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The periodic structure of the mixed state leads to some band splitting in rough analogy to
the electrons in a metal. The density of states for tunneling perpendicular to the flux lines
shows an appreciable depression at energies 7w ~ (22/2m) kg | 1|, I being a reciprocal lattice
vector of the flux lattice normal to the tunneling surface.

The mixed state of type II superconductors re-
presents a state where the order parameter is not
constant in space but varies periodically defining a
two dimensional lattice. As is known from the
,.,Geometrical Resonances*“1 a specific scattering of
the superconducting electrons takes place at local
inhomogeneities of the order parameter. There the
question arises whether a periodic arrangement of
these inhomogeneities may lead, as in Bragg reflex-
ion, to a structure in the density of states.

In order to find an energy level splitting caused
by the periodic array of flux lines in a type II super-
conductor one has to look for degeneracies in the
excitation spectrum of the homogeneous, isotropic
superconductor. The single particle excitations with
wave vector k of the BCS theory?2 are
E, = (e + A3)1/2, where ¢ is the energy of the
free electron and Ao the energy gap. Two states
with wave vectors k; and kg are degenerate if

k1 = €k (1)
or

Epy = = Egy» (2)

1

If both states differ approximately by a lattice
vector of the reciprocal lattice corresponding to the
mixed state they may be combined in a kind of
Bragg reflexion.

As a consequence the degeneration would be
removed, i.e. the levels given by Eqgs. (1) and (2),
respectively, should split. Braggs condition together
with either the first or the second energy relation
defines two surfaces in the three dimensional k-space
where the energy discontinuity will arise. In the
nomenclature of ordinary solid state physics these
surfaces are the boundaries of the Brillouin zones.
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The energy bands generated by the discontinuity
may overlap along the zone boundaries. That leads
to a difference in the band splitting caused by the
two energy relations respectively, whereas the mag-
nitude of the gap between the bands should be
approximately equal in both cases. In the approxi-
mation where the flux lattice is considered as a small
perturbation an estimate for that magnitude is that
Fourier component of the order parameter belonging
to the reciprocal lattice vector involved in the Bragg
reflexion. It follows from the geometric shape of the
zone boundaries that the overlap is much stronger
in the case defined by Eq. (1). There the zone
boundaries are the planes one is familiar with by
solid state physics. Because of the great absolute
value of the involved wave vectors being restricted
to the neighborhood of the fermisurface the planes
are nearly perpendicular to the surfaces of constant
energy Ejp and the energy bands would strongly
overlap. Thus one would get a vanishing effect in
the density of states.

The case defined by Eq. (2) is different. Here the
two vectors ki and ks = ki + [, I being a reciprocal
lattice vector, lie on two spheres, the centers of
which are separated from the origin by + 11 and
— % Lrespectively. The spheres cut the surfaces of
constant energy in a small angle and the overlap of
energy bands should be relatively small. In the
following we will be concerned only with that case.

Our task is to investigate by usual Green func-
tions technique whether the periodic inhomogenei-
ties of the mixed state can lead to a splitting of the
levels related by Eq. (2).

In the one dimensional case without external field
a similar idea has been carried out3. — An infinite

2 J. BArDEEN, L. N. CooPER, and J. R. SCHRIEFFER, Phys.
Rev. 108, 1175 [1957].
3 A. P. vax GELDER, Phys. Rev. 181, 787 [1969].
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system of alternating normal and superconducting
layers leads theoretically to a band splitting of the
excitation spectrum.

Considering the mixed state it has been shown
that the quasiparticle excitations may be taken as
Bloch states of the fluxline lattice under the action
of a homogeneous magnetic field which represents
the external field 4.

Gorkovs Equations

We define the Green functions® of the ground-
state | 0)

Gy (r,r';t)= % 0| Tyulr,t)ypt (r',0) 0> eI

(3)

Gf(r,rt)= — —}(0]sz: (rt)pa(r’,0) |0>e+i1(r, ),

(4)

1
m

o+ p— 5o (—?—V,—khk—%Ai(M-}—%—A))z, A(r)
— A% (), — B+ p— g ('f V,+hk+%Ai(M+ %A))

where we have used the Fourier-Transformation for
the time variable ¢ and the coordinate difference
(r—r)

-+ oo

i 1 . s 7
G(r,r';t) —zz;i)tj‘exp{—zwt—{—zk(r— r')} (10)
-Gy (k, r)dow d3k
and the abbreviation
2 oo (_ .)n .
M=" EO 7 +’2f)f!f (VeV)r [i Ve x H(r)].  (11)

The upper (lower) sign in Eq. (9) is chosen if it is
operated on the first (second) column, respectively,
of the Green function matrix. 4 (r) (rotA = H) is
the vector potential in arbitrary gauge and A (r) is
the order parameter. Both quantities are determined
by those equations which keep the procedure self-
consistent.

