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Zur Erweiterung der Poulet-Loudon-Niherung
in der Theorie der optischen Gitterschwingungen
L. MERTEN und G. LAMPRECHT

Fachbereich Physik und Rechenzentrum der Universitdt Miinster

(Z. Naturforsch. 26 a, 215—219 [1971] ; eingegangen am 20. November 1970)

In einachsigen Kristallen sind die Frequenzen der sog. auflerordentlichen optischen Gitterschwin-
gungen richtungsabhingig (Richtungsdispersion). Diese Richtungsabhéngigkeit wurde in der Litera-
tur bisher fast ausnahmslos durch die Poulet-Loudon-Ndherung beschrieben. Im folgenden werden
zwei erweiterte Niaherungslosungen angegeben. Da inzwischen auch die exakten Losungen (im Rah-
men der harmonischen Naherung) bekannt sind, 1d83t sich die Genauigkeit dieser beiden Naherungen
wie auch der Poulet-Loudon-Ndherung jetzt gut beurteilen.

Als Beispiele werden je zwei Schwingungszweige starker Richtungsdispersion von «-Quarz und

dem tetragonalem BaTiOg im einzelnen diskutiert.

I. Einleitung

Die Frequenzen der polaren ultrarot-aktiven Git-
terschwingungen in ein- und zweiachsigen Kristallen
zeigen eine mehr oder weniger stark ausgeprigte
Richtungsabhingigkeit (Richtungsdispersion). Diese
Richtungsdispersion 1Bt sich, wie in ! und spéter
in 2 gezeigt wurde, fiir Kristalle mit einer beliebigen
Anzahl von Atomen in der Elementarzelle im Rah-
men der harmonischen Naherung streng berechnen.

Im folgenden seien speziell einachsige Kristalle
betrachtet, in denen nur die auBlerordentlichen
Schwingungen richtungsabhingig sind. Fiir ihre
Richtungsabhéngigkeit gilt:

e sf+e,87 =0 (1)
mit 3 L .
[T ((@})2 - o?)
g =¢f Eu_ = (1a)

und entsprechend fiir ¢] .
lautet daher ausfiihrlich:

w

121—[ (% — w?) 1_1 ((0lp) 2 — »?) (2)

Die Dispersionsgleichung

+ &7 s 1_! ((wlL,-)2~w‘~’)hrIl (0f —?) =0
i= =

Dabei bedeuten sjj=cos®, s| =sin?® die Rich-
tungskosinus bezogen auf die optische Achse bzw.
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eine dazu senkrechte Richtung, & bzw. ¢ bedeuten
dle Hochfrequenz-Dielektrizitiskonstanten, (u”k bzw.
o' ; die Frequenzen der longitudinalen, ® |; bzw.
@) die Frequenzen der transversalen Schwingun-
gen * bezogen auf diese Richtungen. ¥ ist dabei der
Winkel zwischen Wellenvektor und optischer Achse.

Fiir Kristalle mit einer groBeren Anzahl von Ato-
men in der Elementarzelle 1Bt sich Gl. (2) nicht ex-
plizit nach o auflosen, so daB die exakten Losun-
gen von (2) nur numerisch angegeben werden kon-
nen. Dies erschwert die praktische Handhabung der
Gleichung fiir Kristalle mit einer groéBeren Anzahl
von Atomen pro Elementarzelle.

Aus diesem Grunde interessiert die Frage, ob sich
nicht explizite Naherungsausdriicke fiir » aufstellen
lassen, durch die die Dispersion schon hinreichend
genau beschrieben wird.

Der einfachste, bisher in der Literatur fast aus-
schlieBlich benutzte Naherungsausdruck ist die Pou-
let-Loudon-Néaherung % 5:

w2=w200520+w§ sinZ 9. (3)

Dabei bedeuten , entweder eine der Frequenzen
’UL; oder w”k und oy eine der Frequenzen wy; oder
o' ;. Gleichung (1) umfaBt also die folgenden vier
Méoglichkeiten, wobei die zu dem betrachteten Zweig
gehorigen Frequenzen durch j=J bzw. k=K ge-

kennzeichnet seien:

3 T. KurosAawa, J. Phys. Soc. Japan 16, 1298 [1961].

* Der elektrische Vektor, auf den sich der Index | bzw. |
bezieht, liegt bei den transversalen Schwingungen in der
jeweils anderen Hauptrichtung.

4 H. PouLet, a) C. R. Acad. Sci. Paris 234, 2185 [1952] ;
b) Ann. Phys. Paris 10, 908 [1955].

5 R. LoupoN, Adv. Phys. 13, 423 [1964], speziell S. 429 bis
434.
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(t—1)-Zweig: w,=w, 5, wz;=0', e
(1—1)-Zweig: w,=wjg, wz=og, (siehe %),
(1> 1)-Zweig:  a=Ous, Dp=OK(giehes),
(1—1)-Zweig: w,=wlg, wz=w,.

