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Zur Erweiterung der Poulet-Loudon-Näherung 

in der Theorie der optischen Gitterschwingungen

L. M ert e n  und G. L a m prec h t

Fachbereich Physik und Rechenzentrum der Universität Münster 

(Z. Naturforsth. 26 a, 215—219 [1971] ; eingegangen am 20. November 1970)

In einachsigen Kristallen sind die Frequenzen der sog. außerordentlichen optischen Gitterschwin­
gungen richtungsabhängig (Richtungsdispersion). Diese Richtungsabhängigkeit wurde in der Litera­
tur bisher fast ausnahmslos durch die Poulet-Loudon-Näherung beschrieben. Im folgenden werden 
zwei erweiterte Näherungslösungen angegeben. Da inzwischen auch die exakten Lösungen (im Rah­
men der harmonischen Näherung) bekannt sind, läßt sich die Genauigkeit dieser beiden Näherungen 
wie auch der Poulet-Loudon-Näherung jetzt gut beurteilen.

Als Beispiele werden je zwei Schwingungszweige starker Richtungsdispersion von a-Quarz und
dem tetragonalem BaTi03 im einzelnen diskutiert.

I. Einleitung

Die Frequenzen der polaren ultrarot-aktiven Git­

terschwingungen in ein- und zweiachsigen Kristallen 

zeigen eine mehr oder weniger stark ausgeprägte 

Richtungsabhängigkeit (Richtungsdispersion). Diese 

Richtungsdispersion läßt sich, wie in 1 und später 

in 2 gezeigt wurde, für Kristalle mit einer beliebigen 

Anzahl von Atomen in der Elementarzelle im Rah­

men der harmonischen Näherung streng berechnen.

Im folgenden seien speziell einachsige Kristalle 

betrachtet, in denen nur die außerordentlichen 

Schwingungen richtungsabhängig sind. Für ihre 

Richtungsabhängigkeit gilt:

£||4 + £i s!  = ° (!)

mit3 w
f l  ((« II* )2- " 2)

*ll =  £r ^ ^ ----------  d a )

n (<4* - w2) 
k = 1

und entsprechend für e± . Die Dispersionsgleichung 

lautet daher ausführlich:
V W

• M n  < «& -«*) n  a«!,*) * ( 2 )
;  = 1 k-\

v w

+ «5. n ((<«!u):2 - n (<4 - «2) = o.
;' = 1 k = 1

Dabei bedeuten ä|| = cos $, s i = sin $ die Rich­

tungskosinus bezogen auf die optische Achse bzw.
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eine dazu senkrechte Richtung, £|| bzw. £_l bedeuten 

die Hochfrequenz-Dielektrizitäskonstanten, bzw. 
cojj  die Frequenzen der longitudinalen, w±j bzw.

die Frequenzen der transversalen Schwingun­

gen * bezogen auf diese Richtungen. # ist dabei der 

Winkel zwischen Wellenvektor und optischer Achse.

Für Kristalle mit einer größeren Anzahl von Ato­

men in der Elementarzelle läßt sich Gl. (2) nicht ex­

plizit nach co auflösen, so daß die exakten Lösun­

gen von (2) nur numerisch angegeben werden kön­

nen. Dies erschwert die praktische Handhabung der 

Gleichung für Kristalle mit einer größeren Anzahl 

von Atomen pro Elementarzelle.

Aus diesem Grunde interessiert die Frage, ob sich 

nicht explizite Näherungsausdrücke für co aufstellen 

lassen, durch die die Dispersion schon hinreichend 
genau beschrieben wird.

Der einfachste, bisher in der Literatur fast aus­

schließlich benutzte Näherungsausdrudc ist die Pou­
let-Loudon-Näherung 4> 5:

co2 = co« cos2 $ + o)ß sin2 $  . (3)

Dabei bedeuten coa entweder eine der Frequenzen 
o)j j oder cop und ojß eine der Frequenzen cop oder 

Gleichung (1) umfaßt also die folgenden vier 

Möglichkeiten, wobei die zu dem betrachteten Zweig 

gehörigen Frequenzen durch /" = /  bzw. k = K ge­
kennzeichnet seien:
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(*-*l)-Zweig: coa = o)1 J , o)ß = oj\j ,
(l->0-Zweig: coa = coj\K , ooß = w{lK,
(t-+t) -Zweig: coa = co±y, w  ̂= ö)p ,
(1-^ 1)-Zweig: coa=*(o\K, (oß = (o\j.

(siehe 4) , 

(siehe 5) .