+ oo
= .
A*(r) = — ,(;n)JFw (k,r)dod3k, (12)
dmeh
rotrot A(r) = — (27!%%
oo (13)
- [ € (Vy + 2 k) G (K, r) do A3k .

4 E. CANEL, Phys. Letters 16, 101 [1965].
5 G. EILENBERGER, Z. Phys. 182, 427 [1965].
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Frr's)= 5 O Ty (r, ) py(r, 0) [0) e 17
(5)
Frrr'it) = = O[Ty} (rt) pT (7,004 ")
(6)
with

1
1r,r) = 45 [l =) AW + e — ) 01de (1)
0

and denote by a bar the corresponding matrix
Green function

Con G(r,r';t)y F(r,r';t)
G(r’r’t)_(F+(r,r’;t) G+ (r, r':t)>' (8)

GORKOVs equations® may be written in matrix
form as

o | Go(k,r) =h1 9)

Next we wish to exploit the periodicity for the two
dimensional flux lattice. If g means some lattice
vector, we have the condition

A(r +g) = A(r) + Vgy(r)

which may be regarded as a gauge transformation
and thus

A*(r 4 g) = A*(r)exp{— (2ie[hc) pg(r)} .

Go(k, 7), G} (k, r), H(r), |4 (r)| are periodic,
F} (k,r) transforms like A*(r) as indicated in
Eq. (15) and F,(k, r) like the complex conjugate.
@y depends on the special choice of the gauge,
however it is restricted by the fact that the total
flux @ through the unit cell is given and related to

®q by
@ = [H,(r)df = ¢, (g2)
- (pl]l (0) - (plln (gl) + ‘sz (0)

where we took the magnetic field in the direction
of the z-axis. g1, g» are the basis vectors of the
lattice. Thus if the flux does not vanish, 4 (r) cannot
be purely periodic whatever a gauge is chosen. On
the other hand we want to expand the Greens
functions and the corresponding Eqs. (9), (12) and

(14)

(15)

(16)

6 L. P. Gorkov, Sov. Phys. JETP 9, 1364 [1959].
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(13) in Fourier series with respect to the coordinate
r. To this end we remove the phase factors in the
following quantities

A®(ry= |4 (r)| exp{+ (2ieflic) x(r)},
FCO (k, r) = FSO (K, r) exp{ (2ieflic) x(r)}

(the upper sign refers to the starred quantities)
by adding the phase to the vector potential

~

A(r)— A(r) + Vy(r) = A(r) (17)

which differs from a gauge transformation by the
fact that the second partial derivatives of y(r) may
not exist at some singular point.

In the ABrRIKOSOV model? of type II superconductivity
that point (o, yo) represents the center of a flux line, where
the order parameter becomes zero and behaves like 4 (z, y)
a( — o), ¢ being the complex variable z + 1y. x(r) is a
linear function of the argument of ({—{p) hence indetermi-
nate at {o. The second partial derivatives become infinite
at Z() .

The functions | A(r)| and ‘Z(r) are periodic and
may be expanded in a two dimensional Fourier
series, if we exclude the singular point by a suitable
redefinition of the functions in the immediate neigh-
borhood of that point. We shall not go further in
mathematical details. The only question is whether
this procedure remains selfconsistent because | 4 (r)|

and A~(r) are inversely determined by the solution
of Gorkovs equations through Eq. (12) and (13).
We are interested only in periodic solutions of Eq. (9)
and may thus expand the Green functions in a
Fourier series, too. The magnetic field we assume to
be in the local domain so that we may set M = 0,
Eq. (11). All functions are independent of the
z-component of r and we define

A(r) = Sajexp{i(lr)}, (18a)
!
4| = 3 drexp{i(in)}, (18b)
Go(k,r)= > Grexp{i(lr)} (18¢)
l

where [ is a vector of the reciprocal lattice the
z-component being zero. We write Eq. (9) as

2
(ﬁ o+ pu— -2hm (k+ l)2> G

(19a
4 3 Ay g BF = by, ;
>

7 A. A. ABrikosov, Sov. Phys. JETP 5, 1174 [1957].
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B2
— 2 4ivGr + <— ho+u—5 - (k+ l)2> F}
,,

h
_ ,Z,':rfc (@ (I + 1+ 2k) F/f (19Db)

2
— 2 me—cg (ar—r—r-ap) Fif =0.
v
The remaining two equations need not to be con-
sidered. Eqgs. (12) and (13) read now

+ oo
A= — i | Fi dodok, (20)
4dmehi +°°.
[Ix[lxa]l= @nyime j e 2k +1)G;dw d3k .
o (21)

In the next part we shall try an approach to the
solution of Eq. (19) by means of an approximation
being the analogue of the nearly free electron model
of a metal.

