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The Ground-State Energy of Anisotropie Spin-Spin Interaction 
in One-Dimensional Chain
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In the present work the integral equation of Yang and Yang is studied by the method of mo­
ments. In general the solution of the integral equation is reducible to a linear algebraic system 
which can be solved only approximately. From the solution of the system the ground-state energy 
and the magnetization of the anisotropic spin-spin interaction in a one-dimensional chain is de­
termined.

I. Introduction

Using a function of the type f { A , y ) ,  Y a n g  and 
Y a n g 1 recently studied the various properties of 
the ground-state energy of a one-dimensional chain 
of anisotropic spin-spin interaction. The real 
parameter A  characterises the anisotropy, and for 
A  =  ±  1 we have the case of ferromagnetism and 
antiferromagnetism respectively. The magnetization 
per atom y is the eigenvalue of the operator

Y = a J N , ( 1)

where N in the total number of lattice sites.
In general the problems of ferromagnetism and 

antiferromagnetism are directly related to the eigen­
value spectrum of the operator.

H = 2 I  ^  ■+" Qy "t“ Aoz 0~ (2)

where o are the Pauli spin matrices at a particular 
site (öj.2 = o j 2 =  o?2 =  1) and o are the Pauli spin 
matrices at a neigboring site.

The problem of a quantized lattice gas is also 
related to the operator (2 ) . This subject is dealt 
with in detail in the relevant literature1. The func­
tion f ( A , y )  is defined by Yang and Yang as fol­
lows:

1
NZf ( A , y ) =  lim

A'-»- (3)
(lowest eigenvalue of H for fixed y)

which is half of the ground-state energy per bond 
for fixed y. Here Z is the number of nearest neigh­
bors at each site. The existence of the limit f (A,y )  
and a number of general properties of f (A ,y)  in

* Presented address: Department of Theoretical Physics, 
University of Patras.

1 C. N. Y a n g  and C. P. Y a n g .  Phvs. Rev. 1 5 0 , 321. 327 
[1966].

2 C. N. Y a n g  and C. P. Y a n g .  Phys. Rev. 1 4 7 . 303 [1966].

particular inequalities between the f (A ,y )  for one-, 
two- and three-dimensional lattice were proved in 
Ref. 2. Y a n g  and Y a n g  confined themselves to the 
one-dimensional case which they examined in detail.

The one-dimensional problem was first examined 
by B l o c h  3 and B e t h e  4. The formation of the 
eigenfunctions was based on a hypothesis by B e t h e  

which has more recently been generalized by Y an g  5. 
The particular case A = — 1 (antiferromagnetic iso­
tropic case) was considered in detailed by H u l -  

THEN 6, who gave an evaluation of /( — 1,0) using 
Bethe’s hypothesis.

II. Construction of the Eigenfunctions

Y a n g  and Y a n g  1 consider an eigenfunction W 
of H with m down spins and N — m up spins. 
Clearly

y =  1 — 2 m/N (4)
and for

2 m N, is y  ^  0 . (5)

Let xx , x2 , . . . , xm (in ascending order) be the 
sites with down spins (1 ^  Xj 5  ̂ N) where, accord­
ing to Bethe’s hypothesis, there are m unequal real 
numbers px , p2 , • . .  , pm such that the eigenfunction
lI1 is a sum of m ! terms each of which is of the ex­
ponential form:

const, exp{p  P 1x1 + p  P2 x2 + ■ . ■} (6)

where (P1 , P2 , . . . , Pw) is a permutation of 1, 2, 
3, . . . ,  m.

The eigenfunction ll J therefore is the sum of all 
the possible combinations (P1 , P2 , . . . , P m) with

3 F. B l o c h .  Z. Phys. 61. 206 [1930] ; 74. 295 [1932].
4 H. A. B e t h e .  Z. Phys. 71. 206 [1930] : 74. 295 [1932].
5 C. N. Y a n g ,  Phys. Rev. Letters 19, 1312 [1967].
6 L. H u l t h e n ,  Arkiv Mat. Astron. Fysik 26 A, No 11 [1938].



