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The periodic structure of the mixed state leads to some band splitting in rough analogy to 
the electrons in a metal. The density of states for tunneling perpendicular to the flux lines 
shows an appreciable depression at energies Hu> ph (h2/2m) fcp |/|, I being a reciprocal lattice 
vector of the flux lattice normal to the tunneling surface.

The mixed state of type I I  superconductors re­

presents a state where the order parameter is not 

constant in space but varies periodically defining a 

two dimensional lattice. As is known from the 

„Geometrical Resonances“ 1 a specific scattering of 

the superconducting electrons takes place at local 

inhomogeneities of the order parameter. There the 

question arises whether a periodic arrangement of 

these inhomogeneities may lead, as in Bragg reflex­

ion, to a structure in the density of states.

In order to find an energy level splitting caused 

by the periodic array of flux lines in a type I I  super­

conductor one has to look for degeneracies in the 

excitation spectrum of the homogeneous, isotropic 

superconductor. The single particle excitations with 

wave vector k of the BCS theory 2 are 

Ek — (el + ^o)1/2> where e* is the energy of the 
free electron and Ao the energy gap. Two states 

with wave vectors k\ and are degenerate if

eki —  ek2 (1 )
or

Eki —  —  ek2 ■ (2 )

If  both states differ approximately by a lattice 

vector of the reciprocal lattice corresponding to the 

mixed state they may be combined in a kind of 

Bragg reflexion.

As a consequence the degeneration would be 

removed, i.e. the levels given by Eqs. (1) and (2), 

respectively, should split. Braggs condition together 

with either the first or the second energy relation 

defines two surfaces in the three dimensional k-space 

where the energy discontinuity will arise. In the 

nomenclature of ordinary solid state physics these 

surfaces are the boundaries of the Brillouin zones.
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Universitätsstraße 14.
1 W. L. M c M i l l a n  and P. W. A n d e r s o n ,  Phys. Rev.

Letters 16, 85 [1966].

The energy bands generated by the discontinuity 

may overlap along the zone boundaries. That leads 

to a difference in the band splitting caused by the 

two energy relations respectively, whereas the mag­

nitude of the gap between the bands should be 

approximately equal in both cases. In the approxi­

mation where the flux lattice is considered as a small 

perturbation an estimate for that magnitude is that 

Fourier component of the order parameter belonging 

to the reciprocal lattice vector involved in the Bragg 

reflexion. It follows from the geometric shape of the 

zone boundaries that the overlap is much stronger 

in the case defined by Eq. (1). There the zone 

boundaries are the planes one is familiar with by 

solid state physics. Because of the great absolute 

value of the involved wave vectors being restricted 

to the neighborhood of the fermisurface the planes 

are nearly perpendicular to the surfaces of constant 

energy Ek and the energy bands would strongly 

overlap. Thus one would get a vanishing effect in 

the density of states.

The case defined by Eq. (2) is different. Here the 

two vectors ki and k% =  k\ -f- I, I being a reciprocal 

lattice vector, he on two spheres, the centers of 

which are separated from the origin by + \ I and

— \ I respectively. The spheres cut the surfaces of 

constant energy in a small angle and the overlap of 

energy bands should be relatively small. In  the 

following we will be concerned only with that case.

Our task is to investigate by usual Green func­

tions technique whether the periodic inhomogenei­

ties of the mixed state can lead to a splitting of the 

levels related by Eq. (2).

In the one dimensional case without external field 

a similar idea has been carried out3. — An infinite

2 J. B a r d e e n ,  L. N . C o o p e r , and J . R. S c h r ie f f e r ,  Phys.
Rev. 108, 1175 [1957].

3 A. P. v a n  G e ld e r ,  Phys. Rev. 181, 787 [1969].
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system of alternating normal and superconducting r>. t) =  _1_ .q, t  , ^  e + iI( r, r')
layers leads theoretically to a band splitting of the ’ * J ’ t ’ I

excitation spectrum.
(5)

Considering the mixed state it has been shown F +(r,r';t) =  — 4--<0|T (r,t) tp* (r',0)|0>e~iI(r> r)
that the quasiparticle excitations may be taken as 

Bloch states of the fluxline lattice under the action 

of a homogeneous magnetic field which represents 

the external field 4.

