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In this paper we introduce two new “magnetic” operators and we show that these are the cre­
ation and annihilation operators of the schrauben functions. The schrauben functions are the eigen­
functions of the Hamilton operator describing a free electron under the action of a uniform mag­
netic field. By transforming these two operators we obtain two other operators which we show to be 
of Harpers type, as was expected.

1. Introduction

For the study of special functions occuring in 
mathematical physics several methods have been 
used, especially their integral expressions and tech­
niques from the theory of analytic functions.

Recently K a u fm a n  1 applied the Lie algebra (or 
Lie group) for the study of the special functions. 
By this way the addition theorems are obtained in 
an extremely simple way: many of the expansion 
theorems are then derived from the addition theo­
rems.

Each Lie group is characterized by an infinitesi­
mal transformation2. The basic idea of the Lie 
group is that from an infinitesimal operator M, 
which shifts the point S =  ( x , y , . . . )  to a neigh­
boring point one may generate a finite operator 
exp a M which shifts the point S into a point S' at 
a finite distance along the path curve of the one- 
parameter group exp a M.

The application of the same operator to a func­
tion of the coordinates F(S)  yields:

exp a M F (S) =  F (S') =  F (exp a M S ) . (1)

According to K a u fm a n  we consider those infini­
tesimal differential operators which appear in the re­
cursion relations for the various special functions, 
and generate from them finite operators. Any pair 
of recursion relations for the special functions may 
be rewritten in the form

R Fn =  Pn Fn +!
L F n =  XnFn_i (2)

where R and L are differential operators and are 
called raising (creation) and lowering (annihilation)

1 B. K a u f m a n , J. Math. Physics 7, 447 [1966].

operators for the index n respectively and Pn , /„ 
are constants.

From the relations (2) one easily obtains
Dm v  _ p  p  p  r

1 n r  n r  n+1 • • • r n + m - 1  r  n + m i
f  m v  _ 2 3  ; r
Lj I n /ln A n _ 1 . . . A n _ m  + 1 r n _ m  .

The application of the operators exp a R, exp a L 
to the functions Fn(S) yields:

oo m
exp a R-Frl(S) =  2  ° (Pn Pn + i • •. Pn + m-i)

m = 0 m '

-Fn + m(S),  (3)
oo m

exp a L Fn (S) =  , (Xn Xn_ j . . .  hn _ m + )̂
m = o  m  ■

'Fn-m(S).
These series may or may not terminate, depending 
on the particular values of Pn , / ra .

The combination of Eqs. (1) and (3) yields two 
useful relations, one due to the operator R:

Fn (exp a R S) = Fn (S')
am

=  I  . PnPn + l • ■■Pn + m- 1 Fn + m(S) 
»1=0  m -

and a similar one due to the operator L 

Fn (exp a LS)  = F n(S")
^  a’» „ „
2  I -1 • • • Xn _ m + i Fn _ „ j (5)

771 =  0 '

Further, we can try to combine R and L e. g. in 
the form exp (a R + b L ) . Now, if R and L commute
i. e.

[ R , L ] = R L - L R  =  0 (6)
we have

exp a R'exp b L =  exp (a R + b L) (7)

When [R, L] 4= 0 Eqs. (7) does not hold.

2 H. R a m p a c h e r . H. S t u m p f , and F. W a g n e r , Fortschritte 
der Physik 13, 385 [1965].
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The set of such operators which is closed under 
commutation constitutes the Lie algebra generated 
by R, L. Any member M of the algebra generates a 
finite operator exp a M ; the products of these gener­
ate the Lie group corresponding to this Lie algebra.

K a u f m a n  1 applied the above theory to the spe­
cial functions and especially to the Bessel functions, 
Hermite polynomials, Gegenbauer polynomials and 
Legendre polynomials.

For the study of Bessel functions the appropriate 
raising and lowering operators are (expressed in 
polar coordinates) :

the form:

R = ei<p 

L = e“ i# 4 - + - (8)

From the above definition we easily obtain the re­
lations:

R[ein<p Jn{r) ] = e(»+1)!>-/„ + i(r)
L[e incp Jn{r) ] i(r) (9)

where /„(r) are the Bessel functions which the fol­
lowing differential equation fulfil.

