

region is attracted only by the Coulomb force of T. 

We denote by r$ the position of the vacancy before 

the jump and by the jump vector of the vacancy. 

The coulomb force is given by

where e denotes the dielectric constant of the 

material and ± q  the charges of impurity and 

vacancy.

The Coulomb force Fj operates as a drift force on 

the migrating vacancy and favours vacancy-jumps 

which lower the Coulomb energy. The barrier height 

of the saddle point pertaining to the jump vector sy 

is altered by

AEtj — c£ij (5.2)

where c is an abbreviation for

c =  (q2l2sa) (5.3)

and

£il =  a (sy • rj/ri3) (5.4)

is a geometrical factor, which is characteristic for 

each jump, a denotes the cubic lattice constant. 

Some of the quantities have been tabulated in 

Table 2. In  (5.4) we have assumed that the force on 

the vacancy is constant during the jump and is 

given by (5.1). This is probably a very reasonable 

approximation, since the net effect of the Coulomb 

interaction on the correlation factor will turn out 

to be small.

Table 2. Some of the geometrical factors £(/ which 
characterize the Coulomb interaction.

Jum ps from i-th 
nearest neigh- 

bours of T

i = 3 £3,4 = 0.1096 £3,6 = 0.3289

i = 4 £4,3 = -0 .25 £4,7 = 0.25

i = 5 £5,6 = 0.0483 £5,8 = 0.2415

i —6 £6,3 =  
£6,7 =  

£6,11 =

-  0.2722 
0
0.2722

£0,5 =  
£ 0 , 9  =

-0.1361
0.1361

i — 7 £7,4 =  

£7,10 -

-  0.1996 
0.1426

£7,6 =  
£7,12 =

-  0.0855 
0.2566

i = 8 £8,5 =  
£8,13 =

-0.1768
0.1768

£8,9 -0

i = 9 £9,6 =
£9,10 =

-0.1352 
-  0.0193

£ 9,8 =  
£9,14 =

-  0.0580 
= 0.1739

i — 
etc.

10 £l0,7 = 
£l0,13 =

= -0.1265 
= 0.0632

£10,9 = 
£10,15 :

= -  0.0632 
=  0.1265

For elevated temperatures T we have

\AEijlkT\ < 1  . (5.5)

k denotes Boltzmann's constant. In  the case of 

silicon (e =  14, a =  5.43 Ä, q =  e) we obtain from

(5.3): c =  0.09 eV. We conclude from Table 2 that 

even for the biggest value of (£36) the inequality 

(5.5) is satisfied for temperatures above room tem­

perature. For most other jumps | AEy | is even much 

less than k T. Since diffusion is usually investigated 

at high temperatures, (5.5) appears to be no serious 

limitation.

To first order we obtain for the vacancy-jumps 

frequencies

Vi] =  v0 (1 —  tjij {c/k T)) (5.6)

where vo denotes the vacancy-jumps frequency in 

the pure solvent.

From Eq. (2.2) we obtain for the vacancy-jump 

probabilities:

Pij =  i ( l - £ i j ( c / k T ) ) .  (5.7)

In  order to calculate P(CC) we have to invert the 

(1 - T )  matrix and to pick out those elements 

which are needed for P(CC). T denotes the one- 

jump transition matrix for the Coulomb region. The 

elements Tmn are the vacancy-jump probabilities 

of Eq. (5.7) which carry numerical factors given by 

the number of sites of set m that are nearest neigh­

bours of a certain site of set n. A small part of the 

matrix (i -  n  which, in principle, is infinite, has 

been tabulated in Table 3.

„Coulomb.,
region

vacancy

-a ?4
£ 77

vacancy trajectory
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Table 3. Part of the (1 — T)-matrix for the diamond structure. (Only matrix elements which are not equal zero have
been printed).

C\ Cz Cz C4 C5 Cq D i  Z>2 D3 D4 -D5 De D i Dg Dg D \ 0

Ci
c2
Cz 
C4 
C5 
C6

'  P 3 6  —  P34

—  P56 - - P58

2>36

—  P58 —  2 ^5 6  —  P56

— P34 — P36
— P56 — P5S

Dx
D2
D3

D4
Db
De
D 7
Ds
D9
Dio

—  P63

—  PG5
—  P 43 —  P 43

—  P 85
—  PS5

—  P 65
—  P 63

— P65 ~2p65
—  P 63

—  P 85

Since in a numerical calculation only finite matri­

ces can be handled, we can take into account only 

vacancy trajectories over a limited region of the 

crystal. I f  a vacancy wanders away beyond a 

certain boundary we shall assume that it returns 

randomly to T and hence gives zero contribution to 

the correlation factor. Actually we neglect all 

vacancy trajectories which go outside the G-shell. 

The choice of this boundary is determined by the 

storage capacity of the computer available. (We 

then have to handle 86 X 86 matrices.) The error 

introduced by this boundary is very small.