Gorkovs Equations

We define the Green functions5 of the ground- 

state 10)

Ga(r, r'; t) =  4-<0| Z>«(r, t) y,+ (r', 0) |0> ,

(3)

(6)

with

1 ( r ’ r =  he  J  t (r  —  A  (r ' +  ( r  —  r ')  T ) J d T  (7 )

and denote by a bar the corresponding matrix 

Green function

(G(r, r ’ ;t) F (r ,r ';t) \ 

KF+{r,r';t) G+ (r, r ; t)J '
G{r, r';t) (8)

G^(r,r']t) — -- (r,t)yjix(r',0) |0)e+t/(r’ r '\ G o r k o v s  equations6 may be written in matrix
(4) form as

— Vr2m  \ i
+ hk M r)

2 I Gm(k, r) =  h 1 (9)

where we have used the Fourier-Transformation for Next we wish to exploit the periodicity for the two 

the time variable t and the coordinate difference dimensional flux lattice. I f  g means some lattice

(r — r')
- f OO

<?(r, r';t) = j  exp {— i wt + i k{r — r ’)}
—  OO

• G(o{k, r) dcod3k 

and the abbreviation

M = f  2  7 l= ^ T (V t Vr)»[iV t XH(r)]. 
c  n  = 0 +  Z >-

vector, we have the condition

4 (r + g) =  A(r) + V<pg(r) (14)

which may be regarded as a gauge transformation 

and thus

A*{r + g) =  A*(r) exp{— (2ie/Kc) <pg(r)} . (15)

(11) G<o{k, r), G+{k, r), H  (r), | Zl (r) | are periodic, 
F+{k,r) transforms like A * (r) as indicated in 

Eq. (15) and Fm(k, r) like the complex conjugate, 

depends on the special choice of the gauge,

the vector potential in arbitrary gauge and A (r) is 

the order parameter. Both quantities are determined 

by those equations which keep the procedure self- 

consistent.
+ oo

(16)

The upper (lower) sign in Eq. (9) is chosen if it is

operated on the first (second) column, respectively, u* r . . .  . • , j  u ,, r j. i. ° x ? i
r v ^ however it is restricted by the fact that the total

of the Green function matrix. Air) (rotA =  H) is a ^  n • i , , j  ,
a ___  ̂ __t. i ___ I '  v_ ___ j a , \ • ^UX ^  through the unit cell is given and related to

<Pg by

0  = J Hz (r) df =  (pgi (g2)
u .c .

-  <Poi (°) -  Vg* (gl) + <Pg. (°)
i V C

A * (r) =  — (2ä )4 J (**> r )dcod3fc , (12) where we took the magnetic field in the direction 
-oo of the z-axis. gi, g% are the basis vectors of the

lattice. Thus if the flux does not vanish, A (r ) cannot 

be purely periodic whatever a gauge is chosen. On 

the other hand we want to expand the Greens 

functions and the corresponding Eqs. (9), (12) and

6 L. P. G o r k o v ,  Sov . Phys. JETP 9, 1364 [1959],

rotroty4(r) =  —
4 neh

(2 ji^mc
+ oo (13)
J eia)E {Vr + 2 ik) Gm {k, r) dco d3k .

4 E . C a n e l ,  Phys. Letters 16, 101 [1965].
5 G. ErLENBERGER, Z. Phys. 182, 427 [1965]
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(13) in Fourier series with respect to the coordinate 

r. To this end we remove the phase factors in the 

following quantities

J(*)(r) =  \A{r) \ exp{± (2ie/hc) *(r)} , 

F l+)(k, r) =  F l+){k, r)exp{± (2ie/hc) *(r)}

(the upper sign refers to the starred quantities) 

by adding the phase to the vector potential

A(r) ->A{r) + V*(r) = A(r) (17)

which differs from a gauge transformation by the 

fact that the second partial derivatives of % (r) may 

not exist at some singular point.

In  the A b r ik o s o v  model7 of type I I  superconductivity 
that point ( x q ,  yo) represents the center of a flux line, where 
the order parameter becomes zero and behaves like A (x, y) 
a(C — Co), C being the complex variable x + iy. x(r) is a 
linear function of the argument of (C—Co) hence indetermi­
nate at Co- The second partial derivatives become infinite 
at Co-

The functions |zl(r)| and A(r) are periodic and 

may be expanded in a two dimensional Fourier 

series, if we exclude the singular point by a suitable 

redefinition of the functions in the immediate neigh­

borhood of that point. We shall not go further in 

mathematical details. The only question is whether 

this procedure remains selfconsistent because | A (r)| 

and A(r) are inversely determined by the solution 

of Gorkovs equations through Eq. (12) and (13). 

We are interested only in periodic solutions of Eq. (9) 

and may thus expand the Green functions in a 

Fourier series, too. The magnetic field we assume to 

be in the local domain so that we may set M  =  0, 

Eq. (11). All functions are independent of the 

z-component of r and we define

-4(r) =  2«/exp{i'(*r)} , (18a)
I

\A(r)\ =  2d iexp{i(l r)} , (18b)
I

&aj(k, r) =  2  ^exp{i(Zr)} (18c)
l

where 2 is a vector of the reciprocal lattice the 

z-component being zero. We write Eq. (9) as

(hco + p - - £- (k  + i)A a ,
' '  (19a)

V

7 A . A . A b r ik o s o v , So v . Phys. JETP o, 1174 [1957].

-  2  A,-,. G,. + ( -  ft m + p -  (ft + I)*) F t  

- J ~ { a ,- v ( l  + r  + 2k))Ff- (19b>
~ 2 ( al-l'-l',a l " ) F y = 0 .