(4)

Fir auBlerordentliche optische Zweige mit sehr
geringer Dispersion stellt die Poulet-Loudon-Nahe-
rung bereits eine gute Naherung dar (vgl. z.B. 6
und 7). Offensichtlich ergibt sich die Poulet-Loudon-
Néiherung aus der exakten Gl. (2), indem man dort
.9” =& setzt und ebenfalls die Frequenzen w,;,
a)”k und o' ;, o als paarweise gleich anmmmt
mit Ausnahme von w,=w  ; bzw. _w”K und
wp=w|g baw. =w .

Fiir Zweige mit starker Richtungsdispersion ist
die Poulet-Loudon-Néaherung jedoch im allgemeinen
keine gute Ndherung. Solche Zweige starker Disper-
sion wurden z. B. in a-Quarz 8, LiJO; ? und im tetra-
gonalen BaTiO; !° gefunden. Insbesondere ist fiir
die Zweige der auBlerordentlichen soft-mode der
Ferroelektrika unterhalb des Curie-Punktes eine im
allgemeinen extrem starke Richtungsdispersion zu
erwarten.

An Hand einiger Zweige starker Dispersion im
a-Quarz und im tetragonalen BaTiOg sollen im letz-
ten Abschnitt schlieflich die verschiedenen Nahe-

rungslosungen miteinander verglichen werden.

II. Lineare und quadratische Approximation

a) Lineare Approximation

Die Frequenzen w, und wy seien wie oben defi-
niert. In der Bestimmungsgleichung (2) ersetzen
wir in allen Faktoren mit Ausnahme der Faktoren
02— w2, wj—ow? die F durch ei ig-
0y — w*, wg— w? die Frequenz w durch einen geeig
neten Mittelwert @, z. B. durch *

B=} (w405 , (5)
so da} Gl. (2) tibergeht in die Naherung:
di™ st (w2 — 0?) +dPs3 (w§—w?) =0 (6)

mit m,n=1, 2.

* Die Niherung ist gegeniiber der speziellen Art der Mittel-
wertbildung relativ unempfindlich, so da man statt (5)
z.B. auch den arithmetischen Mittelwert der Frequenz-
quadrate ®2=3%(w,2+wg?) oder das geometrische Mittel
0=V wg wp wihlen kinnte. Falls im Einzelfall sinnvoll.
kann man in d{™ und d{” auch verschiedene Mittelwerte
4 und wg emfuhren ohne daB sich an der Gestalt von Gl.
(8) etwas andert.

a) T.C.DAaMEN, S.P.S. PorTo u. B. TELL, Phys. Rev. 142,
570 [1966]: b) C. A. ArRGuELLO, D. L. Rousseau u. S. P.
S. PorTO, Phys. Rev. 181, 1351 [1969].

£

w2 () =
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Dabei wurde zur Abkiirzung gesetzt:

D= e H (0% —@ )H ((wjp)2—3?),

J+J

P =eff° 1_[ (0% —@ )U((wnk )2 — @?)
*

(7a)

und

P =7 H ((0h)2—a?) ,,U (@l -,

=1

kK (7b)
d“’>=s°fH((wL>2—w2 Ll @h—a?).

\

J*J
Aus Gl. (6) ergibt sich daher die Naherungslosung
(sj=cos®, s =sin):
d)"™ 3 cos® & + d wf sin®
d{™ cos? & + d P sin2 )

(m,n=1,2).

(8)
Durch die eingefiihrte Ndherung sind die Eigen-
frequenzen des Systems von v +w Schwingungsglei-
chungen nach Gl. (8) auf die Eigenfrequenzen for-
mal entkoppelter Schwingungsgleichungen reduziert
worden. Die Kopplung mit den anderen Gitterschwin-
gungen driickt sich implizit nur noch in den Koeffi-
zienten df™ und d{” aus.
Im Spezmlfall d(m) d geht Gl. (8) offensicht-
lich in die Poulet- Loudon-Néiherung tiber.

b) Quadratische Approximation

Wenngleich in den meisten Fillen die lineare
Approximation bereits eine hinreichend gute Nihe-
rung darstellt, so laB3t sich im allgemeinen die Ge-
nauigkeit durch Ubergang zu einer quadratischen
Néherung noch erheblich steigern, ohne daf} der
Rechenaufwand sich dabei wesentlich erhcht. Eine
wesentliche Verbesserung ist vor allem dann zu er-
warten, wenn zwei Zweige starker Dispersion sehr
eng beieinander liegen (Beispiel: Zweig 5 und
Zweig 6 in a-Quarz).

