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Radial fluctuation functions which convey information about liquid microstructure are defined,
determined from computer generated configurations, and discussed.

The equilibrium microstructure of a fluid may
only be described exactly in terms of a complete set
of n-body atomic distribution functions, where n is
1,2,3,...,N, and N is the total number of particles
in the system. The higher order functions, i.e. n>2,
are complex and practically inaccessible but con-
siderable qualitative information can already be
derived from studies of the mean radial occupation
function n(r) defined as the average number of
atoms in a sphere of radius r centred on a particular
atom. The function for a perfect gas of non-inter-
acting particles is

n*(r)=4narp (1)

where o is the number density N/V. Differentiation
of n(r) with respect to radius and normalisation
relative to the bulk density gives the radial distri-
bution function

g(r) = [dn(r) /dr]/[dn* (r)/dr] . (2)

Neutron and X-ray scattering experiments have
been widely used to obtain radial distribution func-
tions for a variety of liquids?!. For simple liquids
such as the condensed group O elements, computer
simulation methods can be used to derive infor-
mation about liquid structure 2. Extensive g(r) data
obtained from molecular dynamics (MD) calcu-
lations for liquid Lennard-Jones molecules are
tabulated in the literature3. The latter techniques
have an advantage over the former in that they may
yield quantitative values for any requisite configu-
rational average to a comparatively high level of
accuracy. In principle, the average liquid structure
could be determined exactly but even if this were
practical it would be difficult to interpret the data
for the multiplet distribution functions. The triplet
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distribution itself poses a formidable problem of
presentation. Information which is contained in the
pair distribution function, however, may be extended
by studying not only the mean radial occupation
function n(r) but also fluctuations about the mean.

The “term coordination number” has been exten-
sively used to describe local structure in liquids *.
A mean first-coordination number may be defined
as the value of n(r) when g(r) displays its first
minimum, although alternative definitions have been
suggested and discussed 4. Knowledge acquired
through studying coordination numbers, or more
generally n(r) the mean radial occupation function,
is limited in that it contains no information regard-
ing fluctuations of, and distributions around, the
mean value. It is appropriate to define two further
functions as

f(r) = ((4n?),;") [n(r) (3)
w(r) = ((4n?),)[n* (1) (4)
where ((4n?),) is the mean squared fluctuation
around the mean radial occupation function n(r).
Values of f(r) are therefore standard deviations of
radial occupation numbers. The normalised variance
w(r) is a more useful function and is related to the
isothermal compressibility at large r by the familiar
statistical mechanical expression for fluctuations in
density, which gives

wir— o) =~ YET () . (5)

and

Numerical Procedure

Chains of configurations typical of a real simple
liquid were generated by the Monte Carlo method
of Metropolis et al. (1953) which has more recently

2 I.R.McDoNALD and K. SINGER, Quart. Rev.24, 238 [1970].

3 L. VERLET, Phys. Rev. 165, 201 [1968].

4 P. G. MixorAJ and C. J. PiNGs, J. Phys. Chem. Liquids 1,
93 [1968].
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been described in detail elsewhere ®. The pair poten-
tial employed is a Lennard-Jones function

a2 ()

with the parameters, E/kﬂ =117.2K and ¢ = 3.405 A,
having previously been found to adequately repro-
duce the experimental internal energy and pressure
of argon over the entire liquid range 2. Moreover,
the radial distribution functions obtained using the
Lennard-Jones function are also found to be in
good agreement with the experimental curves from
X-ray scattering measurements 3,

The functions ¢(r), f(r) and w(r) are calculated
from two basic histograms: the mean radial occu-
pation number n(r—Ar,r+A4r) and the mean
squared radial occupation number n?(r — Ar, r + A4r).
These histograms incorporate a double average,
firstly over the N particles in the basic cube and
secondly over a large number of configurations. In
order to minimize residual fluctuation errors, the
configurations chosen for analysis were selected from
widely spaced intervals (every 2000 steps) in the
MC chain. The value of Ar is 0.05A. Having ob-
tained the basic data on termination of the MC
chain, Equations (2), (3) and (4) are applied in a
straightforward manner to calculate g(r), f(r) and
w(r) respectively. All the calculations were per-
formed on a basic cubic system containing 216
particles and subjected to the usual periodic bound-
ary conditions.

Results are reported for four V-T' points chosen
so as to represent states of liquid argon on the
liquid-vapour coexistence curve. The reduced tem-
peratures of the points are T/¢ =0.75, 0.9, 1.05 and
1.2, broadly scanning the orthobaric range from
the triple point (0.72) to the critical point (~1.3)
for the Lennard-Jones system.

7

r

Results and Discussion

Table 1 lists the values of n(r) and f(r) for
distances corresponding to the first two maxima
and ensuing minima in ¢(r). For the whole range
of r, n(r) decreases monotonically with increase
in temperature as a consequence of volume expan-
sion. Thus, at a distance corresponding to the first

5 W. W. Woop, in: Physics of Simple Liquids, Eds. Tem-
PERLY, ROWLINSON and RusHBROOKE, North-Holland, Am-

sterdam 1968, pp. 114—230.
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maximum in g(r), the fractional root-mean-squared
fluctuation increases, for increases in T along the
orthobaric curve, from 0.44 (or 44%) at T=87.9K
to 0.63 at T'=140 K. The value of f(r) when r is
equal to the first minimum in ¢(r), i.e. the radius
of the usual first coordination sphere, shows a
fluctuation of 13.4% at T=87.9K, near the triple
point, increasing to 21.3% at T=140.6K, ~10K
below the critical point. It is found (see below) that
fluctuations at larger r are suppressed by the small-
ness of N and the periodic boundary, particularly at
140.6 K. This is perhaps to be expected because the
critical region is characterized by large scale fluctu-
ations in density. The entries in the lower right-hand
quadrant of Table 1 probably do not correspond to

reality.

