
THEORY OF STOCHASTIC HEATING OF PARTICLES 1 6 3 7 

On the Theory of Stochastic Heating of Particles in Magnetic Mirror Systems 
L . KRLÍN 

Institute of Plasma Physics, Czechoslovak Academy of Sciences, Prague 

(Z. Naturforsch. 24 a, 1637—1645 [1969] ; received 28 November 1968) 

The paper presents a study of the effect of a high frequency stochastic field on particles con-
tained in a magnetic mirror system. The r.f. field is assumed to be excited by an external source 
and to penetrate from one side through the mirror to only those locations in which the rf field is 
in resonance with the cyclotron frequency. The rf field is further assumed to have a specified 
correlation, and to be unaffected by changes in the particle distribution function brought about 
by heating. 

The case in which it is possible merely to consider the effect of the perpendicular component 
( r X B r f ) | was studied separately from the case in which both components of F - f ( r x B r f ) 

are to be taken into consideration simultaneously; E and BT{ are here the electric and magnetic 
components of the rf field. The absorption by a small group of particles the distribution function 
of which has the form of a (5-function is examined. The solution is performed in one-particle 
approximation. 

As the solution implies, in a configuration of this kind transverse heating is accompanied by 
diffusion of particles through the mirrors as well as by a transformation of a portion of transverse 
energy into longitudinal (resulting from both the transformation due to the magnetostatic field 
inhomogeneity and the effect of S r f ) • 

The necessity of better understanding of the me-
chanism of absorption under complicated conditions 
of plasma heating by beam instabilities arises parti-
cularly in connection with experimental studies of 
this phenomenon (frequently conducted in magne-
tic mirror fields). This problem has been discussed 
in several studies (for instance in * ) . In the present 
paper, the analysis of the mechanism of absorption 
is approached in such a way that the rf field is as-
sumed to be specified, and the examination concerns 
its action on a small group of particles in an one-
particle approximation (meaning that the effect of 
changes in the distribution function of particles on 
the character of the rf field is neglected). In agree-
ment with the experimental data of 2 , the rf field is 
assumed to be stochastic. 

The advantage of this approach lies in the fact 
that a discussion of the mechanism of absorption 
of the rf field by particles confined in magnetic 
mirror systems can be caried out to a considerable 
detail, and thus effects that are usually neglected in 
the linear solution can be included. The disadvan-
tage of our procedure is evident: it consists in the 
artificial concepts of our model. A n obvious exten-
sion of our work would be solving the nonlinear 
self-consistent system of pertinent equations and 
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1 J. PREINHAELTER, Plasma Phys. 10, 713 [1968]. 

examining in more detail the phenomena to which 
attention is called in the present paper. 

A short communication about this problem is pre-
sented in Letter 3 . All calculations are performed in 
canonical variables action — angle whose analysis is 
presented in 4 ' 5 . 

1 . D e s c r i p t i o n of the M o d e l under E x a m i n a t i o n 

1.1. Magnetostatic Field oj the System 

Let us assume that the magnetostatic field is ide-
alized by the curve shown in Fig. 1. In the region 
Of Qs ( ~ < ? 3 1 , + form is quadratic on 
the central line of force, and in the regions where 
Qz > (?3i» Qz < — » the mirror region is repre-
sented by a homogeneous field, or may fall off. Our 
study is in a paraxial approximation. 

It is obvious that the chosen curve is only a model 
of far more complicated real magnetic mirror sys-
tems. 

1.2. Rj Stochastic Field 

It is assumed that the rf field penetrates inside 
the system on the left, from the region of the homo-
geneous magnetostatic field. It is further assumed, 

2 M. SEIDL and P. SUNKA, Nucl. Fusion 7, 237 [1967]. 
3 L. KRLI'N, Czech. J. Phys. B 18,1464 [1968], 

'* L. KRLI'N, Czech. J. Phys. B 17,112 [1967]. 
5 L. KRLIN, Czech. J. Phys. B 17,124 [1967]. 
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Fig. 1. Magnetostatic field and rf field. 