J.F.ScoTT u. S.P. S.PorTO, Phys. Rev. 161, 903 [1967].
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Unter quadratischer Niherung soll dabei die-
jenige Niaherung verstanden sein, die man erhalt,
wenn in Gl. (2) o nur in den je zwei Faktoren, die
zu den beiden betrachteten Zweigen gehoren, varia-
bel gelassen wird, in allen anderen Faktoren jedoch
wieder durch einen geeigneten Mittelwert ersetzt
wird.

Um in der Bezeichnung nicht unnétige Fallunter-
scheidungen treffen zu miissen, denken wir uns in
Gl. (2) alle Frequenzen o |, wﬁk der Grofle nach
geordnet und als ®, fortlaufend durchnumeriert,
entsprechend alle w |, o' ; als »,, durchnumeriert.
Mit diesen Bezeichnungen lautet dann Gl. (2):

v+ w v+ w
o 2
e st [ ] (0f —0®) +eT53 [] (0f —0?) 0.
n=1 m=1
(2a)
Bezeichnen wir die zwei Frequenzen aus den {®,},
die zu den betrachteten Zweigen gehoren, mit w,,
und ,,, die zwei aus den {®,,} mit w;, , wg, so er-
gibt sich aus Gl. (2) als quadratische Ndherung:
DH Sﬁ (a)gl - (‘02) (U)ga - (02)

+D, §% (w%1 —w?) (w%2 —w?) =0
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mit

v+ w v+w

D||=£]T°H (wp —@F) und D, =£°f1_[ (wf~a7) .

n=1 m=1
(nFay,a,) (m ¥ By, B)
Die Mittelwerte @, @ | brauchen dabei nicht not-
wendig als gleich angesehen zu werden.
Die beiden Losungen der quadratischen Gl. (9)

lauten:

wig (9) =% (A VA2—4B) (10)
mit
4 Di (0 +05) cos? 3 +D) (0} +wj,) sin®d
B Djcos?#+ D, sin?
und
B— D” wgl wazta cos? 9+ D, wgl w%z sin? 9

Djcos*® + D, sin®

II1. Diskussion und Anwendung
auf a-Quarz und BaTiO,

Beispiele fiir Zweige starker Dispersion sind die
Zweige 5 und 6 von a-Quarz und die Zweige 1 und
3 vom tetragonalen BaTiO; .

Die verschiedenen Naherungen sind fiir diese
Zweige zusammen mit der exakten Losung in Abb. 1

(9) und Abb. 2 dargestelt, mit den numerischen Werten
Tab. 1. Richtungsdispersion der aulerordentlichen optischen Phononen von a-Quarz (Zweige 5 und 6).
Zweig 5 Zweig 6
® in ecm—! ® in cm™!
Poulet- Poulet-
Loudon- Nahe- Nihe- Loudon- Néhe- Nihe-
exakt Niherg. rung I rung IT exakt Naherg. rung [ rung II
nach nach nach nach nach nach nach nach
9 | Gl (2) Gl (3) A4 Gl. (8) A Gl (10) 4 Gl (2) GL (3) Y| Gl. (8) 4 Gl (10) A4
0° 450,0 450,0 0 450,0 0 450,0 0 547,7 5477 0 547,7 0 547,7 0
10° 451,0 4514 —04 4508 +0,2 451,0 0,0 547,2 546,6 40,6 547.2 0,0 546,8 +04
20° 453,7 4555 —1,8 453,1 40,6 453,8 —0,1 5452 5434 +18 5455 —0,3 5449 40,3
30° 458,1 461,7 —3,6 4570 +1,1 4583 —0,2 541,8 538,5 +33 5426 —08 5414 404
40° 463,7 469,1 —54 4626 +1,1 4640 —0,3 537,7 5324 +5,3 5384 —0,7 5369 +0,8
50° 470,2 4769 —6,7 469.8 404 4706 —04 532,3 5258 +6,5 5326 —03 531,5 +0,8
60° 477,3 484,1 —6,8 4781 —08 477,7 —04 526,1 519,5 +6,6 5256 40,5 5255 +0,6
70° 484,7 4899 —5,2 4863 —1,6 4850 —0,3 519,7 5144 +5,3 5182 41,5 519,1 +0,6
80° 491,5 4937 —3,2 4926 —1,1 4916 —0,1 513,4 511,0 +24 5122 +1,2 513,0 +0,4
90° 495,0 4950 0 495,0 0 495,0 0 509,8 509,8 0 509,8 0 509,8 0

Erliuterungen zu Tab. 1: A gibt den absoluten Fehler gegeniiber der exakten Losung (jeweils erste Spalte) an. Als Mittel-

werte der Ndherung I wurden benutzt:

