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In this paper we introduce two new “magnetic”’ operators and we show that these are the cre-
ation and annihilation operators of the schrauben functions. The schrauben functions are the eigen-
functions of the Hamilton operator describing a free electron under the action of a uniform mag-
netic field. By transforming these two operators we obtain two other operators which we show to be

of Harpers type, as was expected.

1. Introduction

For the study of special functions occuring in
mathematical physics several methods have been
used, especially their integral expressions and tech-
niques from the theory of analytic functions.

Recently KaurmMAN ! applied the Lie algebra (or
Lie group) for the study of the special functions.
By this way the addition theorems are obtained in
an extremely simple way: many of the expansion
theorems are then derived from the addition theo-
rems.

Each Lie group is characterized by an infinitesi-
mal transformation®. The basic idea of the Lie
group is that from an infinitesimal operator M,
which shifts the point S = (z,7,...) to a neigh-
boring point one may generate a finite operator
exp a M which shifts the point S into a point S” at
a finite distance along the path curve of the one-
parameter group exp a M.

The application of the same operator to a func-
tion of the coordinates F(S) yields:

expa MF(S) =F(S')=F(expaMS). (1)

According to KAUFMAN we consider those infini-
tesimal differential operators which appear in the re-
cursion relations for the various special functions,
and generate from them finite operators. Any pair
of recursion relations for the special functions may
be rewritten in the form

RFu:Pan»l

LFn:;'an—l (2)

where R and L are differential operators and are
called raising (creation) and lowering (annihilation)

1 B. KAUFMAN, J. Math. Physics 7. 447 [1966].

operators for the index n respectively and P,, 7,
are constants.
From the relations (2) one easily obtains
RFo=P,Prit .o Prom-1Fnems
Y PR S S R S
The application of the operators expaR, expal
to the functions F, (S) yields:

XpaRFy(S) = 3 2 (PrPus .- Pasmot)
Fun(S),  (3)

expaL-F,(S) :)il)";, g ooyt e e By met)

Fyn(S).

These series may or may not terminate, depending
on the particular values of P, , 4,, .

The combination of Eqs. (1) and (3) yields two
useful relations, one due to the operator R:

Fn(exp aR S) = Fn(s,)
X ogm
=m=0;1! Pn Pn+1 e 'PlI+IH—1 Fnem(s)
and a similar one due to the operator L
F,(expaLS) =F,(S")

oo

"/.'II—IIIAI F,,_,,,(S)

Further, we can try to combine R and L e.g. in
the form exp(a R +b L). Now, if R and L commute
1. e.

[R,LL]=RL-LR=0 (6)
we have

expaR-expbL=exp(aR+bL)
When [R, L] =0 Egs. (7) does not hold.

(7)

2 H. RamrAacHER, H. STumPF, and F. WAGNER, Fortschritte
der Physik 13, 385 [1965].
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The set of such operators which is closed under
commutation constitutes the Lie algebra generated
by R, L. Any member M of the algebra generates a
finite operator exp a M; the products of these gener-
ate the Lie group corresponding to this Lie algebra.

KAUurMAN ! applied the above theory to the spe-
cial functions and especially to the Bessel functions,
Hermite polynomials, Gegenbauer polynomials and
Legendre polynomials.

For the study of Bessel functions the appropriate
raising and lowering operators are (expressed in
polar coordinates) :
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From the above definition we easily obtain the re-
lations:

R[ein'p Jao(7)] = e(’n+1]i¢'1n+1(")
LLe™ 1,(1)] =" Vir L y(r)  (9)

where /,(r) are the Bessel functions which the fol-

lowing differential equation fulfil.
d2 1 d 2
oo IL? +1 ]n(r) =0.

dr? r dr r

(10)

Expressed in Cartesian coordinates the operators
(8) become

3 .3
9z ! dy?’

e .0
R= L= 73" =, ’é’ . (11)

In this paper we define two new operators R and L~,
more general than operator (8), by the relations

= 3 ) B . B .
R= - =il 3y7+72‘ (z+iy)=—R+ 5 (x+1y),
(12)
3 . 9 B ’ B .
L= a —f—léﬁy—*z"(x—ly): L— E(xfly)

It will be shown later that the operators Rand L
satisfy Eqs. (2) where F,(S) are the so called

Schrauben functions 3.