I',I"

The remaining two equations need not to be con­

sidered. Eqs. (12) and (13) read now

+ oo

Al =  F+dwd*k, (20)
—  OO 

+  OO

[ I  X [/ X a ,]] =  (2^ c- J e“ *<2 k + I) G ,dcod .

(21)

In the next part we shall try an approach to the 

solution of Eq. (19) by means of an approximation 

being the analogue of the nearly free electron model 

of a metal.

Nearly Free Quasiparticles

We assume that in the Fourier expansion Eqs. 

(18 a, b, c) only the terms of small wave vector are 

important. Furthermore we postulate that the 

energy belonging to those terms in Eq. (19) is small 

compared with the unperturbed excitation energy 

of a quasiparticle with wave vector k. The last 

assumption is realized if we restrict the wave vector 

in Eq. (19) to values separated well enough from 

the fermisurface. The first condition seems artifi­

cial and may be reasonable only if the spatial 

variation of order parameter and magnetic field are 

small. That condition is fulfilled in the mixed state 

if the temperature lies near Tc, however we are 

dealing with zero temperature. Therefore, and it is 

not the aim of this paper, we cannot give a full 

description of the mixed state. We are mainly con­

cerned with the effect coming from the symmetry 

of an ordered lattice of flux lines disregarding the 

structure of a single vortex.

If  we take | zl (r) | and A (r) as known, e. g. through 

a solution of the Ginsburg-Landau equations, 

Eq. (19) represents a system of linear equations for 

the transformed Green functions. To find their poles 

we have to search for the zeros of the appropriate 

determinant. Under the above conditions the system 

would reduce for a quadratic lattice (4 nearest 

neighbors) to 10 and for a hexagonal lattice (6 near­
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est neighbors) to 14 linear equations for the un­

known quantities Gi, F f . We need not solve that 

determinant for the zeros, as we are only interested 

in the significant change of the spectrum which 

occurs at values ko defined by

7?2 S2

+ + =  (22)

because there we expect the degenerate level to 

split. I f  k lies near these values for some fixed, not 

necessary nearest neighbor vector I, the system 

reduces to 4 equations in which only the Green 

functions combined by I enter, namely Go, Gi, , 

F f . The indices o and i stand for the vector o and I, 

respectively.

(hco -f- [x — ^o^o+ “t" A\F± =  h, (23a)

(n (O + n — (k + I)2 j Gi

+ AiF+ + A0F + = 0 ,

( _  Rm + p _  »L * . ) ,+  + £  (oi(2k + ,)) F t

— rrTr2 2  | al [2 -̂ o" — ^0^0 — ^1<?1 =  0, 2̂3C^

(23 b)

eh
—  <«i(2 k + l))F+me

e2

(23d)

2  I I2 — A\Gq — AqGi =  0 .

I

We have used the symmetries Ai =  A-i =  Ai*, 
ai — — a i =  — ai*. With

e2 „  , ieh
ß 9 2 2 I ° l  I2’2 o i c ^ 1 1

I
(«! (2 * + /)),

Ä2

yM —|— Ä CO —  H (JO - ß ,

ei==2m (k + l)2~ t i + ß ’

we get for the determinant of the system (23)

D  =  ((hm)2 — J* - A l-  A\) ((*5)* -  i f -  JS -  Jf) 

- A f d o - h t f - iA lA l

— a2(Kco — £o) (hco — e i). (24)

In the case of vanishing field D  becomes

D  =  ((* o>)S -  4  -  /)§) ((* <«)* -  e? -  Al)

with zeros at

,* > _\±M4 + Ai
(*“ )l,2,3,4-|±1/-2+z|2

which are the BCS excitation energies. I f  we take 

the vectorpotential as small perturbation, we see 

immediately from Eq. (24) that for g0 =  — e\ 

there are no states with energy (hco)i. Forbidden 

energy zones appear and under the assumption of 

a small perturbation the level splitting at eo =  — £i 
is given by

(h at)2 — Sq + Aq i  j/4zlf (eg + A\) + a2 zIq . (25)

The geometric shape of that surface in momentum 

space where the splitting arises is easily deter­

mined from condition (22).

e/c+ii =  — (h2l8m) I2 . (26)

k lies on a sphere with radius smaller than the 

Fermi wave vector k$ by an amount (1/8&f)l2 and 

the center being separated from the origin by —

It is interesting to note that the surface definition 

depends on the 2-coordinate, too, contrary to the 

case of usual Bragg reflexion £o =  + £i > where the 
definition of the boundaries of Brillouin zones in a 

two dimensional lattice is independent of the third 

axis.