THE GROUND-STATE ENERGY OF ANISOTROPIC SPIN-SPIN INTERACTION 763

constant m, and XF  has the following form

XP  =  2  Ap exp { i  2  p P x j }  • (7)
p j 

The values of p satisfy according to 1 the follow­
ing conditions

— for A — 1 (8)

— (n — /u) < P j < n  — for — 1 5  ̂ A <  1 (9)

where cos a  — — A . ( 10)

In addition they also satisfy the following non 
linear system:

m

pi = 2 7 i I i N - ' - N - i Z 6 ( p i , p l) ( 11) 
z=i

where the /*’s satisfies the relations 

1\ ’ 1% » • • • ’ I ’m
m  —  1

2

(12) 
m —1

and the function 0 (p, q) is defined as follows

“ 2 ‘« - 1 (c K p + ^ i ^ F ä ) -  (13)
The existence of a solution for ( 12) as well as the 
properties of function (13) are discussed in *.

Since pj 4= p ;, if /’ >  i , by continuity argument 
with respect to A, is p1 <  p2 • • • <  pm for all A.

As N, m ->  oo at a fixed ratio, the p’s increase 
in number, but always lie within the interval (8) , 
(9 ) . In this case the number p’s in an interval p 
to p +  dp approaches according to 1.

N Q ( p ) d p ,  (14)

p = 2 n f -  J 0 ( p ,  q) Q{q) dq  (15)

where f  = I/N clearly

df/dp = Q{p) (16)

thus, 1 =  2 n g ( p )  -  j* Q(q) dq. (17)

The limits of integration are between —Q and Q; 
thus is due to the symmetric distribution of the p’s 
about p =  0, i .e .,

Q

1 = 2 j i q ( P) -  J | | e ( g )  d q .  (18)
- Q

7 R . O r b a c h , P h y s . R ev . 112, 309 [1958]. -  L . R .W a l k e r ,
P h y s . R ev. 116, 1089 [1959]. — R . B. G r if f it h s , P h ys. 
R ev. 133, A  768 [19 6 4 ]. — J.  d es  C l o iz e a u x  and J. J.  
P e a r s o n , P h y s . R ev . 128, 2131 [1962]. — E. L ieb  and D. 
M a t t is , M a th e m a tica l P h y sics  in one D im ension, A ca d e ­
m ic P re ss , N ew  Y o rk  — L o n d on  1966. — M . G a u d in , P h ys.
L e tte rs  24 A , 55 [1967].

We have obviously,

i  (1 - y )  = m / N =  j  8 (p) dp (19) 
-<?

and the function f(A,  y) is given by

9
f ( d , y )  =  -  i A  + i A ( l - y )  -  J g(p)  cos p dp.

- Q
(20)

The present problem is centered around the solution 
of the integral equation (2 0 ). From this equation 
and from relations (19) and (20) we obtain y and 
f(A, y) as functions of Q. Equations similar to (18) 
have been studied by a variety of methods 7.

The purpose of the present work is to study Eq. 
(18) by the method of moments 8 which has already 
been applied by the author 9 to solve Hulthen equa­
tions for the many-body problem in one-dimension 
( I .e .10) .

III. Solution of the Integral Eq. (18)

The integral kernel 3 0 / d p  can be expressed 
as a sum of three terms, namely
3 ( 9  e ~  i p  e i p- =  _ 1 _  6 _________ — (2 1 )
dp  2 A —e - 'V  — e n  ‘l A  — eiV—e ~ n ’ y ’

For A =  0 it follows that 3@/3p = 0 and the solu­
tion of the Eq. (18) is known x, namely

Q { p ) = \ l 2 n ,  (22)

0 - W l - y ) ,  (23)

f ( d , y )  =  -  i A +  i  A ( l - y )  -  (1/ji) cos( \ c i y ) .
(24)