approximately in agreement with the experiments 
of 2 , that the intensity of the rf field at the place of 
resonance, co = coe (at point ( ) 3 0 = Q 3 1 — A Q 3 in 
Fig. 1) tends to zero. Where further specification 
of the field is needed, we suppose that the wave is 
circularly polarized and propagates along the mag-
netostatic field. W e suppose that in a certain region 
A Q 3 it is possible to consider a resonant interaction; 
this will be explained later on. The amplitude of the 
field is spatially variable (in what follows, two spe-
cial cases will be considered). Let the rf field have 
a given correlation, and its space and time variations 
be not affected by absorption. (The experimentally 
established stochastic character of the rf field is for 
instance in the experiment 2 caused by quasilinear 
effects of the plasma-beam system, and it under-
standably calls for a separate study) . The study 
treats (for simplicity) the effect of component E]_ 
alone (Chapt. 2 , 3 , 4 ) and the effects of 

£||+ (V X B ) n rf , £ l + ( f x B ) i rf 

which are supposed to be acting simultaneously 
(Chapt. 5 ) . 

The assumptions made about the rf field are, of 
course, very artificial; the purpose of the approxi-
mation is only to point out (by analytically tractable 
methods) the effects whose quantitative estimate 
would need a much more complicated numerical 

6 T. H. STIX, The Theory of Plasma Wawes (in Russian), 
Atomizdat, Moscow 1965. 

analysis. In fact, the form of the field and the char-
acter of the interaction depends on the type of the 
wave, on the density and on the temperature of the 
plasma and on the shape of the magnetostatic field. 
In the following we use the results of the analysis 
of the propagation of the circularly polarized wave 
in the case of its absorption in a resonant region 
OJ ~ coc (coc is the cyclotron frequency). 

The assumed forms of the envelopes of the rf 
field are chosen to agree qualitatively with the ex-
perimental data. The intensity of the rf field de-
creases, of course, to a negligible value in a certain 
region around the point of the resonance OJ = coc 

(except for the case of zero density, where the field 
retains its vacuum character). If we use the ana-
lysis 6 ' it is possible to approximate the majority 
of the solutions by means of one out of the chosen 
types of the envelopes. It is possible to model the 
vacuum rf field in this way, if we neglect the change 
of the magnetic moment of particles in the non-
resonant region. 

The character of absorption is also determined 
by the frequency co and the wave number k. Because 
of the variability of k (in the general case) the 
examination of the interaction is very complicated. 
W e suppose therefore that in the first approximation 
the most intensive change of the magnetic moment 
takes place in a small longitudinal interval, where 
the influence of the change in k is negligible. 

The influence of the component Brf has a domi-
nating effect for rather small amplitudes of the par-
ticle axial motion Q3m in the region near to the 
minimum of the magnetostatic field and in the cold 
plasma in the whole region of high k\\ . 

For the determination of the absorption character 
we use the expression from or 6 . 

1.3. The Distribution Function 

Throughout most of this study, the distribution 
function Jo, J31 is assumed to be of the 
form 

f = AÖ(J1-J10)6(J3-J30) 

with the amplitude of the axial oscillation of the 
particles satisfying the condition 

<?30 ^ <?3m ^ <?31 • 

7 A. F. KUCKES, Plasma Phys. 10, 367 [1968]. 
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W e therefore study the effect of the rf field on a 
small group of selected particles. The exact solution 
for a continuous distribution function needs of 
course a quasilinear approximation (see also later). 

As the solution implies 9 , the axial motion of the 
particles in the above mentioned inhomogeneous 
magnetostatic field has the form 

Qs = Qsm sin (u>3 -f ip) 

where Q%m means the amplitude of the axial oscil-
lation and where co c (^ 3 ) = coc0 + Q 3 2 ; , w/c are 
canonical variables action — angle. Here 

o W i = # l o ; - l / ^ • / 8 = ^no n \ 1 m 

where / / j _ o , H\\ 0 are the perpendicular and longi-
tudinal energy of the particle for w 3 = ip = 0 and 
Wi = Vit , where means the mean cyclotron fre-
quency and v3 the frequency of the axial motion. 

1.4. The Stochasticity of the Rf Field 

The stochasticity of the rf field is modelled by the 
following assumption. W e suppose that for the par-
ticle that is passing through the rf field region AQ% 
during its axial motion the rf field keeps its phase ip 
constant in the argument co t + ip. However, this 
phase is stochastically changing at the beginning of 
each such transit of the particle. Such an assumption 
is, of course, not valid simultaneously for all par-
ticles. But we assume that on the average this mo-
del gives results which are not very far from reality. 