2. Schrauben Functions and their Properties

It has been shown by Jannussis 3 that for a free
electron moving in a homogeneous magnetic field
it is more convenient to take the eigenfunctions in

3 A. JANNussis, Phys. Stat. Sol. 6, 217 [1964].
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the form:

//"B 2 ”714
Wi (1) = [ 92\B) ar

“exp (— ; (K2+K,?) +i(K, 1')) (—K,—iK)"

(13)

where
K is the wave vector

B B H
Ko<kt 5y, Ky=k,— 52,B=". (14)

and ¥k ,(r) the schrauben function.

It is assumed here that the magnetic field H is
parallel to the z-axis and that the vector potential
A(r) is given by:

Ar)=3%Hxr]|. (15)

All the formulas are referred to atomic units A =1,
m=1, e=1. It can be easily verified that the func-
tions (13) are with centers

2 2
T, (xm s ynz) Xy = B ky s Ym= = B kf (16)

and the schrauben functions take the following sym-
metric form:

vratr) =)o (5) 2 [ 2w) —ia—ym) 1"
exp{— [(z—2)2+ (y—yw)?]  (17)

+l§ (xmy"xym) +ikzz }

It has been shown* that in case r,, is a point of a
plane lattice then the eigenfunctions (17) are the
Wannier functions a,(7) of a free electron moving
in a homogeneous magnetic field.

It is interesting to note that the operators (12)
appear in the Dirac equation describing the behav-
iour of an electron in a homogeneous magnetic field
H and when the magnetic field vanishes there re-
main the operators (11).

It can be shown the following relations:

Ryr,(r)= V2Bnye, (1), (18)

Lyia(®) = —V2Bn+1) ye na(r).
From the above relations and n = 0 follows:

731#%,0(1') =0,

Lk o(r) = —V2Byi, o(r). (19)

4 A. Jannussts, Z. Naturforsch. 21 a, 1577 [1966].
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By applying (n—1) times the operator L to the
second of the above equations we obtain:

~=q) ~
Yk (1) = 1’/((2 B)),{;{, (L)" yao(T).

(20)

Consequently, we can derive all the eigenfunctions

Wk ,(T) be repeated application of the operator L
to the basic one i o(T).

The eigenvalues corresponding to the eigenfunc-
tions (13) are the Landau ¢ ones

E,=B(n+ %) + % k2. (21)

3. Some Properties of the Operators Rand L

~ Using the definition (12) of the operators R and
L we obtain:

RL= —RL+ B Rz—iy)

2
B . B,
+ 5 (+iy) L- 4 (& +57),
LR- LR+ 5 L(z+iy) (22)
. B . B® ., o 5
+ 5 (x—iy) R— (2® +9%).

Subtracting the above equations and taking into ac-
count that the operators R and L commute we ob-
tain:

~ ~

RL-LR- —2B. (23)

Furthermore, from Eq. (22) we obtain:

RE=-Z+ 2 viBly S —22)-E 2499 -
o SIETS.I/?' y Oz Sy 4 Yy

~~ 3 R 3 3\ B
LR:'af-z*sgé“B(’/ a;‘xey)"

(24)

The Hamilton operator for a two dimensional mo-
tion of an electron in a magnetic field is:

S\_ B 5, o
—xa;)— o @ +y7).

2\322 ' 3y il
From Eqgs. (24) and (25) we obtain:
RL=208,-8,
LR=2H,+B. (26)

Furthermore, the Schroedinger equation yields:

HO'/'k. ,,(1') :En 1/"‘.71(") :B(n+ l:) "f"‘,n(r)' (27)

5 A. Jannussis, Z. Physik 190, 129 [1965].
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From the relations (26) and (27) we obtain
RLys (1) =2Bnyu (1),

LRyk (1) =2B(n+1) yu (). (28)

From the above results it can easily be shown:

RL-Rywn(r) =2B(n—1) Rypwn(v),
RL Lk (r) =2B(n+1) Ly, (r). (29)

We conclude now that if v« ,(7) is an eigenfunc-
tion corresponding to the eigenvalue 2Bn then
Rk ,(7r) is an eigenfunctioil corresponding to the
eigenvalue 2B(n—1), and Ly« (T) is an eigen-
function corresponding to the eigenvalue 2 B(n + 1).
Similar relations appear in the study of harmonic
oscillators where we have the corresponding cre-
ation and annihilation operators 2.