For the case A =  oo the solution is also known 

e ip )  =  ( l+ y ) / 4 ? r ,  (25)

Q =  J i ( l - y ) / ( l + y ) ,  (26)

t i A>y) I A  + \ A (1 - y )  -  - 2~  sin ti  |
1 +2/

-y 
(27)

In the following we will examine Eqs. (18) for all 
other values of the parameter A. Using the relations 
given in (21) and taking (19) into consideration,

8 C h i - Y u  H u , Phys. Rev. 1 5 2 ,  1116 [1966]. -  V . V o r o b y e v ,  
Method of Moments in Applied Mathematics, Gordon and 
Breach Science Publ. Inc., New York 1965.

9 A. D. J a n n u s s i s ,  to be published.
10 A. D. J a n n u s s i s ,  Phys. Rev. Letters 2 1 ,  523 [1968].
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4 < i + , ) - 2 * e ( p ) + + Y - r J h ^ - , \ < 2 8 >
-o

Expanding the integral Kernel in Fourier series with elements e ±tnq {n = 0, 1, 2 , . . . )  it follows that
1 oo i _Q i Q

y  (1 +  y)  =  2 n e  (p) +  J J  (2z|_ e_,p)„+1 J V ”« e  (? )  d? +  ) [ f ' " q 6  ( ? )  d?  (29)

the integral equation (18) can be written in the following form:

1 ^  f /  e ~ !P e*P \ ?
( 1 + y ) =  2 JtQ(p) +  J o +  J  cos n qQ{q) dq

(30)

+ * ( 7ô Z *Ln+i -  Vo ) J s in n ? o (g )  dq
<?

-<?

If we define now In{Q) and / n(Q) the integrals
Q

I n(Q) = $  cos n q  Q(q) dq , /',«(<?)= J sin n q Q (q) dq (31)
- Q

then the solution of Eq. (30) has the form:

2 71 Q (p ) =  y  (1  + V )  ~  {  \ (2 Ä —  e - i p ) n  + l +  (2 A —e»P)« + l | ^ (32)
. i e~ jP ___ ____  e}P _ \ J  (r> \\

”*_I ' (2 A —e~iP)n + l (2 A — e*P)” + l j

The above solution is substituted into (31) whence we obtain the following linear system for determining 
the coefficients In(Q) andI n{Q) :

1 • s~\ OO

* / „ -  « • ( !+ » )  (33)
n=0

^ 4 =  2 \ m ( ? )  ^ ( ^ )  where (34)
n= 0

1 ?  [ e ~ !P e*P \
A , .m= Y  ] Q | ^ - ^ ) » + l + l 2 J ^ ^ , Ä T j “ s ™ P dP ’ (35)

j ^  ( e—V I
B » .» -  Y  J Q I (2 J _ « - ( , ) - .+ ! - - ( 2 l ' ^ j » + i  I co sm P<1P- (36)

The system (34) is homogeneous and linear and the condition for the existence of a solution other than 
zero, is the vanishing of the determinant from which we obtain the eigenvalues of the integral kernel.

However, on account of the fact that there exists an additional condition which connects Q with y the 
system (34) is satisfied by a zero solution, i. e. the coefficientsl n{Q) are zero.

In other words the function £>(p) is an even functcion as expected from the underlying symmetry of 
the problem. The integral given in (33) is calculated from the basic integral Ao, m(Q) by differentiation 
with respect to 2 A.

A (n \  -  ( ~ I ) n dnA o,m {Q )_ ( - 1 ) ” dM o,w(Q) ,
s*n,m[V) n , d(2 j ) n  2 »•«! d/I” '  ̂ '

The integral Ao,m(Q) is easily calculated and the result is written below.

