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Radial fluctuation functions which convey information about liquid microstructure are defined, 
determined from computer generated configurations, and discussed.

The equilibrium microstructure of a fluid may 

only be described exactly in terms of a complete set 

of n-body atomic distribution functions, where n is 

1, 2, 3 , . . . ,  N, and N is the total number of particles 

in the system. The higher order functions, i. e. n >  2, 

are complex and practically inaccessible but con­

siderable qualitative information can already be 

derived from studies of the mean radial occupation 

function n(r) defined as the average number of 

atoms in a sphere of radius r centred on a particular 

atom. The function for a perfect gas of non-inter­

acting particles is

n‘ (r) = t * r » e  (1)

where Q is the number density N/V. Differentiation 

of n (r) with respect to radius and normalisation 

relative to the bulk density gives the radial distri­

bution function

g(r) = [dn(r)/dr]/[dn* (r)/dr] . (2)

Neutron and X-ray scattering experiments have 

been widely used to obtain radial distribution func­

tions for a variety of liquids1. For simple liquids 

such as the condensed group 0 elements, computer 

simulation methods can be used to derive infor­

mation about liquid structure 2. Extensive g(r) data 

obtained from molecular dynamics (MD) calcu­

lations for liquid Lennard-Jones molecules are 

tabulated in the literature3. The latter techniques 

have an advantage over the former in that they may 

yield quantitative values for any requisite configu­

rational average to a comparatively high level of 

accuracy. In principle, the average liquid structure 

could be determined exactly but even if this were 

practical it would be difficult to interpret the data 

for the multiplet distribution functions. The triplet

* Reprint requests to Dr. L. V. W o o d c o c k ,  Department of 
Chemistry, The University of Southampton, Southampton, 
England.

1 See e. g. P. A. E g e l s t a f f ,  Introduction to the Liquid State, 
Academic Press, London 1967.

distribution itself poses a formidable problem of 

presentation. Information which is contained in the 

pair distribution function, however, may be extended 

by studying not only the mean radial occupation 

function n(r) but also fluctuations about the mean.

The “term coordination number” has been exten­

sively used to describe local structure in liquids 4. 

A mean first-coordination number may be defined 

as the value of n(r) when g(r) displays its first 

minimum, although alternative definitions have been 

suggested and discussed4. Knowledge acquired 

through studying coordination numbers, or more 

generally n(r) the mean radial occupation function, 

is limited in that it contains no information regard­

ing fluctuations of, and distributions around, the 

mean value. It is appropriate to define two further 

functions as

f(r) =  ( (^ «2)rV*)/n(r) (3)

and iv(r) — ((An2) r)/n* (r) (4)

where ( (An2) r) is the mean squared fluctuation 

around the mean radial occupation function n(r). 

Values of j(r) are therefore standard deviations of 

radial occupation numbers. The normalised variance 

w(r) is a more useful function and is related to the 

isothermal compressibility at large r by the familiar 

statistical mechanical expression for fluctuations in 

density, which gives

Nk  T jr a n
y 2 1V d p ) ‘

Numerical Procedure

Chains of configurations typical of a real simple 

liquid were generated by the Monte Carlo method 

of Metropolis et al. (1953) which has more recently

2 I. R. M c D o n a l d  and K . S in g e r , Quart. Rev. 24, 238 [1970].
3 L. V e r l e t , Phys. Rev. 165, 201 [1968].
4 P . G. M ik o l a j  and C. J. P in g s , J. Phys. Chem. Liquids 1, 

93 [1968].
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been described in detail elsewhere 5. The pair poten­

tial employed is a Lennard-Jones function

12

writh the parameters, e/kß =  117.2 K and o =  3.405 Ä, 

having previously been found to adequately repro­

duce the experimental internal energy and pressure 

of argon over the entire liquid range2. Moreover, 

the radial distribution functions obtained using the 

Lennard-Jones function are also found to be in 

good agreement with the experimental curves from 

X-ray scattering measurements 3.

The functions g(r), f(r) and w(r) are calculated 

from two basic histograms: the mean radial occu­

pation number n(r — Ar, r + Ar) and the mean 

squared radial occupation number n2 (r — Ar, r + Ar). 