According to Eq. (5.7) the transition matrix may 

be written as a sum of two terms:

P  (Ck Ci) -  P<o> (Ck Ci) -  (c/k T) Vkl (5.10)

T =  T<°) -  (c/kT) TU). (5.8)

The second term accounts for the Coulomb inter­

action whereas the first term equals the transition 

matrix which one obtains by treating remote 

vacancy-jumps as a self-diffusion problem. In  the 

validity range of the inequality (5.5) the second 

term is a small correction term. We are therefore 

justified to determine the inverse of the matrix 

(1 — T) in the following way:

(1 _  T)~1 -  (1 -  T(°>)-i -  (cjk T) (1 -  T<o>)-i 

• T<D (1 -  T<°>)-1. (5.9)

The matrix operations on the right hand side of (5.9) 

can be performed by a computer. Afterwards those 

elements of (1 — T)_1 can be picked out which are 

needed for the matrix P(CC). Each element of this 

matrix can be written as

where the numerical values of P<°)(C*C'/) and r\ki 

are known after the evaluation of (5.9).

6. General Equation for Fz including 

Coulomb Interaction

As we have shown in Section 3, F 3 is given by 

Eq. (3.6) which contains four elements of the P(BB) 

matrix. Their determination is described in Section 4. 

The main task is to invert (1 — pi). We refrain from 

describing this laborious (compare Table 1) but 

uninteresting work and at once report the result. 

For F 3 we obtain

where the following abbreviations have been used:

z  — 3 + 2 (<*f Qi + a« Qi2) + 2 Qi Qi > (6-2)
i—1 i,j

i>j

-V = 1 + 2 (ßi Qi “f- ßii Qi2 “i“ ßiii QiS) “t" ßij Qi Qi 
i— 1 i,j

j>i

+ 2  ßüi Qi2 Qj + 2  ßijk Qi Qj Qk • (6.3)
i, j i, j, k 
j * i  j>i 

k>j

I f  only linear terms in c/k T in accordance with (5.5) 

are retained the coefficients a. . .  and ß ... can be 

written as follows:

a. . .  =  a<°> -o iW (c lkT ), (6.4)

ß ... =  ßW -  ßW (cjk T).
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Table 4. The coefficients a<°> and ß(°h

i 1 2 3 4

a<0) 16.02 -  7.16 -  0.259 -  0.259

< 13.8 4.27 2.2 • IO“3 2.2 • IO-3

ß ? 7.1 -4.07 -  0.17 -  0.17

ß\V 12.35 5.44

CO1ot>TtH 4.7 • IO-3

am P <<i 6.31 -  2.40 -  3.1 • IO“5 -  3.1 • IO-5

air „m«12

a«

-  19.1

=  0.31

„(0)a13

«14

=  0.37 

=  0.31

a(°>0,14

<

=  0.37 

=  4.4 • 10-3

ß\V ß\V =  19.5 

=  0.45
ß{l»
amP 24

=  0.57 

=  0.45

=  0.57 

=  8.9 • 10-3

am
Pm

am 
P112 
am 
P 221 
am
P 331
amP 441

=  -  16.9 

=  -  13.2 

=  -  6.7 • 10-3 

=  -  6.7 • 10-3

am
P113
am
P 223
am
P 332
amP 442

=  -  0.43 

=  -  0.29 

=  -  6 • 10-3 

=  -  6 • 10-3

/?«» P114
amP 224
amP 334
amP 443

=  -  0.43 

=  -  0.29 

=  — 8.7 • 

=  — 8.7 •

IO 
iß

1 
1 

o 
o

i-H

am
Pi}*

am
P 123
am
P 234 II 

II 

1 
1 

£-*
• 

©
 

. 
^

o 1 to

am
P124=  -  0.74 am

P134=  — 1.3- 10-2

Table 5. The coefficients o^1) and ßW.

i 1 2 3 4

a<1} 1.6 • 10-2 1.4- 10-2 — 3.5- IO"2 5.3 • IO-2

a«l) -  5.6 • 10-3 -  1.6-10-2 6.4- io-4 -  1.7* IO-3

# l) 4.3 • IO“2 6.1 • 10-2 -  1.9- IO-2 4.2 • IO-2

-  0.12 -0.15 1.5- IO"3 -  2.1 • IO-3

am
Hm 8.2 • IO“2 8.9 • 10-2 -  2•10-5 2.3 • 10-5

a»’ aiV =  -  5.4 • IO"2 

a(8V =  4.1 • IO“2

_u> _
a 13 -

aSV =

5.3 • 10-2 

-  6.3 • 10-2

„<» _  0ti4 -

a<3y =

-  7 • IO“2

-  4.3 • IO"3

fl}1 ß ii =  -  0.42 

fig =  4.6 • IO“2

ftV =  
0(1) _  P 24 -

6.7 • IO-2 

-  0.11
flV =

ßst =

-  0.15

-  2.4 • IO“4

fl'ij
Pm ß[\\ =  0.42 

ß'& =  0.45 

figi =  -  1.8 • 10-3 

ftVi =  3 • 10-3

am _
P113 -
am —P223 —'
am _
332 -

P ( l )  _  P442 -

-  4.9 • IO"2

-  2.8 • IO“2

-  1.6-10-3 

2.7 • IO-3

II 
II 

II 
II 

§
£ 0.11

7.7 • IO“2 

-  8-IO“6 

2.4 • IO"5

am
PiJk ft1.’. =  -  7.9 • 10-2 

0 ft =  9 • 10-4

0(1) _  P124 - 0.19 ati) _P134 - 9.8 • IO“4
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The numerical values of the coefficients are tabu­