“-  +  -1- dr* r Jn(r) = 0 . (10)

Expressed in Cartesian coordinates the operators 
(8) become

(11)
R -  -  3-  - ;  ~  

Bx 1 dy ’

In this paper we define two new operators R and L, 
more general than operator (8), by the relations

~  3 . d B .  . .  D B . . .
R =  3x ~ l d v +  t  (x + i y ^ = ~ R + ~2 (x + i y>*

(12)

~L =  ^  ( * - * » ) •  

It will be shown later that the operators R and L 
satisfy Eqs. (2) where Fn(S) are the so called 
Schrauben functions 3.

2. Schrauben Functions and their Properties

It has been shown by J a n n u s s is 3 that for a free 
electron moving in a homogeneous magnetic field 
it is more convenient to take the eigenfunctions in

B /  2 V* 1
• " ( r )  =  \  2 x \ B )  n! (13)

• exp ( -  J  ( K J  + V )  + i ( K ,  !•)) ( - K , - i K , ) “

where
K  is the wave vector

K-x — kx -f- _ y , Ky — hy „ x, B — H
(14)

and yJk'n(r)  the schrauben function.
It is assumed here that the magnetic field H is 

parallel to the 2-axis and that the vector potential 
A (r) is given by:

A(r) H x r (15)

All the formulas are referred to atomic units h =  1, 
m =  1, e =  1. It can be easily verified that the func­
tions (13) are with centers

B B
(16)

and the schrauben functions take the following sym­
metric form:

V’k,n(r, rm) ( y T ~ r  [ (*-*»») - i { x - y m ) Y  

-exP{“ T [(x~ xm)2+ (y-ym)2\ (17) 

+ i y  (*my-xym) +ikzz j .

It has been shown 4 that in case rm is a point of a 
plane lattice then the eigenfunctions (17) are the 
Wannier functions an(r) of a free electron moving 
in a homogeneous magnetic field.

It is interesting to note that the operators (12) 
appear in the Dirac equation describing the behav­
iour of an electron in a homogeneous magnetic field 
H and when the magnetic field vanishes there re­
main the operators (11).

It can be shown the following relations:

Ryk , n( r ) =  V^Bnxp u^n-dr) ,  (18)

Lrpk,n(r) =  - V 2 B ( n  +  l )  v>*.»»+i (r ) .  

From the above relations and n =  0 follows: 

R y k ,o ( r )  =  0 ,

l y k . o i r )  =  - \ / 2 B  w k , 0{r ) .  (19)

3 A. J a n n u s s i s ,  Phys. Stat. Sol. 6 , 217 [1964]. 4 A. J a n n u s s i s , Z. Naturforsch. 2 1  a, 1577 [1966].
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By applying (n — 1) times the operator L to the 
second of the above equations we obtain:

(_ !)«
V’k.n(r) = \ / (2 B ) n n\  V * .o(r ) - (2 ° )

Consequently, we can derive all the eigenfunctions 
be repeated application of the operator L 

to the basic one V*,o ( f ) .
The eigenvalues corresponding to the eigenfunc­

tions (13) are the Landau 6 ones

En = B ( n +  I) +  \  k 2. (21)

3. Some Properties of the Operators R  and L

Using the definition (12) of the operators R and 
L we obtain:

R L  =  -  R L +  ~  R(x  — i y)

L R = - L R
B

B-(x +  i y )  L -  —  (x2 +  y~),

2 L(x +  i y )  

f  ( x - i y )  R -  (x2 +  y 2).

(2 2 )

Subtracting the above equations and taking into ac­
count that the operators R and L commute we ob­
tain:

R L - L R = - I B .

Furthermore, from Eq. (22) we obtain:

d ?  32 , 32 I -u(  3 3 \ s 2 , 2 , 2X 
R L ~  dx 2 + By2 +  \y  dx  X d y )  4

32 32 . „I  3 3 \ B2
L R +  -^72+i B \ y ^ ~ xd x 2 3  y

From the relations (26) and (27) we obtain

RLy.'k,n( r ) = 2  B mpk>n(r) ,
L Ry-'k,„{r) = 2 5 ( n  +  l )  v* ,„ (r ). (28) 

From the above results it can easily be shown:

R L - R y k , n(r) = 2  B(n — l )  Rxfk>n( r ) , 

R L ~ L v k . n(r) = 2 B { n  +  l ) L y k , n(r ) .  (29)

We conclude now that if y^ktn(‘r ) is an eigenfunc­
tion corresponding to the eigenvalue 2 Bn  then 
R ^ k  ,n (r ) is an eigenfunction corresponding to the 
eigenvalue 2 B ( n  — 1), and L ip k t (v) is an eigen­
function corresponding to the eigenvalue 2 B(n +  !)• 
Similar relations appear in the study of harmonic 
oscillators where we have the corresponding cre­
ation and annihilation operators 2.