Zweig 5: o= Watwp =
2
Zweig 6: o= @Da ';ff’)ﬂ, -
und als Mittelwerte der Ndherung II:
a” — (,L)a]‘J)’U)a; _ (»’)14;‘(012 —498,9 cm—1,

DL+l

=472,5 cm™}Y,

wlz‘;“’]“ —528,8 cm—1,

_ W1t wp
2 2

Bezeichnungen s, w's, ws, wie nach Tab.1 und Tab. 2 (S.115/116) in 8.
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Abb. 1. Richtungsdispersion der aullerordentlichen optischen Abb. 2. Richtungsdispersion der auflerordentlichen optischen
Phononen von a-Quarz nach Tab. 1 (Zweige 5 und 6) : Phononen des tetragonalen BaTiOg4 nach Tab. 2
—————: strenge Losung; (Zweige 1, 2 und 3) :
—————— :  Poulet-Loudon-Nidherung; ————————: strenge Losung;
~~~~~~~ :  lineare Approximation (NdherungI). — — — — —: Poulet-Loudon-Ndherung;
—.—.—.— : lineare Approximation (NaherungI).
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Tab. 2. Richtungsdispersion der auBerordentlichen optischen Phononen des tetragonalen BaTiO; (Zweige 1, 2 und 3).

Zweig 1 1 Zweig 3 | Zweig 2
@ in em—! w in cm™! | in em—1!
Poulet- ‘ Poulet-

exakt Loudon- Néhe- | exakt Loudon- Nihe- exakt

nach  Niherung rung I | nach  Naherung rung I nach

9 Gl (2) n.GlL (3) yi| n. Gl. (8) Vi| Gl (2) n.GL (3) A n. Gl. (8) A | GL (2)
0° 10,0 10,0 0 10,0 0 185,0 185,0 0 185,0 0 182,0
10° 46,3 31,1 +15,2 48,7 — 24 186,0 188,3 — 2,3 186,8 —0,8 181,8
20° 88,2 58,9 +29,3 88,3 — 0,1 188,9 197,7 — 8,8 192,1 —3,2 181,3
30° 123,9 85,4 +38,5 117,9 + 6,0 195,2 211,1 —15,9 201,0 —5,8 180,9
40° 148.,5 109,5 +39,0 138,2 +10,3 208,0 226,6 —18,6 213,1 —5,1 180,7
50° 160,8 130,4 +30,4 151,8 + 9,0 227,3 241,9 —14,6 2279 —0,6 180,4
60° 166,2 147,3 +18,9 160,6 + 5,6 246,9 255,5 — 8,6 244,0 +2,6 180,3
70° 168,6 159,8 + 8,8 166,1 + 2,5 262,3 266,0 — 3,7 259,4 +2,9 180,1
80° 169,7 167,4 + 2,3 169,1 + 0,6 271,9 272,7 — 0,8 270,8 +1,1 180,0
90° 170,0 170,0 0 170,0 0 275,0 275,0 0 275,0 0 180,0

Erliuterungen zu Tab. 2: /A gibt den absoluten Fehler gegenii
werte der Naherung I wurden benutzt:

Watwp @11t olh

ber der exakten Losung (jeweils erste Spalte) an. Als Mittel-

Zweig 1: o= 3 = = 90 cm— 1,
Zweig 3: = £ia ;'(Uﬁ = wj',-;m,, =230 cm—1.

Bezeichnungen ®;,, @, ®}, Wy nach Tab. 1, S. 127, in '™.

nach Tab. 1 und Tab. 2. Als Eingangswerte wurden
dabei die Werte nach 8, Tab. 1 und Tab. 2, und
nach 1%, Tab. I, benutzt. Wegen der verwendeten
Mittelwerte vgl. die Abbildungsunterschriften.

Wie man sieht, stellt die lineare Approximation
gegeniiber der Poulet-Loudon-Ndherung eine we-
sentliche Verbesserung dar. Man kann daher Gl. (8)
auch dazu benutzen, um empirisch gewonnene Dis-
persionskurven (%) theoretisch darzustellen. Ge-
geniiber den zwei Parametern o, , ®w; in der Poulet-

Loudon-Naherung hat man dabei zusitzlich die bei-
den Parameter dh'") und d{” anzupassen.

Fir a-Quarz ist in Tab. 2 ebenfalls die quadra-
tische Naherung eingetragen. In der graphischen
Darstellung unterscheidet sie sich im Rahmen der
Zeichengenauigkeit bereits nicht mehr von der exak-
ten Losung. Die quadratische Naherung 1aft sich auf
das BaTiO4 nicht anwenden, weil die Zweige starker
Dispersion (Zweige 1 und 3) nicht direkt benach-
bart sind.