lated in Tables 4 and 5. From Table 4 we recognize 

that the various coefficients a (0) and /?<°> cover 

several orders of magnitude. This property could be 

used if one wants to simplify Eq. (6.1).

Table 5 shows that the relative importance of the 

Coulomb interaction is greater for terms which 

contain Qs and/or Q$. This is due to the fact that 

only vacancy trajectories with four or more vacancy- 

jumps within the Coulomb region can contribute to 

these terms whereas terms which only contain Qi 

and/or Qz have important contributions from va­

cancy trajectories with fewer jumps within the 

Coulomb region.

7. Application to the Four-Frequency Model 

of the Correlation Factor

Eq. (6.1) to (6.3) can be used in connection with 

Tables 4 and 5 to deduce simpler equations for F 3 

by specializing some of the vacancy-jump frequen­

cies. We confine ourselves to consider the well- 

known ,,four-frequency-model“. In  Mannings nota­

tion4, 7>8 this model takes into account the following 

frequencies:

(W2 =  Vit) , (^’3 = V12) , (7.1)

W4 =  V21 , W>5 =  V23 =  V25 •

All other frequencies are assumed to be equal to the 

vacancy-jump frequency in the pure solvent. (The 

two frequencies and wz have been mentioned for 

reasons of completeness. They are needed in the 

Eq. (3.6) for / but not in F 3 .) Inspection of (4.5) 

shows that the four quantities Qi are equal and we 

have

e« =  T ^ O T F '  i =  1.......4 - <72>

I f  we neglect for the moment the Coulomb inter­

action we obtain by inserting (7.2) into (6.1)

23.5 + 24.9 « + 6.29 a2 

3 — 23.5 + 36.6a+18.4a2+3a3

with a =  W4 I1V5 . When a goes to zero F 3 =  1. 

When a goes to infinity F 3 =  0. In  the case of self- 

diffusion, where all vacancy-jump frequencies are 

equal, F 3 deviates by +0.8% from the exact value 2/3 

which follows from the value / =  0.5 for the cor­

relation factor of C o m p a a n  and H a v e n 6. This de­

viation introduces an error of less than + 0.3% into 

the correlation factor for self-diffusion. In  the case 

of impurity diffusion, the error is in the same order

of magnitude. I f  even more accurate values are 

required one has to consider in Section 5 vacancy 

trajectories which extend beyond the G-shell.

Eq. (7.3) agrees in its algebraic form with the 

expression for Fs derived by M a n n i n g 8. In  Fig. 4 

(upper curve) 3^3  as calculated from (7.3) has been 

plotted. This curve practically would coincide with 

the corresponding curve from Mannings expres­

sion. The deviations are not greater than 0.8%.

Fig. 4. 3F 3 for the diamond structure for different magni­
tudes of the Coulomb interaction.

By multiplying both the numerator and denominator of 
Eq. (40) in MANNINGS paper8 by (a + 2.43)/(a + 0.89) 
one obtains15

_  22.5 + 24.3 a + 6.17 a2

3 “  22.5 + 35.7a + 18.2a2 + 3a» *

This expression is very similar to (7.3). Eventually the 
agreement between both expressions could be improved by 
taking into acconnt more shells.

Let us now include the Coulomb interaction but 

retain the four-frequency-model for the inner jump 

frequencies. We then obtain from (6.1)

2 3

^3 =  2  y<aV2 ha-i (7.4)
i=0 t —0

where the coefficients and 6 t can be written as

« * = ^ 0)- < 7-5> 

and have been tabulated in Table 6. and 

of course agree with the values of (7.3). The in­

fluence of the Coulomb interaction is shown in

15 J . R. M a n n in g , private communication.
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Table 6. The coefficients yi and for the four-frequency- 
model of the correlation factor including Coulomb interac­

tion.

i 0 1 2 3

y<°) 23.5 24.9 6.29 —

0.44 0.37 0.08 -

<$<0) 23.5 36.6 18.4 3

d(" 0.44 0.41 0.09 0

Fig. 4 for different values of c/JcT. F$ is lower by 

some percent and hence / is smaller than without 

Coulomb interaction. As already mentioned in 

Section 3, V1 2 F 3 can be interpreted as an effective 

escape frequency. I t  appears plausible that the 

Coulomb attraction diminishes the chance of a 

vacancy to escape the surroundings of T.
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