As the spheres of constant energy deviate only a 

little from the sphere (26) the new excitation energy 

does not vary much along the latter surface. We 

get an estimate for the band overlap by the quantity

dhco
dk m 11 (27)

in contrast to the corresponding expression in Bragg 

reflexion
dha>
dk

hl
m (28)

which is greater by a factor 103—104. It is this 

reason why one will not find a structure in the 

density of states resulting from Bragg reflexion. 

If  we take £o >  Aq the separation of the bands is 

approximately

Ö (h to) & A i . 

Tunneling Density of States

(29)

We shall restrict the calculation to energies hco 

greater than zero measured relative to the Fermi 

energy. We suppose the tunneling surface to extend 

in y- and z-direction. The coordinates are chosen so 

that the rc-axis coincides with the direction of /. 

The wave vector components ky, kz of the tunneling 

electrons can be assumed to be nearly zero. We are 

interested in a tunneling density of states Nm (ky, kz)
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which gives the probability that an incident electron 

with ky, kz fixed may be added at x. That density 

is defined by

N(o{ky, kz) a J'd ihw  — en) |<0| ipky,kz{x) |n>|2 (30)
n

where n denotes a quantum state of the whole 

system and en the appropriate energy relative to 

the Fermi energy. Eq. (30) leads to

Na) (ky, kz) oc

+ oo L

~ Yn?h J  dkx 1 J  I  dy ̂ Im G(0 r)

(31)

density of states dropping the correction term G\ 

Nm{ky,kz)*({nM)*-A l)-1/2

X h co 1 +
K + ki 
2 H

(hco)2
2 ii

(34)

where we used the definition of the Green function, 

Eq. (3). Next we have to evaluate Gm(k, r) from 

the system of Eq. (23). We get

G0 =  H D-1 [(£ co + £0) {{h co)2 A\)

— a2 (h co — £i) + A\(£0 — £i)] (32)
and

Gi =  %D~l [AoA\(2hw + £o + £i) + i<x{Al — Af)].

(33)

It is well set that one can calculate macroscopic 

quantities as the free energy and by this way the 

vector potential and the order parameter in the 

framework of a local approximation, because finally 

the Green functions are always integrated over the 

energy and momentum variables. But if one is 

interested in the poles of the Green function this 

procedure clearly is not applicable, because the 

terms of an expansion in powers of a nonlocal 

quantity contain these poles with increasing order. 

In this sense our approximation procedure differs, 

i.e. is not so restrictive, from the usual local ap­

proximation. On the other hand the Green functions 

resulting from Eqs. (32) and (33) are not at all 

sufficient to describe the macroscopic mixed state.

Through Gi, Eq. (33) and (18c), the tunneling 

density of states will exhibit a term oscillating with 

the coordinate x. Furthermore if hco is far apart of 

a zero hcoi(kx) of D  where kx satisfies £* =  — £*+; 

with ky, kz fixed, then we get for the tunneling

The magnetic field has been regarded as a small 

perturbation.

The case hco m hcoi(kx) will lead to some change 

in the density given by Eq. (34). As hco >  0, there 

are two zeros of D  and we will be interested in values 

hco lying in the interval between these zeros where 

the density is expected to decrease.

The evaluation of the integral over kx in Eq. (31) 

is done if one knows the poles of Gw, i.e. the zeros 

of D regarding the variable kx. Generally there are 

eight zeros, four emerging from a translation 
£ 5 , ... ,8  _  i x  0f the others. k%, . . . ,  k% are of

no importance in the case which leads to Eq. (34), 

because their residues are small. However in the 

other case hco lies in the interval defined by Eq. (25), 

and four of the eight zeros take on complex values. 

The remaining four real zeros are characterized by 

ek • £k+i >  0. For two of these zeros the residue is, 
as in the former case, vanishing small. One is left 

with two zeros which lead in the density of states 

to one half the right side of Eq. (34).

Thus Nm(ky, kz) is reduced by a factor \ in the 

energy intervals where scattering between the states 

Eic and — E/c+i removes the corresponding degenerate 

level Ejc. The width of an interval, A\ [Eq. (29)], 

decreases with increasing length of the reciprocal 

lattice vector I involved in the scattering. For |/| 

smallest, the order of magnitude of A\ is Ao and the 

distance between two succeeding intervals (i.e. the 

band width) is of the same order. However, there 

we have hco near the superconducting energy gap 

Ao, and the calculation should not be taken too 

seriously. In view of our approximations the result 

applies to the higher excitations, where it estimates 

the correction to the BCS excitation energies due 

to the scattering by the flux line lattice. The 

variation in the tunneling density of states should 

be apparent in an appropriate tunneling experiment 

with very clean type I I  superconductors.