Am(<?)  -  -  - n " - + mKI  { ( 2 /l)K- ” - ( 2 J ) ” “ n — JP + ( 2 zl)” t g - ‘ (y ^ s^

1 / 2 zl sin £) , /oo\
>g M , _ i v d r n  • (38)(2A)m \ 1 — 2 A cos Q )  ’
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For m =  0, 1, 2, . . .  this becomes

- 2  lg“ 1 

AqA Q )  ~  — s in <2 +  2 zltg 1

sin Q 
2 A — cos Q 4 o ( ( ? )  =

2 sin Q
4 A2—4 A cos (? +  l  ’

sin Q
[2 A — cos Q

- l 2 A sin Q
1 — 2 A cos Q

(39)

The functions A0, m(Q) may be expanded in a power series of 2 zl or 1/2  A depending on whether 2 A is 
greater or less than unity. The following series are in general valid

2 sin Q ^  r  ( sin (m + K ) Q sin ( m - K )  Q \ y  (n  A s m +i j sin I Q sin(2 m + l )  Q
4 . ( 0 = -  „ - “ J ,  | m+K  I»—K I ,4 ( } 1 '

W < ? ) =  zk = 1 \2 Zl
K  f sin(/7i+K ) @ sin(m — K) Q 

m + K  m —K
+ l  (Ä)Z=1

sin I Q 
I

sin (2 to+Z) Q 
2 771 -)- Z

(40)

From the calculated values of the coefficients f (A,y)  = — \ A + \ A ( l —y)
An, m(Q) we see that in the denominator we have 
the expression

4 A2 — 4 A cos Q +  1 (41)

which must, in order to satisfy converge require­
ments, be less than unity. We assume that the series 
converge and proceed to a solution of the linear 
system (33) using the method of successive ap­
proximations.

For the zero order approximation we obtain the 
solution

sin 771 Q (42)

which for m = 0 gives

xlT(Q)  = i ( ! + y )  Q-  - » )

or e  =  5 i - ( i - y ) / U + j r ) .  (43)

This solution is exact for A =  oo .
As a first approximation we have the solution

sin 77i Q
(1+3/)

For m =  0, 1 we obtain:

1 I  A n A Q )^ " -Q
« = 0

(44)

1 tg'
sin Q

2 A — cos Q

2 i 1 | sin 7i

— e*Q)n ) 7i2a nZ 0 \(2 A-e~iQ)n (2 A 

f(A, y)  =  -  I A +  \ A ( l - y )  

- ^ ( 1  + y )  ( s in < ? -  ±  1

(45) 

i— y 
1+?/

(46)

n =0

For j 2 A ' >  1 we may use the following expressions

1 +  (2/.t) tg_1 (sin Ql (2 A — cos Q)) 1 + 2/ ’ (47)

-  V,1- {(!+</> s in (? -  ( 1 - y )  Ao ,i (Q)}  (48)

where

Ao,i(Q) =  — sin Q + 2 A tg-1
sin Q 

2 A — cos Q 

sin Q

(49)

(1/2 A ) - c o s  Q“ 2 7 * "

Expression (47) can be written as follows:

j r + 2  tg—1 (sin QJ(2 A —cos Q)) — Q 
y  7 i+ 2  tg—1 (sin Q / (2 A — cos Q)) +  Q '

(50)

For different values of the parameter A the above 
expression gives the exact magnetization curve. The 
boundary values may also be obtained from the 
(5 0 ), namely for y =  0 gives Q = n and for y  =  1 
gives (̂  =  0. Expressions for j  2 A | <  1 may be ob­
tained directly by solving the integral equation (28) 
when the solution is expanded in powers of 2 A or 
by using the first expression of relations (4 0 ).

The results in this case are the following:

Q +  sin Q +  cos Q ln cos Q} =
(51)

f(A, y) — -  1 A +  \ A ( l —y) — sin Q
(52)

— {Q2 — sin2 Q +  Q sin 2 Q +  2 cos2 Q In cos ( )}  .

From the results we observe that system (33) allows 
us to approximate the solution as close as we like 
and is suitable for practical calculations.