Nearly Free Quasiparticles

We assume that in the Fourier expansion Egs.
(18a, b, ¢) only the terms of small wave vector are
important. Furthermore we postulate that the
energy belonging to those terms in Eq. (19) is small
compared with the unperturbed excitation energy
of a quasiparticle with wave vector k. The last
assumption is realized if we restrict the wave vector
in Eq. (19) to values separated well enough from
the fermisurface. The first condition seems artifi-
cial and may be reasonable only if the spatial
variation of order parameter and magnetic field are
small. That condition is fulfilled in the mixed state
if the temperature lies near 7., however we are
dealing with zero temperature. Therefore, and it is
not the aim of this paper, we cannot give a full
description of the mixed state. We are mainly con-
cerned with the effect coming from the symmetry
of an ordered lattice of flux lines disregarding the
structure of a single vortex.

If we take | A (r)| and A (r) as known, e.g. through
a solution of the Ginsburg-Landau equations,
Eq. (19) represents a system of linear equations for
the transformed Green functions. To find their poles
we have to search for the zeros of the appropriate
determinant. Under the above conditions the system
would reduce for a quadratic lattice (4 nearest
neighbors) to 10 and for a hexagonal lattice (6 near-
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est neighbors) to 14 linear equations for the un-
known quantities G;, F;". We need not solve that
determinant for the zeros, as we are only interested
in the significant change of the spectrum which
occurs at values kg defined by

h2 B2,

—om o+t pu=g ki—pn  (22)
because there we expect the degenerate level to
split. If k lies near these values for some fixed, not
necessary nearest neighbor vector I, the system
reduces to 4 equations in which only the Green
functions combined by I enter, namely Gy, G1, Fy,
F{ . The indices ¢ and ; stand for the vector o and [,
respectively.

(h(u EIP- 72%1;2) Go+ AoFy + A, Ff =T, (23a)

h2
@w+ﬂ—2£w+nﬂm
+A1FS- +A0Fi+‘:05

(23b)

h2 h
(—hw+qp—5ﬁkﬁfﬁ4r%;mu2k+l»Ff

— oS w2 Ry — dGo— Mer =0, (B39
l
(~ B0+ — g e+ 02) B
— N @@k+ D) F} (23d)
et S|t — G — Aoty =0.

We have used the symmetries 4; = A_; = A;*,

a= —a—|—= —al*. With
€2 ieh
p= 2m022|al|2’
l

o= —
mc

(@a1(2k+ 1)),
- k2 ~
Bo=g K —p+p, ho=ho+ B,

72
a=g - (k+02—u+p,

we get for the determinant of the system (23)

D = ((hw)? — & — A3 — A7) (h )2 — &f — A5 — A7)
— AF (80 — £1)2 — 4 A5 A7

—a2(hw — &) (o — ). (24)

In the case of vanishing field D becomes
D = ((hw)? — e — 45) (hw)? — &f — A7)
with zeros at -
+Ves + 45
% = €0 T <
(h®)y,9,3,4 {iV‘E% A2
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which are the BCS excitation energies. If we take
the vectorpotential as small perturbation, we see
immediately from Eq. (24) that for g = — ¢
there are no states with energy (Aw);. Forbidden
energy zones appear and under the assumption of
a small perturbation the level splitting at eo = — &1
is given by

(hw)? = &5 + A5 £ Y443 (e5 + A3 + o245, (25)

The geometric shape of that surface in momentum
space where the splitting arises is easily deter-
mined from condition (22).

eagr = — (B2/8m) I2, (26)

k lies on a sphere with radius smaller than the
Fermi wave vector kr by an amount (1/8%r)I2 and
the center being separated from the origin by — 1.
It is interesting to note that the surface definition
depends on the z-coordinate, too, contrary to the
case of usual Bragg reflexion ¢g = + &1, where the
definition of the boundaries of Brillouin zones in a
two dimensional lattice is independent of the third
axis.