These histograms incorporate a double average, 

firstly over the N particles in the basic cube and 

secondly over a large number of configurations. In 

order to minimize residual fluctuation errors, the 

configurations chosen for analysis were selected from 

widely spaced intervals (every 2000 steps) in the 

MC chain. The value of zlr is 0.05 Ä. Having ob­

tained the basic data on termination of the MC 

chain, Equations (2), (3) and (4) are applied in a 

straightforward manner to calculate g(r), f(r) and 

iv(r) respectively. All the calculations were per­

formed on a basic cubic system containing 216 

particles and subjected to the usual periodic bound­

ary conditions.

Results are reported for four V-T points chosen 

so as to represent states of liquid argon on the 

liquid-vapour coexistence curve. The reduced tem­

peratures of the points are 7’/e =  0.75, 0.9, 1.05 and

1.2, broadly scanning the orthobaric range from 

the triple point (0.72) to the critical point ('''-'1.3) 

for the Lennard-Jones system.

Results and Discussion

Table 1 lists the values of n(r) and /(r) for 

distances corresponding to the first two maxima 

and ensuing minima in g{r). For the whole range 

of r, n (r) decreases monotonically with increase 

in temperature as a consequence of volume expan­

sion. Thus, at a distance corresponding to the first

3 W . W . W o o d , in: Physics of Simple Liquids, Eds. Tem-

p e r l y ,  R o w l i n s o n  and R u s h b r o o k e ,  North-Holland, Am­
sterdam 1968, pp. 114 — 230.

maximum in g(r), the fractional root-mean-squared 

fluctuation increases, for increases in T along the 

orthobaric curve, from 0.44 (or 44%) at T = 87.9 K 

to 0.63 at T = 140 K. The value of f(r) when r is 

equal to the first minimum in g(r), i.e. the radius 

of the usual first coordination sphere, shows a 

fluctuation of 13.4% at T = 87.9K, near the triple 

point, increasing to 21.3% at T =  140.6 K, ~ 1 0 K  

below the critical point. It is found (see below) that 

fluctuations at larger r are suppressed by the small­

ness of N and the periodic boundary, particularly at

140.6 K. This is perhaps to be expected because the 

critical region is characterized by large scale fluctu­

ations in density. The entries in the lower right-hand 

quadrant of Table 1 probably do not correspond to 

reality.

Table 1. Calculated fluctuations of radial occupation numbers 
for distances corresponding to maxima and minima in g(r).

Temp. (K) : 87.9 105.5 123.1 140.6

1st maximum r/A 3.60 3.70 3.75 3.80
n{r) 3.49 2.73 2.50 2.11

f(r) 0.447 0.527 0.582 0.633

1st minimum r/A 5.15 5.35 5.50 5.65
n{r) 13.2 12.1 11.6 10.4
f(r) 0.134 0.163 0.205 0.213

2nd maximum r/A 6.85 7.20 7.40 7.50
n{r) 31.9 29.7 28.7 24.6
f(r) 0.083 0.100 0.124 0.129

2nd minimum r/A 8.30 8.70 8.95 9.10
n{r) 58.3 53.1 51.2 44.6

fir) 0.050 0.062 0.082 0.087

Normalized probability distributions about the 

mean radial occupation function P (n, r) are also 

obtained and shown for the two extreme tempera­

tures 7 = 87.9 and 140.6 K at r = 5.5Ä in Fig. 1.
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Fig. 1. Distributions of radial occupation numbers.
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Numerical values for all four V-T points are quoted 

in Table 2. The curves are approximately symmetric. 

A notable feature of these distributions is the range; 

at T = 87.9 K there is an 80% probability of finding 

a radial occupation number n (r = 5.5 A) between

14 and 16 atoms but finite probabilities, are realized 

during the computations, extend from 11 to 20. 

With increasing temperature this “tail” effect be­

comes more pronounced; the range at T = 140.6 K 

is 3 to 17 atoms. These very wide distributions of 

coordination values are not conformal with those 

theories of the liquid state based on lattice models 6. 