Since in a real system one can expect such colli-
sions (and their influence on the cyclotron phase of 
particles) we believe that this model may be realistic 
also in the case of a non-stochastic wave. 

2. Discussion of Particle Motion in a Magnetic 
Mirror System under the Action of an Rf Field 

At the usual mirror ratios (R~ 2 ) a strong 
coupling exists in a magnetic mirror systems be-
tween the transversal motion (resulting mostly from 
cyclotron rotation) and the longitudinal oscillatory 
motion of particles between the mirrors. Let us as-
sume that E]| + ( l ) x B r f ) = 0 (this component causes 
an independent longitudinal diffusion; a general 

8 L. KRLI'N, IPPCZ-106, in press. 

case as a more complicated one is discussed separa-
tely in Chapt. 5 ) . The effect that occures under such 
conditions is as follows: the amplitude of the longi-
tudinal motion of the particles that absorb the rf 
energy decreases, while the particles that transfer 
their transverse energy to the field, increase their 
axial oscillations. In the differential form this is 
described by the relation 

Here <?3 m is the amplitude of the axial oscillations 
z = y j 1 = y m i u / e , /ii — the magnetic moment, dz 
and d(?3m — the instantaneous change in z and the 
ensueing change in Q%m, respectively, and w 3 — the 
phase of the axial oscillations at which the differen-
tial change has taken place. The change in d(?3m is 
obviously dependent on this phase. T o simplify, con-
sider the case when 2 changes step-wise under the 
action of the d rf field pulse. Now, whenever a 
change in z occurs at the center of the system, AQ%m 

reaches its maximum; as long as z changes in the 
turning point of the axial oscillation only (for which 
d<?3 /d; = 0 ) , Qs m is conserved as an integral of mo-
tion. The latter case is a singular one. Therefore it 
is possible to say that (with the above mentioned 
exceptions and under the influence of only Ej_) an 
incrase in magnetic moment — and hence also in 
mean transverse energy — is accompanied by a de-
crease in axial oscillations (and vice versa). In our 
model, this effect plays quite an important role. With 
growing transverse energy the diffusion coefficient 
decreases, because the particle stays in the rf field 
for a shorter time. A s we shall show later, this fact 
causes the heating to slow down appreciably. 

3. Discussion of the Diffusion Coefficient 

A s stated in 1 0 in the case that the rf field acts on 
particles in a stochastic sequence of pulses, the dia-
gonal component of the diffusion tensor is given by 

DriPi=(n)(AP*) 

where ( n ) is the mean pulse frequency, APi the 
change in the momentum Pj during a pulse, (APf) 
the mean value of the quadratic increment of Pi 
during a pulse. 

In our case, (n) =v3 wher v3 is the frequency of 
the axial oscillations of particles between the mir-

9 M. SEIDL, Plasma Phys. 6, 597 [1965]. 
10 L. KRLI'N, Czech. J. Phys. B 18, 977 [1968]. 
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rors. The magnitude of A P i , and in our case, the 
magnitude of the diffusion coefficient too, is given 
— besides by the spectrum of the rf field — by the 

proximity of the system to resonance (e. g. cyclo-
tron resonance) as well as by the value of the cor-
relation Tc . It is clear e. g. from analysis 1 0 (and as 
a matter of fact, by intuition, too) that diffusion is 
most rapid at the resonance. A s rc decreases, the 
difference between resonant and non-resonant dif-
fusion diminishes. 

A s the solution implies, in magnetic mirror sys-
tems resonance occurs in two cases (not necessarily 
existing at the same t ime) . 

First, resonance occurs under the condition 

OJ + kv1+lv2 + mv3 = 0 (1) 

where co is the frequency of the external rf field, 
is then the frequency which corresponds to the 

mean particle cyclotron frequency during the flight 
between the mirrors, v2 is the frequency of azimuthal 
drift, and v3 the frequency of oscillations between 
the mirrors ; k, I, m are integers. It usually holds 
(and we assume so, too) that 

vl:v2:v3 = l: 10~2 : 10~2. 