The special cases A =  ±  1 (ferromagnetisms and 
antiferromagnetism) can be directly studied using 
(47) and (4 8 ). The case of antiferromagnetism has 
been recently studied by the author 9.
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Appendix

Using the same method we will study here the 

system of integral equations which has been recently 

given by Lieb-Wu n . They are similar to the Yang 

and Yang 5 and S u the r land  12 integral equations.

Using Lieb-Wu’s symbolism the equations are as 

follows:
B

2 " g ( * ) - l + c t f  ■ (1)
—B

Q B
C 8Ug(k)dk , C 4 Uo(A') dA'
J U2 + 1 6 (A — sin /c) 2 ~ l n a \A ) + J U2+4(A-A ' ) 2

- Q  - B
(2)

where the limits are determined from the following 

conditions

/  Q(k) dk = N/Nä ]o{A) dA = M/N~a (3,4)
- Q  " - B

The ground-state energy of this system is given by 

the expression

Q

E=  — 2 Na | g{k) cos k dA;. (5)
—Q

The case of Q =  n and B =  oo has been studied by 

Lieb-Wu 11 and the solution is obtained in closed 

form by using Fourier transform.

Now we will confine ourselves to the case B ^  1 

and we will use the method of moments. From the 

underlying symmetry properties the functions Q{k) 

and o(A) are even functions. Equation (1) by ex­

panding the integral kernel in series can be written 

as follows:

°C ( J J j B

2 71 Q {k)  =  1 + l C OS  k  ^  j ( s i n f c + .  j f ß y n + 1  ~  (sin k—i f//4)«+l J 1 / ” ° ̂  ^

B
The integral f A no(A) dA is non zero for even n and (6) can be written:

—B

°° I 1 1 1
2 Tl p(k) = 1 +icos k y  .  . . . .  rr/j,N„ . 1 — ~r-—,— . hn(B) (7)

’ n± 0 1 (sm k+iU/4:)n + 1 (sin k—i C//4) ” + 1 | v ’

B
where h n{B) represents the moments: h n(B) = \A2no (A )dA  (8)

- B

because of (7) and (8 ) Eq. (2) is written:

8 U Qc d k ■ 8U  K 1 sd\QC cos A: dA: ( 1 1 1
J 772_l_ A _ein L\2 "I“ 1 9 tt ^  2n\B))2 Jt J q  t/ 2 + 16 (A — sin k) 2 2 .t Ln _q  U2jt\6 (A — sin A:)2 ( (sin k+i C//4) 2»+l (sin A:—t Z7/4) 2«+l j

v  I 1 1 I
=  2 710 (A ) + i 2 0 ( {A + i u/2)2n + l ~  (A-iU/2)2n+l J U~* ^  *

By expanding the integral kernel 1 / [U2 + 16 (A  — sin A:)2] in a series of powers of sin A; the above equa­

tion takes the following form:

/ 00 ( 1 1 } Q
1 Y ______1_____________1 I l\\n2lk(\k

(A + iU/4,)X+l (A - iU l^ l+ 1  J

1 Y  Y  J (R )  j - 1 — 1 _1 p - 2Z i. J ____cosfc _  cosk 1 J L
2 r r ?4 «  = 0 I (A+iU/4)2l+l (A - i 17/4) ** + 1 ( A *“ 1 | "(sin k + i t//4)2» + l (sin k - i  C//4)2» + l j Q/C

00 ( 1 1 j (1 0 )

=  2 71 O {A) + i ^ 2  I (A + iU /2)2n+l ~  (A - i U/2 )2n+l j U-» ̂  *

If we now multiply the above equation by A~m and integrate from — B to B we obtain the equation from 

which the coefficients hn (B ) are determined.