To find further properties and for the sake of
simplicity, we introduce new variables:

u=x—1m+i(y—ym), sz_rw_i(y_ym)s

gz/zzxm‘*'iynw :7/! :rmh‘iym- (30)
Eq. (17) and the operators (12) take now the fol-
lowing form:

/

W) = |5 (5 (31)
‘l)n exp [ﬁ f (‘(,l .Vfll Z:,, +v22/4)a

3 B *
Su'— 2 (-V‘i'zm)-
(32)

The application of the operator exp a L to the func-

tion vy, (U, V) yields:

L=2

2 2 X gm
4 (x +Yy ) +B expaL'1/'lz(1[7rV) = S’a Pn~--Prz+m—l'/'11*711(1[:7))

p

1
m=o m!

or
expaL-y,(U,V)=exp{ —aBV}y, (U T). (33)
Eq. (33) can be verified and by the following pro-

cedure:

~

expa Ly, (U, D) :exp{Qa 3;1_ azB (V+2%) }
v (U, V) =exp|— azB ("[}4_:*)}

y(U+2a,V) =exp{ —a BV} -y, (U, D).

Proceeding in a similar way we have
expaReyn (V) = (14 5] v (U D). (39

6 L. LANDAU, Z. Physik 64, 629 [1930].
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We define now two new operators L, and R, as fol-

lows:
) -~ 3 . B
L= 3 (L+R) = 3, T Y (35)
] = & ) . B
Ry= 5 (L—R) = 3, L 2 Y.

These two operators satisfy the following relations

[Ly, Ryl =iB, (36)
Loy (2, Y %> Ym)
= 1/5 (Vnpn-1—Va+1ya.),
Ry (2, y, 2> ym) (37)

— ]// l; (Vn Yn-1 + Vn :1 "/'n + 1) .

Consider now the conjugate operators L,*, Ry*

. 3 .B . 8 .B
Lo—az~z2y, Ro—ay—&—tzx.

The following pair of formulas can be obtained:

.aB 3
exp a LO*. ,/,'1(1, Y, Ty, ym) = exp { —1 117 Yy +a 7;1‘}
.aB
'7}'11(237 axnuynz) :exp{—l 5 y}
“Yn (I’ Y, Ty ym) (38)
.aB
exp a RO* "YW (Ia YT s ym) = exp { l % fC}
' 1Pm(xa Yy+a,Ty, ?/m) .

Taking into account that the eigenfunctions (17)
satisfy the Harper symmetric condition” we finally
obtain:

* . B
eXPaL() ‘T/’,,(I,i 7xmaym) :exp{ —1 2“ Ym l
Yn (15 y; Ty —a, ym) ’ (39)
* . B
eXPaRo '1/',,(1‘, .'l/,%nym) :exp{ 4 2‘1 Ty J

W (2, Ys s Ym — a).

The operators exp a Ly* and expa R,* are thus of
the HARPER 7 type.

4. The Harper Operators and their Properties

The Hamilton operator of a lattice electron mov-
ing in a homogeneous magnetic field does not com-
mute with the translation operator, but HARPER’

7 P. HARPER, Proc. Phys. Soc. London A 68, 879 [1955].

8 W. KonN, Phys. Rev. 115, 1460 [1959].

9 L. RoTH, J. Phys. Chem. Solids 23, 433 [1962].

10 G, WANNIER and D. FREDKIN, Phys. Rev. 125, 1910 [1962].
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was able to show that there is a set of so called
“Eichtranslationen” (or Harper operators) which
commute with this Hamilton operator and have the
following form:

Cry) =esp | =L (A(r),1) | T7. (40)
T r, is the translation operator
Tr f(1ry) =f(r+1H) (41)

and A (r,) is the vector potential at the point 7.
From the definition (40) follows at once
expaly*=C(a,0,0),

expaRy*=C(0,q,0). (42)

Moreover, we can easily verify the commutation rule
[C(rg) C(1ry) —C(1y) C(19)]