Vi are generally functions of energy; it is, therefore, 
evident (as we have pointed out in 1 0 ) that if once 
the particle energy changes, the resonance is disturb-
ed and slowing-down of the diffusion follows. 

Besides, resonance also occurs when 

W + Q° dt ~0)c 
0 (2) 

where is the wave number, coc the instantaneous 
cyclotron frequency, and dQ 3 /dt the longitudinal 
particle velocity. 

W h i l e the first type the resonance lasts continu-
ously in time in the linear approximation, the second 
type of resonance acts exactly during an infinitely 
short time interval, or when the difference between 
the rf field and cyclotron rotation phases changes 
approximately by the value of n in less severe ap-
proximation. 

The relation between the two types of resonance 
is quite complicated. But an approximate analysis 
reveals: as long as v3 : vt ~ 1 0 ~ 2 and particles move 
in the rf field for only a fraction of the axial period 
( ~ 0 , 1 / v 3 -7- 0 , 3 / v g ) , the diffusion coefficient due to 
the second type of resonance prevails by one order 
of magnitude at least. 

The way diffusion varies also depends on the 
place where the resonance OJ = OJC occurs. The sim-
plest situation exists at the resonance in the im-
mediate proximity of the m a x i m u m of the system 
magnetostatic field and also if the interaction in the 
region of the field penetration AQ3 may be still re-
garded as approximately resonant [according to 
our analysis, this AQ3 is given by the expression 

AQJQm~ {n-vJAoj^}. 

In this resonant case the diffusion coefficient is rela-
tively easy to compute. For particles with 
the coefficient of diffusion is zero (they do not pene-
trate inside the rf field region) and particles with 
(?3m>(?30 + ^ @ 3 escape from the system; this, how-
ever, can be included in boundary conditions. 

The situation becomes more complicated when 
resonance sets in at a place not immediately ad-
jacent to the m a x i m u m of the magnetostatic field. 
A s long as particles transfer their perpendicular 
energy to the rf field, their amplitude increases; it 
can be proved that resonance of the type ( 2 ) again 
exists for all particles with ><?3m0> where 
COC(<?3MO) = OJ. But the particles pass now through 
the resonance region at a definite velocity, in dis-
tinction from the foregoing simple case when the 
parallel speed of the particle was practically zero in 
the interaction region, and consequently the coeffi-
cient of diffusion is reduced. T o simplify the analy-
sis the two alternatives will be considered separately. 

4. Energy Absorption in the Case E± 0, £j| = 0, 
( » x B r , ) = 0 

4.1. Energy Absorption in the Case that the Reso-
nance Occurs in the Immediate Proximity of the 

Maximum of the Magnetostatic Field 

The determination of the interaction of a particle 
with rf field in the neighbourhood of the resonance 
co = OJc is generally very complicated. In the simple 
approximation we shal suppose that in the region 
of the resonance in the immediate proximity of the 
m a x i m u m of the magnetostatic field it is possible to 
consider as a constant. Then the change of z is 
given approximately b y : 

t0+M 

Az. cos 
k\\ Qso V £2 + Qs 
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Here At means the time interval during which the 
particle stays in the rf field region AQ3; ip is the 
phase difference between the rf field and cyclotron 
rotation phase. For smal values of At it is possible 
to consider the heating as a resonant process; At 

must, however, satisfy 

Atm3iX = min 

Under these conditions it is possible to suppose the 

resonant heating in the form 

dz/dt = ß or dz/dt = ß{ 

where ß is a constant given by the components of 

the rf field. The first case corresponds to that of the 

rectangle-shaped envelope of the rf field, the second 

to a linear growth (in accordance with Fig. 1 ) . 

The calculation of the coefficient of diffusion is 

performed by solving the particle motion in such 

type of rf field and its values are presented in 

Table 1 (the coefficient of diffusion is considered 

to be of the form 

Dn=(n)(Az2) 

where n is the frequency of the pulses (here ( n ) 
= v3) and Az an increase of z in one pulse). It fol-

lows that Dn falls off very rapidly with increasing 
particle energy. Furthermore, it falls off with in-
creasing nonhomogeneity of the magnetostatic field 
(represented by coj) and also grows with decreasing 
Q 3 0 . All these results are valid only if x 0 / Q 3 0 1. 