(4)

Für außerordentliche optische Zweige mit sehr 

geringer Dispersion stellt die Poulet-Loudon-Nähe- 

rung bereits eine gute Näherung dar (vgl. z. B. 6 

und 7) . Offensichtlich ergibt sich die Poulet-Loudon- 

Näherung aus der exakten Gl. (2), indem man dort 

£fi° = £± setzt und ebenfalls die Frequenzen a>jj, 
top und cojlj, a)p als paarweise gleich annimmt, 

mit Ausnahme von ooa = oô _j bzw. = co\\k und 

coß = M\\K bzw. =(jo\j .

Für Zweige mit starker Richtungsdispersion ist 

die Poulet-Loudon-Näherung jedoch im allgemeinen 

keine gute Näherung. Solche Zweige starker Disper­

sion wurden z. B. in a-Quarz 8, LiJ03 9 und im tetra- 

gonalen BaTi03 10 gefunden. Insbesondere ist für 

die Zweige der außerordentlichen soft-mode der 

Ferroelektrika unterhalb des Curie-Punktes eine im 

allgemeinen extrem starke Richtungsdispersion zu 

erwarten.

An Hand einiger Zweige starker Dispersion im 

a-Quarz und im tetragonalen BaTi03 sollen im letz­

ten Abschnitt schließlich die verschiedenen Nähe­

rungslösungen miteinander verglichen werden.

II. Lineare und quadratische Approximation

a) Lineare Approximation

Die Frequenzen ooa und coß seien wie oben defi­

niert. In der Bestimmungsgleichung (2) ersetzen 

wir in allen Faktoren mit Ausnahme der Faktoren 

0Ja — 0J2, CDß — oj2 die Frequenz co durch einen geeig­

neten Mittelwert cd, z. B. durch *

i  K  + ̂ )  • (5)

so daß Gl. (2) übergeht in die Näherung:

4 ”> 4  (<o* - 0)2) + 4  (co| - afi) = 0 (6) 

mit m, n =  1, 2.

und

Dabei wurde zur Abkürzung gesetzt:

V W

4"-«r n («>1; - s>2) n ((«i*)2 - a2», 
j = l  k = 1

i+J (7 a)
V w

4 2,= i ° n  ( « i , - « 2) n  «H i*)2-® 2)
;' = 1 k = 1 

k f K

((w'i,)2-®2) n («I*-s2), 
;  = 1 k = 1 

Ä f K (7b)
V W

*?-«±n ((«II,)2-®2) n («is-®2).
;' = 1 k = 1 
i f J

Aus Gl. (6) ergibt sich daher die Näherungslösung

(ä|| = cos sj_ = sin$):

4"> co9- cos2 # -f C?(”) OTß sin2 $
(.m, n =  1,2).

(8)

Durch die eingeführte Näherung sind die Eigen­

frequenzen des Systems von v + w Schwingungsglei­

chungen nach Gl. (8) auf die Eigenfrequenzen for­

mal entkoppelter Schwingungsgleichungen reduziert 

worden. Die Kopplung mit den anderen Gitterschwin­

gungen drückt sich implizit nur noch in den Koeffi­

zienten und aus.

Im Spezialfall = g?(”) geht Gl. (8) offensicht­

lich in die Poulet-Loudon-Näherung über.

b) Quadratische Approximation

Wenngleich in den meisten Fällen die lineare 

Approximation bereits eine hinreichend gute Nähe­

rung darstellt, so läßt sich im allgemeinen die Ge­

nauigkeit durch Übergang zu einer quadratischen 

Näherung noch erheblich steigern, ohne daß der 

Rechenaufwand sich dabei wesentlich erhöht. Eine 

wesentliche Verbesserung ist vor allem dann zu er­

warten, wenn zwei Zweige starker Dispersion sehr 

eng beieinander liegen (Beispiel: Zweig 5 und 

Zweig 6 in a-Quarz).

Die Näherung ist gegenüber der speziellen Art der Mittel­
wertbildung relativ unempfindlich, so daß man statt (5) 
z.B. auch_den arithmetischen Mittelwert der Frequenz­
quadrate a)* =  k (cücf + coß2) oder das geometrische Mittel 

co=]/coa- ooß wählen könnte. Falls im Einzelfall sinnvoll, 
kann man in rf‘m) und dj_B> auch verschiedene Mittelwerte 
cu „ und (Oß einführen, ohne daß sich an der Gestalt von Gl. 
(8) etwas ändert.
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Unter quadratischer Näherung soll dabei die­

jenige Näherung verstanden sein, die man erhält, 

wenn in Gl. (2) co nur in den je zwei Faktoren, die 

zu den beiden betrachteten Zweigen gehören, varia­

bel gelassen wird, in allen anderen Faktoren jedoch 

wieder durch einen geeigneten Mittelwert ersetzt 

wird.