Table 1. Calculated fluctuations of radial occupation numbers
for distances corresponding to maxima and minima in g(r).

Temp. (K): 87.9 105.5 1231 140.6
Ist maximum r/A 3.60 3.70 3.75 3.80
n(r) 3.49 2.73 2.50 2.11
() 0.447 0527 0582  0.633
Ist minimum r/A 5.15 5.35 5.50 5.65
n(r) 13.2 12.1 11.6 10.4
i 0134 0163 0205 0213
2nd maximum r/A 6.85 7.20 7.40 7.50
n(r) 31.9 29.7 28.7 24.6
£(r) 0.083 0100 0124 0.129
2nd minimum /A 8.30 8.70 8.95 9.10
n(r) 583 531 512 446
£(r) 0.050 0.062 0082 0.087

Normalized probability distributions about the
mean radial occupation function P (n,r) are also
obtained and shown for the two extreme tempera-

tures T=87.9 and 140.6K at r=5.5A in Fig. 1.
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Fig. 1. Distributions of radial occupation numbers.
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Numerical values for all four V-T points are quoted
in Table 2. The curves are approximately symmetric.
A notable feature of these distributions is the range;
at T=87.9K there is an 80% probability of finding
a radial occupation number n (r=5.5A) between
14 and 16 atoms but finite probabilities, are realized
during the computations, extend from 11 to 20.
With increasing temperature this “tail” effect be-
comes more pronounced; the range at 7=140.6K
is 3 to 17 atoms. These very wide distributions of
coordination values are not conformal with those
theories of the liquid state based on lattice models °.
It is, nevertheless, understandable why such models
often predict reasonable values for the equation
of state. This is simply because the pressure can be
expressed as a sum of pair virial functions and the
average pressure depends therefore only on the mean
radial distribution function.

Table 2. Normalized probabilities of radial occupation num-
bers at r=>5.5 A.

Temp. (K): 87.9 105.5 123.1 140.6

n P(n)
3 0.0008
4 0.0010
5 0.0069
6 0.0003 0.0221
7 0.0004 0.0025 0.0674
8 0.0015 0.0133 0.1384
9 0.0099 0.0533 0.2102

10 0.0366 0.1438 0.2270

11 0.0005 0.1136 0.2330 0.1802

12 0.0155 0.2479 0.2567 0.0975

13 0.0972 0.2799 0.1860 0.0381

14 0.2245 0.2003 0.0842 0.0090

15 0.3211 0.0863 0.0235 0.0013

16 0.2366 0.0192 0.0030 0.0001

17 0.0892 0.0040 0.0003

18 0.0143 0.0005

19 0.0007

20 0.0001

The function w(r), obtained at 87.9 K, is shown
in Fig. 2. For a perfect gas of non-interacting point
particles w(r) is everywhere equal to 1. The curve
for liquid argon exhibits a main peak centred at
3.75A (cf. 3.6 for the first peak in g(r)) with a
heigh of 0.55. This is followed by a second broad
peak at 6.7A (cf. 6.85 for the second peak in
g(r)) with an intermediate shallow minimum at
5.85 A. For this V-T point the asymptotic limit of
w is reached around r =10 A and it is evident that

6 J. A. BARKER, Lattice Theories of the Liquid State, Perga-
mon Press, London 1963.
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the periodic boundary does not restrict fluctuations
in radial number density in the region of short-
range order. When this result for w(r—o) is
substituted into Eq. (5) to compute the isothermal
compressibility, satisfactory agreement is observed
with the result obtained by differentiating the com-
puted equation of state for the Lennard-Jones liquid ?.
The predicted value of w(r—o) is 0.12 and is
shown in Fig. 2 for comparison. This is not found
to be the case at higher temperatures. For example,
when T=140.6K, and for r=10A, fluctuations
are around 50% less than might be predicted from
the experimental isothermal compressibility. The
limiting plateau in w(r) is not observed inside 10 A
for these higher temperatures and the function
continues to decrease monotonically after the second
peak. This suppression of fluctuations in the range
beyond r~6A by the periodic boundary becomes
progressively greater as the temperature increases.
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Fig. 2. Local fluctuations of radial number density calculated

for a liquid Lennard-Jones system near the triple point. The

dashed line corresponds to a limiting value of w as predicted
from the isothermal compressibility by Eq. (5).

Conclusions

The functions f(r) and w(r), in addition to g(r),
can be obtained in a straightforward manner from
MC or MD computations with only a small fraction
of additional computational effort. Fluctuations in
n(r) are supplementary to ¢g(r) in the description
of liquid microstructure. Indeed, without knowledge
of f(r) the term coordination number has little or
no significance as regards local structure. For
sufficiently large N, of the order 102 to 10% depen-
dent on temperature, the curve w(r) reaches a

7 1. R. McDonNALD and K. SINGER, Discuss. Faraday Soc. 43,
40 [1969].
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limiting value around the same distance as g(r)
approaches 1 and this provides a means of computing
the isothermal compressibility directly. It is clear
that ts the temperature increases along the liquid-
vapour coexistence curve a larger sample size N
is required. Behaviour of w(r) at large r should
serve as a contributory criterion in deciding the
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optimum value of N in MC and MD computations,
particularly when the latter are designed to study
liquid structure or to calculate properties which are
sensitive to fluctuations in number density.
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