Diffusion is obtained by integrating the equation 

3/ 
31 

3_ 

3 z flu to 
3/ 

( 3 ) 

with the initial condition (as we have already men-
tioned) : 

f(z,t = t0) =Ad(z-z0) <5(/3-/30) 
and the boundary condition: 

/ (z = Z o m j n , — J$0 min i = 0 , (3a) 

where zo m in ? /30 min define the loss-cone 

' D \i I D m a\ \ -L 
sin a = Bn 2 Vr 

(2 efio / iomin) 4 

m l -J- 1 / IWl J l 0 n 
•>10 min "r" _ . / 3 0 m i n l 0 n \ 2 m 

for /30 min given by 

( < ? 3 0 + ^ ( ? 3 ) 2 = — ( 2 /JI COj / 1 0 m i n ) _ ^ " J 3 0 min • Zl 

For the diffusion process, boundary condition (3a) 
means a total absorption. This signifies in our case 
that the particles whose z drops to zomin escape 
from the system and are lost for the subsequent pro-
cess of heating. 

Now, let us consider directly the absorbed energy 
Q±(t) defined by 

Q±(t)=fHif(z,t) dz 

where H j . is the perpendicular kinetic energy of a 
particle. 

In general, the perpendicular energy of a particle 
is defined by 

H1 = cocz2 + AH(z,A, <P) 

where A, <P is the vector or the scalar potential of 
the rf field. As long as only is applied, than the 
perpendicular kinetic energy is given by 

H i = cocz2. 

For the case of a circularly polarized wave 

= coc z2 — ]/2 ojjm -ze Ax[. 

If Arf is only a small perturbation of the whole 
perpendicular part of the Hamiltonian, than for par-
ticles with 

m v\_/ (e Arf) 1 

it is possible to calculate the energy (with the same 
error) from the Hamiltonian without the rf field. 

H i of course depends on the longitudinal co-
ordinate Q 3 . For simplicity we shall use the mini-
mum energy that occurs for Q 3 = 0 and coc = coc m i n . 
Then the energy Q i ( / ) is determined by 

< ? ± M = / w c m i n - z 2 / ( z , 0 dz 

which in the region without the rf field is valid ex-
actly and in the interaction region with the above 
mentioned error. Here f{z,t) is the solution of Eq. 
( 3 ) with the stated initial and boundary conditions. 
Denoting the coefficient of diffusion as 

Dn = Djz" 

we arrive at ()(<) given by the general expression 

(m = 2 + n ) 
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Q(t)<OJ c min A z 0 
(1 -n)ß. 

,T« Y+n 
4 - ^ [ m 2 £ > 0 ( f - * 0 ) ] »rn r 

2z0ml- A 
^ — 5 — 4 

m 

m2 D 0 ( i - « 0 ) 

+ f • [ m 2 D 0 ( Z - Z 0 ) ] - - r 

I + AI 

2 m 
+ 1 

7 + n 3 

2 m ^ 2 
( 4 ) 

(here JT is gamma-function). 

The values obtained for the limiting case of 
t->- o c , ZQmi„ —>• 0 are reviewed in the Table. (For 
comparison the table also lists the case in which 
— though coupling between the individual degrees 
of freedom is considered — it is assumed that it af-
fects only the escape of the particles and not the 
magnitude of the coefficient of diffusion; the latter 
is taken to be constant.) 

The solution results in a simple conclusion: in the 
limit t-+- 00 the heating is so slow that it may be 
neglected. (Practically speaking, we may write the 
most rapid heating as 

where AH _Lo is the maximum rate of growth of the 
transverse energy during one transit through the rf 
field and h the average number of particle transits 
through the rf field). Because of our limit zo min 0 
the real increment AQ1 is still smaller. 

The physical reasons for the slowing-down of the 
heating are obvious — due to the dependence Dn (z), 
the particles diffuse very slowly towards higher z 
and are more likely to escape from the system. 

4.2. Energy Absorption in the Case when the Reso-
nance Occurs at an Arbitrary Point of the System 

This case though far more realistic, is also more 
complicated than the previous one. The particles that 
prolong their axial oscillations beyond the original 
resonant region, are kept in the system until the 
time when their amplitude grows to Q 3 1 . With re-
spect to our assumption they are continuously mov-
ing in the rf field, and thus it is necessary to deter-
mine their coefficient of diffusion, too. Unlike in the 
case of dQjdt = 0 , these particles pass through their 
region of resonance always with a definite velocity. 
The maximum possible momentum change therefore 
decreases, and so does the coefficient of diffusion. 