It is, nevertheless, understandable why such models 

often predict reasonable values for the equation 

of state. This is simply because the pressure can be 

expressed as a sum of pair virial functions and the 

average pressure depends therefore only on the mean 

radial distribution function.

Table 2. Normalized probabilities of radial occupation num­
bers at r=5.5 Ä.

Temp. (K) : 
n

87.9 105.5
P(n)

123.1 140.6

3 0.0008
4 0.0010
5 0.0069
6 0.0003 0.0221
7 0.0004 0.0025 0.0674
8 0.0015 0.0133 0.1384
9 0.0099 0.0533 0.2102

10 0.0366 0.1438 0.2270
11 0.0005 0.1136 0.2330 0.1802
12 0.0155 0.2479 0.2567 0.0975
13 0.0972 0.2799 0.1860 0.0381
14 0.2245 0.2003 0.0842 0.0090
15 0.3211 0.0863 0.0235 0.0013
16 0.2366 0.0192 0.0030 0.0001
17 0.0892 0.0040 0.0003
18 0.0143 0.0005
19 0.0007
20 0.0001

The function w{r), obtained at 87.9 K, is shown 

in Fig. 2. For a perfect gas of non-interacting point 

particles w(r) is everywhere equal to 1. The curve 

for liquid argon exhibits a main peak centred at 

3.75 Ä (cf. 3.6 for the first peak in g(r) ) with a 

heigh of 0.55. This is followed by a second broad 

peak at 6.7 Ä (cf. 6.85 for the second peak in 

g(r)) with an intermediate shallow minimum at 

5.85 Ä. For this V-T point the asymptotic limit of 

w is reached around r=  10 Ä and it is evident that

6 J. A. B a rk e r , Lattice Theories of the Liquid State, Perga­
mon Press, London 1963.

the periodic boundary does not restrict fluctuations 

in radial number density in the region of short- 

range order. When this result for w(r-^oo) is 

substituted into Eq. (5) to compute the isothermal 

compressibility, satisfactory agreement is observed 

with the result obtained by differentiating the com­

puted equation of state for the Lennard-Jones liquid 7. 

The predicted value of w (r—* - o o )  is 0.12 and is 

shown in Fig. 2 for comparison. This is not found 

to be the case at higher temperatures. For example, 

when T=  140.6 K, and for r= 1 0 Ä , fluctuations 

are around 50% less than might be predicted from 

the experimental isothermal compressibility. The 

limiting plateau in w(r) is not observed inside 10 Ä 

for these higher temperatures and the function 

continues to decrease monotonically after the second 

peak. This suppression of fluctuations in the range 

beyond r~  6Ä  by the periodic boundary becomes 

progressively greater as the temperature increases.

0.5 -

|  OA -

0.3 -

w(r)

0.2

0.1 -

Fig. 2. Local fluctuations of radial number density calculated 
for a liquid Lennard-Jones system near the triple point. The 
dashed line corresponds to a limiting value of w as predicted 

from the isothermal compressibility by Eq. (5).

Conclusions

The functions f(r) and w(r), in addition to g(r), 

can be obtained in a straightforward manner from 

MC or MD computations with only a small fraction 

of additional computational effort. Fluctuations in 

rc(r) are supplementary to g(r) in the description 

of liquid microstructure. Indeed, without knowledge 

of j(r) the term coordination number has little or 

no significance as regards local structure. For 

sufficiently large N, of the order 102 to 103 depen­

dent on temperature, the curve w(r) readies a

7 I. R. M c D o n a ld  and K. S in g e r , Discuss. Faraday Soc. 43, 
40 [1969].
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limiting value around the same distance as g(r) 

approaches 1 and this provides a means of computing 

the isothermal compressibility directly. It is clear 

that ts the temperature increases along the liquid- 

vapour coexistence curve a larger sample size N 

is required. Behaviour of w(r) at large r should 

serve as a contributory criterion in deciding the

optimum value of N in MC and MD computations, 

particularly when the latter are designed to study 

liquid structure or to calculate properties which are 

sensitive to fluctuations in number density.

I wish to thank I.B.M. (U. K.) for financial support 
and Professor A. K l e m m  for his hospitality during my 
stay in in Mainz.