- . 0 0  1 OO OO

2  F l2l+1. 2m(B, C//4) T2l(Q )  + ~T 2  2  hn (B )  A i  + l,2m(ß, U/4,) T  2n + 1. 21 (sin Q, U/4<)
71 1=0 71 1= 0 f! = 0

00 (11)
= n I 2m(B)+  2  r 2n + h2m(B ,U l2 )I2n(B). K '

7! = 0

11 E. Lieb and F. W u, Phys. Rev. Letters 20, 1445 [1968]. 12 B. S u th e r la n d , Phys. Rev. Letters 20. 98 [1968].
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q
In addition T=>i(Q) = J sin2Z k dk (12)

o

and r p,,(B ,x) = _j X« **■ <13)

Various properties of the coefficient r p>q(B,X) are cited in 10. The system of Eqs. (11) can be solved by 

several approximate methods. With the method of successive approximations we obtain the zero order 

solution

i 00
I  r 2Uh2m(B,U/4) T2l(Q). (14)

71 1 = 0
The first solution is

1 oo oo oo

I ' i l  (B) = 2  r 2uu2m(B ,U /i) T2l{Q) - i n  A , . i ,2 „ ( B ,£ / / 2 ) / V 1>2,1(S,f//4) T2l(Q)
71 1=0 71 n =  1 q = 0

1 °o oo oo n  z. )
+ 3  2  2  2  r 2U1,2m(B ,U /4 )r2ntl,2l(s inQ ,U /4 )r2qtU!1,(B ,U ß ) T2q(Q).

71 1=0  n =  1 g=0

System (11) can also be solved assuming that the coefficient I 0(B) is greater than all others and this for 

5 ^ 1  and U/4 1. The coefficient I 0(B) is given by the following expression

00
1 r 2Ul,«<B, C//4) TniQt

h  (ß )=  ,  --- --------- — --- =------------------------ • (16)
Ji+TuoiB, U/2)-(\/n) I  r 2l + U0 (B, C//4) A , 2Z(sin Q, U/4,)

1= 0

If we now substitute in the above formula the sums with the corresponding integrals this becomes

<3
/  {tg-H ^/C /M ß + sin/c)] + tg _1 [ (4/C/) (B —sin A;) ] } dfc

7o(Ä) - i --------------- 2---- Q------------------------------------------------•
jr+2 tg_ 1 (2 B/U) — (C//2 ti) f  (tg“ 1 [(4/C/) (B + sin A:)] + tg- 1 [(4/C/) (B-sin /c)]/(sin2 k+U2/16)) dk

0

A convenient approximation of the integral leads to the following results:

7 ,m  2 £> ________________________tg~~1 (4 B/U)_______________________

° { ’ n  jz-\-2 tg 1 (2 B/U) — (4/jr) tg-1(4 B/Ü) "tg- 1 (4 sin Q/U) V ’

Using the known values of the coefficients hn{B) in Eq. (7), integration from — Q to Q gives

N_ =  Q_ , _2_ . _M -1 4 sin Q _ J _  y  hn(B) } 1 _________ 1 j n  Qv
N a ti ti No °  U 2 ti n= i n [ (sin Q+i C//4) 2« (sin Q — i C//4)2n J

* M _ J  ( m _  I Q . ______________________ tg—1 (4 B/U)_______________________

re No Io[D) 71 jr+2 tg~ 1 (2 B/C/) — (4/jr) tg- 1 (4S/C7) tg—1 (4 sin Q/C/) { ’

The ground-state energy is given by

E o • ^  M TT„  . M /4  , U\ ? dk 
71 Na m Q+ n  UQ  4 ( v + 4 j J 1 + l65m2k/ij2

v  ? ( 1 1 1
-  I ^ 2  hn  (B) J  COS- k j (sin . ^ 4) 2»+r ~  (sin ÄT-7 C//4)2»+l I ^

(17)

(21)

^  = - | s i n ( ? + ^ - f  { ^ - l / l  + 16/I^-tg-1 (1/1 + 16/t/2-tg <?)} + . . . .  (22)

The formulae (19) and (20), obtained by assuming Z? 1 , which were also given for Q ^  tl and B =  oo, 

yield exactly the maximum values of M//Va = 1/2 and N/Na = 1 . The energy formula (22) for Q = tz

becomes E = M U + . . .  . (23)

Knowing the energy E from (22) we can calculate the chemical potentials u .