In what folows it is necessary to resort to an ap-
proximation quite different from that of the fore-
going case. W e shall suppose that it is possible to 
neglect the change of the axial velocity of the par-
ticles. It is clear that for the given mirror geometry 

this approximation would be valid only to a certain 
increase in energy. In fact, the average energies must 
satisfy 

Z f / / l / t f l 0 ~ ( £ W < ? 3 0 ) 2 - l 

where Q u is the maximum axial amplitude of par-
ticles. Off this limit most of the particles reach the 
region, where it is necessary to consider the change 
of the axial velocity. This effect, of course, weakens 
if the point of resonance approaches the centre of 
the system. 

If our approximation is valid, it is possible to use 
for the change of the perpendicular energy the ex-
pression ' 

W = Jie2E±Ei*/(2mcoc'v\\) 

where coc' = d(Oc/dQ3 and u|| = d()3 /dz must be in 
resonance: 

OJ~OJc(QSt) -k\\ d £ 3 

d t 
0 . 

The solution was carried out in 7 by means of an 
improper integral. The path of a particle is in our 
case always limited; nevertheless we stil can use the 
expression, because the greatest part of the energy 
increase takes place in the neighbourhood of the 
resonance. 

The diffusion coefficient (in the variable z) has 
therefore the form 

Vol 71 e2 E i E1 
11 z2 \ 2 M WC' OJc v\ 

Of course, in the exact solution it is necessary to 
consider the diffusion in both momentums Jx , J2 

3 / _ 3 

If we negect the influence of change in / 3 and v\\ 
we shall consider v||o as a parameter (in fact the 
change of v\\ would partially encrease the influence 
of z), then the coefficient has the form 

Dn = Djz2. 

For the boundary condition f (z, t) z = 0 = 0 

AQiit) ~t 
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The resonance near the minimum of the magneto-
static field therefore is speeding up the absorption. 
For the purpose of comparison, the table also shows 
the case of total reflection with the assumption of 
Dn = const as follows from the solution8 . This is 
the fastest form of heating. 

4.3. Heating with Continuous Distribution Function 

The calculations made so far were related to dif-
fusion of the (3-function distribution. In reality, how-
ever, the distribution function which has to be ex-
amined, will be of the continuous form F (z, J3 , t). 
W e obtain this form by integration of our previous 
function 

F{z, J3,t) = / f(z, z0, /30, t) dz0 d / 3 0 . 

The rate of absorption is then under our approxi-
mation formally described as 

d Q i f „ 3 F 
d t 

coc z- -g— dz d / 3 

W h e n we for instance consider that the absorption 
is influenced only by a distribution in z, we obtain 

&Qi_ 
d t 

C0c Z- Da(z) 3/ 
3z 

d z 0 d / 3 0 d z ( 5 ) 

z /30 20 

which is already near to the customary quasilinear 
form. In this type of the quasilinear theory the rate 
of absorption decreases with the diffusion of the 
distribution function, while the resonant diffusion 
coefficient is influenced only by the change of the 
spectrum andd oes not depend on the energy. In our 
case the rate of absorption further falls off due to 
the nonlinear character of the diffusion coefficient; 
the dependence of the diffusion coefficient on the 
energy causes in fact it's effective reduction. 

The form of (5 ) is analogous to the first equation 
of the generalized quasilinear system. Nevertheless 
Dlx(z) (which is in our approximation determined 
from our model) must be in an exact solution cal-
culated from the analysis of the wave propagation 
through a hot plasma with a — supposed statio-
nary — distribution function / . 

5. Energy Absorption in the Case E1 4= 0, E\\ 4= 0; 
the Effect of Coupling y7x (dAjdQ 3 ) rf 

W e have assumed in the foregoing solutions that 
the effect of E\\ may be neglected. It is clear that 

in the majority of cases, this assumption is not ex-
actly satisfied. Neither the energy transformation in 
the magnetic component of the rf field can be ne-
glected generally. Otherwise, the solution would in-
clude only the effect of (E + [V x B ] ) j_ r { . 