.. B
=2isin o (y;1 29— 21y,) "C(ry+1y). (43)
In case the vectors 7y, 1y and the magnetic field are
coplanar then the Harper operators form an Abelian
group and the relation (43) gives at once
B
3 (Y129 —219p) =7 . (44)
Formula (44) expresses the quantization of the
magnetic field.
It will be shown now that the operators Tr and
exp{ —i/c(A(r,),r)} commute. Indeed, by using
the definition (41) and the fact that (A (1), 7)) =0

we obtain
T, exp {~ L (Ary),7) } ()
— LA, D | T,

(45)

= exp

There now exists an extensive literature devoted to
the properties of the Harper operators (see KOHN 8,
RotH?, WANNIER-FREDKIN 1, Brount!!, FisH-
BECK !2 and ZAK 13).

5. Generalized Harpers Operators
We define two new operators Cx (7)) and Cx (1)
as follows:
C" (rO) =exp{ —l(ka r)}'T"n 9
Ch (ry) =Tr,exp{ —i(k,T)}.

(46)
(47)
11 E. BLouNT, Phys. Rev. 126, 1636 [1962].

12 H. FisHBECK, Phys. Stat. Sol. 3, 1082, 2399 [1963].
13 J. ZAK. Phys. Rev. 139, 1159 [1965].
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From the above relations, we easily obtain

Ci (1g) =exp{ —i(k, 7))} Ci (¥)). (48)

In case the scalar product (k, 1) is an integral mul-
tiple of 2z, then the operators Ck (7)) and Ck (1))
are equal and hence the operators exp{ —i(k,r)}
and T r,commute.

The scalar product (K, r) vanishes when the
wave vector K is the inverse of the vector 7, or
when the K is given by the relation

A.D. JANNUSSIS

k=3 Hxr|= ~A(ry) (49)
and the vectors 1y, T; and H are coplanar.

In the case Iy =T, we obtain the Harper’s opera-
tor (40).

An analytic study of the condition (49) with the
three vectors 7y, r; and H coplanar, has been made
by FisHBECk ! and is just the condition for the
Harper’s operator to form an Abelian group. It can
be shown that the operators (46) and (47) form a
group and do not commute.
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In this paper the Dirac equation for a rectilinear onedimensional periodic potential is treated.
It is shown that the energy eigenvalues are periodic functions of the wave number K; and the con-
tinuous spectrum is split into energy bands. The end points of the energy bands are the points

where the Bragg reflection takes place.

These results are obtained by perturbation theory, as well as by the method of determinants,
since the resulting eigenvalue equation has the form of a determinant which is similar to the Hill

determinant.

1. Introduction

We consider the motion of an electron parallel to
the z-axis in a field that is a function of z only. We
suppose that the vector potential 4 is zero every-
where and that e = — V' (z). The Dirac wave func-
tion may be written in the form:

y=f(x) exp{ (i/k) (Pyy +P3z— Wi, (1)

Substituting this expression into the Dirac equation

we obtain:

, d . W—V(
——lh:lla—‘\‘ . (2)

+agPyot+agPy+agme|f(z) =0

where a;, i=1, 2, 3, 4 are the Dirac matrices and
they satisfy the relations

aa;+ajo;=20;. (3)

The Eq. (2) in scalar function f;(x) has the form:

1 N.MoTT and I. SNEDDON, Wave Mechanics and its Applica-
tions, § 56, Clarendon Press, Oxford 1948.

_ih%;* 11"7:"(1) fa+iPsfy—Pyfs—mcf, =0,
—ih (312 + W*CV(I) [s—=iPsfs+Pyfy—mefy =0,
~iR ((lii: T WiCVm fa+iPyfs—Pyfs+mef, =0,
=~k (ciii: 4 ”A;CV(I) fi—iPyfs+Pyfy+mefy =0.
(4)
If we substitute the expressions !
fa= i? P2, fhi=01— Pﬁ';—mc(ﬁzs (5)
fs=— 'l;;x'gﬁza fa=@1+ P2+,émc7”2
where K2=P2+ P2+ m?c2. (6)

We obtain the folowing linear system of differential
equations for the functions ¢; and ¢,

dgy , i W—V(@® K

i TR e '/«175%20 (7)
dpy _ i W—VGE K
&z Rk ¢ PetHph=