As the spheres of constant energy deviate only a
little from the sphere (26) the new excitation energy
does not vary much along the latter surface. We
get an estimate for the band overlap by the quantity
Show | h2
E R

1] (27)

in contrast to the corresponding expression in Bragg
reflexion

| Ohw

| ok
which is greater by a factor 103—104. It is this
reason why one will not find a structure in the
density of states resulting from Bragg reflexion.
If we take g9 > Ao the separation of the bands is
approximately

|~ | (28)

d(how)~ A1 (29)

Tunneling Density of States

We shall restrict the calculation to energies %
greater than zero measured relative to the Fermi
energy. We suppose the tunneling surface to extend
in y- and z-direction. The coordinates are chosen so
that the z-axis coincides with the direction of L.
The wave vector components ky, k, of the tunneling
electrons can be assumed to be nearly zero. We are
interested in a tunneling density of states N, (ky, k)
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which gives the probability that an incident electron
with ky, k; fixed may be added at x. That density
is defined by

No(ky, k2) o 3 0 (hoo — en) [{O] pry.kz(x) [n)]2 (30)

where 7 denotes a quantum state of the whole
system and &, the appropriate energy relative to
the Fermi energy. Eq. (30) leads to

Nw(ky, kz) ed

s + oo 3 L (31)
- ’znéﬁjdk”ifjdydzlma‘"(k’ )
i 6

where we used the definition of the Green function,
Eq. (3). Next we have to evaluate G, (k, r) from
the system of Eq. (23). We get

Go=hD (i + &) (hw)2 — & — A — A7)
—a2(hd — &) + Aj (g0 — &1)] (32)

and
G, = ﬁD_l[Z]()Al(?h(B + éo-{— £1) +1M(A(2)—A%)]
(33)

It is well set that one can calculate macroscopic
quantities as the free energy and by this way the
vector potential and the order parameter in the
framework of a local approximation, because finally
the Green functions are always integrated over the
energy and momentum variables. But if one is
interested in the poles of the Green function this
procedure clearly is not applicable, because the
terms of an expansion in powers of a nonlocal
quantity contain these poles with increasing order.
In this sense our approximation procedure differs,
i.e. is not so restrictive, from the usual local ap-
proximation. On the other hand the Green functions
resulting from Egs. (32) and (33) are not at all
sufficient to describe the macroscopic mixed state.

Through G1, Eq. (33) and (18¢), the tunneling
density of states will exhibit a term oscillating with
the coordinate . Furthermore if Z o is far apart of
a zero hw;(k;) of D where k, satisfies e = — g1
with k,, k, fixed, then we get for the tunneling
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density of states dropping the correction term G,
Ny (ky, kz) o (B )2 — A3)~1/2

b4 [(ﬁwl—f— kY+kz)~

- (hw)? — A5
2k :

N (34)
2pn

The magnetic field has been regarded as a small
perturbation.

The case kv ~ hw;(kz) will lead to some change
in the density given by Eq. (34). As hw > 0, there
are two zeros of D and we will be interested in values
hw lying in the interval between these zeros where
the density is expected to decrease.

The evaluation of the integral over k; in Eq. (31)
is done if one knows the poles of G, i.e. the zeros
of D regarding the variable k.. Generally there are
eight zeros, four emerging from a translation
kB8 = kL4 4 1, of the others. k2, ..., k§ are of
no importance in the case which leads to Eq. (34),
because their residues are small. However in the
other case fi» lies in the interval defined by Eq. (25),
and four of the eight zeros take on complex values.
The remaining four real zeros are characterized by
ex - epr1 > 0. For two of these zeros the residue is,
as in the former case, vanishing small. One is left
with two zeros which lead in the density of states
to one half the right side of Eq. (34).

Thus N (ky, k;) is reduced by a factor } in the
energy intervals where scattering between the states
ex and — g4 removes the corresponding degenerate
level Ej. The width of an interval, A; [Eq. (29)],
decreases with increasing length of the reciprocal
lattice vector I involved in the scattering. For ||
smallest, the order of magnitude of A, is A and the
distance between two succeeding intervals (i.e. the
band width) is of the same order. However, there
we have Ziw near the superconducting energy gap
Ao, and the calculation should not be taken too
seriously. In view of our approximations the result
applies to the higher excitations, where it estimates
the correction to the BCS excitation energies due
to the scattering by the flux line lattice. The
variation in the tunneling density of states should
be apparent in an appropriate tunneling experiment
with very clean type II superconductors.