With the joint action of both components the 
situation becomes extremely complicated. The par-
ticles diffuse in part in , with ensueing diffusion 
in / 3 (due to the transformation) and in addition 
also independently in / 3 (through E\\ + [ V x ß ] ||rf). 

The exact solution of the problem is thus given 
by the solution of the equation 

3/ n 3/ 
31 

= DX 
3 / i 

+ £33 

3-f 
+ D l 1 3 7 ? 

3 2f 
3 J 2 

+ D, 

+ D3 

3 2 / 

_ 3 £ 
3 h 

3 / i 3 / a 

(here we neglect the dependence on the radial space 
coordinates). A s all coefficients are also functions of 

, / 3 , the solution of the problem is in this case 
very difficult. 

Relying on a physical notion, we shall present 
only an approximate solution. 

The effect of £||=t=0 will manifest itself in the 
following way: T o start with, independent diffusion 
in J3 joins the dependent change of ] 3 (caused by a 
change of / x ) . This independent diffusion will change 
the number of particles present in region AQ3, as 
well as the magnitude of the coefficient of diffusion 
for the diffusion in . The effect of E\\ namely will 
make it possible for the particles with large to 
be passing through the rf field for a considerably 
loger time than at E\\ = 0 . 

Generally speaking, the effect of coupling 
rt where (dA^/dQ.^) T{ corresponds 

to the magnetic component of the rf field, cannot 
be neglected, either. Even though this force causes 
no change in the total particle energy, it contributes 
— through the effect of the magnetic component of 
the rf field 

— to the transformation between trans-
verse and longitudinal energies. Consider, e. g. a 
circularly polarized wave which propagates almost 
in a vacuum. Then for resonant particles 

dQi . dQ 
d t ' d t h|| Ü|| 

W l l / d O t r a n s r 
1 A B » 
2 Bm 

d C i 
d t 

where d @ i / d f is the change of the perpendicular 
energy, and dQ\\/dt the (hange of the longitudinal 
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energy, produced by the same wave; (d()||/dz)transf 
is the rate of the energy transformed in the magneto-
static field, it the rf field would be acting near the 
maximum of the axial amplitude of the particle 
motion. From this it is obvious that near Bmjn pre-
dominates the influence of the change of the longi-
tudinal energy caused by the wave. The particles 
with negligible longitudinal energy absorb a much 
larger proportion of the perpendicular than of the 
longitudinal energy. Nevertheless, the influence of 
d()||/df will appear in the longitudinal diffusion. 

Next we shall consider the joint effect of E\\ and 
v± x B± rf with the common coefficient of diffusion 
D33 . D33 being a complicated function of transverse 
and longitudinal particle energies, we shall attempt 
to present at least a qualitative description of two 
alternative models which somewhat clear up the 
whole problem. 

Assume first that the action of the rf field is such 
that the diffusion coefficiencs D1, D\\ are different 
from zero for only a narrow resonant region of am-
plitude Qsm (in the region 2 AQ3) which does not 
immediately join the maximum or the minimum 
of the field. Consequently, the particles will become 
isolated in this region of amplitudes and will not be 
able to penetrate with their (?3m outside — A Q 3 . 
It is therefore possible to assume that in transverse 
energy, the particle are subject to diffusion with the 
mean coefficient of diffusion (due to Z)||4=0) 

Az 

M V = J Dn (z) dz for Az o c . 

o 

According to Table 1, the absorbed energy will be 

AQ±(At) ~2D$AcocAt. 

Second let us suppose that D33 acts in the whole 
of the system and Dn again only in a narrow re-
gion of AQ3 . Let us first suppose that the particles 
do not escape from the system. Then the system in 
variable Q 3 can be considered (approximately at 
least) as recurrent; let r c r e c be the mean time of re-
currence during which the particle amplitude reaches 
again to the region AQ3 . In such a case, Dy? will be 
given by the expression 

M i } = 4 - \ — 1 • Dn (z) dz for Az cc . ÄZ J Tc rec V3 

The effect of the escape will be accounted for by 
the decrease in the value A (considered always con-
stant in the foregoing discussion). The decrease will 
be found by taking the diffusion coefficient for longi-
tudinal diffusion constant throughout the whole of 
the system and independent of energy. However, in-
stead of diffusion in longitudinal velocity we shall 
consider diffusion in (?3m and take the distribution 
in <?3m uniform with a total number of particles A 
throughout the whole system. The coefficient of dif-
fusion is now defined as 