Um in der Bezeichnung nicht unnötige Fallunter­

scheidungen treffen zu müssen, denken wir uns in 

Gl. (2) alle Frequenzen cojj, &)p ler Größe nach 

geordnet und als con fortlaufend durchnumeriert, 
entsprechend alle co p , co\j als com durchnumeriert. 

Mit diesen Bezeichnungen lautet dann Gl. (2) :

V +  W V + 10

«r 4 n k -®2) +«ü4 n («s. -a>2) =0. 
(2 a)

mit
V + W V + w

D\\ — fU° n  ("« -®f) und D± n •
n = 1 m = 1

(nfcti,a,) (m f  ß t,ß t)

Die Mittelwerte ö)[|, cö± brauchen dabei nicht not­

wendig als gleich angesehen zu werden.

Die beiden Lösungen der quadratischen Gl. (9) 

lauten:

cof,2 (#) = \(A ± VA2 - 4 B ) (10)
mit

A =  

und 

ß =
D

m = 1

Bezeichnen wir die zwei Frequenzen aus den {con} , 

die zu den betrachteten Zweigen gehören, mit ooai 

und coai, die zwei aus den {com} mit C0ßt , (Oßt, so er­

gibt sich aus Gl. (2) als quadratische Näherung:

D\\ sf (a4-(o2) (c/j^-cü2)

+ D±. ("/I - oj2) - co2) =0
(9)

D\\ (co^+coqj cos2 'd' + Dj_ sin2#

D\\ cos2 # + D± sin2 $

wai waa cos2 $ + Dl Mßi M\i sin2 $
D\\ cos2 # + D± sin2 #

III. Diskussion und Anwendung 

auf a-Quarz und BaTi03

Beispiele für Zweige starker Dispersion sind die 

Zweige 5 und 6 von a-Quarz und die Zweige 1 und

3 vom tetragonalen BaTi03 .

Die verschiedenen Näherungen sind für diese

Zweige zusammen mit der exakten Lösung in Abb. 1

und Abb. 2 dargestelt, mit den numerischen Werten

Tab. 1. Richtungsdispersion der außerordentlichen optischen Phononen von a-Quarz (Zweige 5 und 6).

0

exakt 
nach 

Gl. (2)

Poulet-
Loudon-
Näherg.

nach 
Gl. (3) A

Zweig 5 

c d  in cm-

Nähe­
rung I 
nach 

Gl. (8)

l

A

Nähe­
rung II 
nach 

Gl. (10) A

exakt 
nach 

Gl. (2)

Poulet-
Loudon-
Näherg.

nach 
Gl. (3) A

Zweig 6 

co in cm-

Nähe­
rung I 
nach 

Gl. (8)

l

A

Nähe­
rung II 
nach 

Gl. (10) A

0° 450,0 450,0 0 450,0 0 450,0 0 547,7 547,7 0 547,7 0 547,7 0
10° 451,0 451,4 -0,4 450,8 + 0,2 451,0 0,0 547,2 546,6 + 0,6 547,2 0,0 546,8 + 0,4
20° 453,7 455,5 - 1,8 453,1 + 0,6 453,8 - 0,1 545,2 543,4 + 1,8 545,5 -0,3 544,9 +0,3
30° 458,1 461,7 -3,6 457,0 + 1,1 458,3 - 0,2 541,8 538,5 +3,3 542,6 - 0,8 541,4 + 0,4
40° 463,7 469,1 -5,4 462,6 + 1,1 464,0 -0,3 537,7 532,4 +5,3 538,4 -0,7 536,9 + 0,8
50° 470,2 476,9 -6,7 469,8 + 0,4 470,6 -0,4 532,3 525,8 + 6,5 532,6 -0,3 531,5 + 0,8
60° 477,3 484,1 - 6,8 478,1 - 0,8 477,7 -0,4 526,1 519,5 + 6,6 525,6 + 0,5 525,5 +0,6
70° 484,7 489,9 -5,2 486,3 - 1,6 485,0 -0,3 519,7 514,4 + 5,3 518,2 + 1,5 519,1 + 0,6
80° 491,5 493,7 -3,2 492,6 — 1,1 491,6 - 0,1 513,4 511,0 + 2,4 512,2 + 1,2 513,0 + 0,4
90° 495,0 495,0 0 495,0 0 495,0 0 509,8 509,8 0 509,8 0 509,8 0

Erläuterungen zu Tab. 1: A gibt den absoluten Fehler gegenüber der exakten Lösung (jeweils erste Spalte) an. Als Mittel­
werte der Näherung I wurden benutzt:

- o ) a  +  coß  _  w _L .i+ w ||
Zweig 5: co = =  472,5 cm x,

ry . ,  —  0 )a -\-COß CÜ|2+<yj_4 c o o  O —1
Zweig 6 : cd = -------= ---- ----  =528,8 cm ,

und als Mittelwerte der Näherung II:

—  CÜq i  +  Cl>ct2
2 2 7 2 

Bezeichnungen CDyt, a-‘2, co14, cd^4 nach Tab. 1 und Tab. 2 (S. 115/116) in 8

(Oßr+coß, =  co„,+cüj4 _  _ 502j4 cm_t



Abb. 1. Richtungsdispersion der außerordentlichen optischen 
Phononen von a-Quarz nach Tab. 1 (Zweige 5 und 6) :

---------: strenge Lösung;
------ —  : Poulet-Loudon-Näherung;

--------; lineare Approximation (Näherung I ) .