Z>33 = lim 1 (AQlm) 
t—0 * 

Under these assumptions and for slow diffusion it 
will approximately hold for the absorbed energy 
(cf. 8) that (/ is the length of the system) 

Course of the 
rf field 

D — DQ /zn Case of total absorption 
AQ(t) for t^ oo 

Resonance a> = coc exists 
below the maximum of the 

magnetostatic field 
AQ(t) for t oo 

I "30 
2.1 2 m ß 2 xo W A z y 3 . 4 _ 1 3 / 1 1 

(Ol Q30 Z ' 

11 
D0(t-t0) 

2/11 
(<1/3 _ <1/3) 

*30 

23 la—: -v.3 218/5 
JU^V—ß2 A zVS • 4-24/23 

W i Q30 Z 1 3 / 5 
( 5°J D0(t - t0) 

1/23 

The diffusion coefficient is 4/j/.t (so — z o m i n ) / D o ^ co c ( ' — h)1!'2 Case of total reflection 
constant ~ 2 Do A a>c (t — to) 

D(z) = D0 

Table 1. The coefficients of diffusion, and the asymptotic expression of absorbed energy. (?3m = (?30 + *0 is the amplitude of 
axial oscillation, 0jt = e BJm, the phase of rf field changes stochastically after t c ~ l/*'3 , where r3 is frequency of axial motion. 
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where (/) ^ is the absorption for 
E\\= (d A JdQ3)Tt = 0. 

Accordingly, the absorbed energy will be charac-
terized by a relative maximum in a certain time 
^opt= D33 • 

From these two extreme cases the following is 
obvious: the longitudinal component of diffusion 
[caused either by £||4=0, or by ( d A j d Q 3 ) rf 4= 0] 
weakens the nonlinear effect which was described in 
the previous chapters. Simultaneously, of course, it 
causes diffusion along the field lines. As long there-
fore as D33 is not negligible in the region of mir-
rors, it is posible to suppose that after reaching a 
maximum of the absorbed energy the total perpen-
dicular energy will decrease. 

6. Conclusion 

On a simple model we have examined the effect 
of nonlinearities of particle motion in magnetic 
mirror systems, the influence of diffusion along the 
field lines and the effect of the rf field inhomogeneity 
on the rate of energy absorption. The assumption of 
a negligible effect of E\\, t ? i x ß i r [ allowed us to 
make the study sufficiently analytic. As the solution 
indicates, a marked slowing-down of heating occurs 
due to the effect of nonlinearities and diffusion. The 
configuration in which resonance sets in close to the 
minimum value of Bstat seems to be more advan-
tageous with respect to heating. The simultaneous 

effect of E]_ 4= 0, E\\ 4= 0, X B\_Tf 4= 0 could not be 
examined otherwise than qualitatively; as our con-
siderations reveal, in this case a relative maximum of 
absorbed energy forms at a certain optimum time. 

The situation in both cases is changed, whenever 
there exists a source of particles which compensates 
the particle diffusion through the mirror and keeps 
the total number of particles constant. Then in all 
cases is the growth of perpendicular energy faster 
[from (t) ~ «* to (/) ~ f ] . 

The simplicity of the chosen model enables us to 
find a simple analytic solution of our problem. In 
fact the described effects could appear — in spite of 
their importance, as we believe — only in the corre-
sponding quasilinear solution in the velocity-space 
configuration which includes also the nonlinearity 
in the axial motion of the particles. 

We suppose that the above mentioned effects are 
some among the limiting factors of heating. It is 
possible that they are comparable with the common-
ly accepted quasilinear change of the derivatives 
3 / / 3 t> l , df/dv\\ . An exact solution of this problem 
will help to answer the important question, what is 
the rate of heating of a confined, space-limited vol-
ume of plasma in magnetic mirror systems. 

We believe that the described effects are important 
also in the problem of eventual confinement of 
plasma by rf fields. 

The next step of the calculation will therefore be 
to solve the quasilinear self-consistent approxima-
tion. 