Abb. 2. Richtungsdispersion der außerordentlichen optischen 
Phononen des tetragonalen BaTiOs nach Tab. 2 

(Zweige 1, 2 und 3) :
---------: strenge Lösung;
-------- : Poulet-Loudon-Näherung;
--------: lineare Approximation (Näherung I ) .
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Tab. 2. Richtungsdispersion der außerordentlichen optischen Phononen des tetragonalen BaTi03 (Zweige 1, 2 und 3).

0

exakt 
nach 

Gl. (2)

Poulet- 
Loudon- 

Näherung 
n. Gl. (3)

Zweig 1

c o  in cm-

A

Nähe­
rung I 

n. Gl. (8) A

exakt
nach

Gl. (2)

Poulet- 
Loudon- 

Näherung 
n. Gl. (3) A

Zweig 3 

co  in cm-1

Nähe­
rung I 

n. Gl. (8) A

Zweig 2 

o j  in cm-1

exakt
nach

Gl. (2)

0° 10,0 10,0 0 10,0 0 185,0 185,0 0 185,0 0 182,0
10° 46,3 31,1 + 15,2 48,7 -  2,4 186,0 188,3 -  2,3 186,8 - 0,8 181,8
20° 88,2 58,9 + 29,3 88,3 -  0,1 188,9 197,7 -  8,8 192,1 -3,2 181,3
30° 123,9 85,4 + 38,5 117,9 + 6,0 195,2 211,1 -15,9 201,0 -5,8 180,9
40° 148,5 109,5 + 39,0 138,2 + 10,3 208,0 226,6 -18,6 213,1 -5,1 180,7
50° 160,8 130,4 + 30,4 151,8 + 9,0 227,3 241,9 -14,6 227,9 - 0,6 180,4
60° 166,2 147,3 + 18,9 160,6 + 5,6 246,9 255,5 -  8,6 244,0 + 2,6 180,3
70° 168,6 159,8 + 8,8 166,1 + 2,5 262,3 266,0 -  3,7 259,4 + 2,9 180,1
80° 169,7 167,4 + 2,3 169,1 + 0,6 271,9 272,7 -  0,8 270,8 + 1,1 180,0
90° 170,0 170,0 0 170,0 0 275,0 275,0 0 275,0 0 180,0

Erläuterungen zu Tab. 2: A gibt den absoluten Fehler gegenüber der exakten Lösung (jeweils erste Spalte) an. Als Mittel­
werte der Näherung I wurden benutzt:

v . , -  coa +  coß to .U + colU  __
Zweig 1: a>— -------= ---- ----  =  90 cm ,

■7 0  r :  W a  +  < ü £  ° > ‘ i + o > i i *  o o n  Zweig 3: co — ------- = --- ----  —230 cm *.

Bezeichnungen co î, <W||i, con , C0|2 nach Tab. 1, S. 127, in 10li

nach Tab. 1 und Tab. 2. Als Eingangswerte wurden 

dabei die Werte nach 8, Tab. 1 und Tab. 2, und 

nach 10c, Tab. I, benutzt. Wegen der verwendeten 

Mittelwerte vgl. die Abbildungsunterschriften.

Wie man sieht, stellt die lineare Approximation 

gegenüber der Poulet-Loudon-Näherung eine we­

sentliche Verbesserung dar. Man kann daher Gl. (8) 

auch dazu benutzen, um empirisch gewonnene Dis­

persionskurven co('&) theoretisch darzustellen. Ge­

genüber den zwei Parametern coa, ojß in der Poulet-

Loudon-Näherung hat man dabei zusätzlich die bei­

den Parameter o?|m) und anzupassen.

Für a-Quarz ist in Tab. 2 ebenfalls die quadra­

tische Näherung eingetragen. In der graphischen 

Darstellung unterscheidet sie sich im Rahmen der 

Zeichengenauigkeit bereits nicht mehr von der exak­

ten Lösung. Die quadratische Näherung läßt sich auf 

das BaTi03 nicht anwenden, weil die Zweige starker 

Dispersion (Zweige 1 und 3) nicht direkt benach­

bart sind.