To find further properties and for the sake of 
simplicity, we introduce new variables:

V  =  X- xm +  i ( y  -  y m) , V  = x -  xm - i ( y -  y m) , 
zm =  %m +  i ym i zrn =  xm i y m . (30)

Eq. (17) and the operators (12) take now the fol­
lowing form:

V'n (V, V) = |/
B ( B \ *  1

2 jt \ 2 

V n exp

n! (31)

- f  ( V V - V z * m + V z m),

’ L = 2 d V ~  2̂ (V  +  Zm')- 
(32)

The application of the operator exp a L to the func­
tion f/’w (XI, I'’) yields:

3 y (x2 + y 2) + B  T n i  m  a'n t> p  4 y expaL- ipn(TA,V) =  ^Pn ---Pn
(24)

(-1 Vn + m(rU ,V )
m = 0

The Hamilton operator for a two dimensional mo­
tion of an electron in a magnetic field is:

Hn = 2 V3
32
3 y- +  i B \ y 3 y 4~ (.x2 + y 2). 

(25)

From Eqs. (24) and (25) we obtain: 

R L  = 2 H 0 — B,

L R  = 2 H 0 +  B.  (26)

Furthermore, the Schroedinger equation yields: 

H0ii'k.n(r) =£'« V’*.«(r ) = B(n +  \ )  ipk,n{r ) .  (27)

5 A. J a n n u s s i s ,  Z. Physik 190,129 [1965].

exp a L • xpn (II, V)  = exp{ — a B V }  if>n(XI, V ) . (33)

Eq. (33) can be verified and by the following pro­
cedure:

exp a L ■ ipn (XI, V)  = exp |2  a — —  (V +  z*) |

Wn (Xf, V)  = exp -  - y  (V + z*)

• yjn (XI +  2 a, V)  = exp{ — a B V }  • yjn (XI, V ) . 

Proceeding in a similar way we have

expaR-y jn(U, V)  = (l + -^rj 'y.’n(Xl ,T) .  (34)

6 L . L a n d a u ,  Z. Physik 64, 629 [1930].
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We define now two new operators L0 and R0 as fol­
lows :

1 m 3 • BL „ -  2 (L + R) =  3 i + i  2  V , (35)

« . - y d - « )

These two operators satisfy the following relations 

[L0 , R0] =  i B , (36)

^0 V’ i 2/;w)

=  y  y  (j/ra v » - l -  V» +  l  Vn + l)»

#0 V>n(x,y»xm,ym)  (37)

=  f  Wn -1 +  Vrt +  1 Wn + l) •

Consider now the conjugate operators L0*, R0*

r * 3 • S n * 3 • B
0 _  3x ~  1 2 y  ’ 0 _  3y + 1 2 * •

The following pair of formulas can be obtained:

exp a L0* • \pn{x, y,  xm , y tn) =  exp j -  i ~  y  + a ~ J

• Vn ix, y,  x,n, y m) =  exp |  -  i y  J 

' Ifn (x , y> %m ? 2/m) (38)

exp a R0* ■ V’« (x, y,  xm, y m) =  exp { i ^  a;J

• V w fo y +  «»*»»> y»«)-
Taking into account that the eigenfunctions (17) 
satisfy the Harper symmetric condition 7 we finally 
obtain:

exp a L0* • y ’k (*, y,  xm, y m) =  exp j -  i ~  y m j

if>„{x,y,xm- a , y m),  (39) 

exp a R0* ■ xpn (x, y,  xm, y m) =  exp j i B °L xm |
Wn (*, y, , y,n ~  a) •

The operators exp a L0* and exp a R0* are thus of 
the H arp er 7 type.

4. The Harper Operators and their Properties

The Hamilton operator of a lattice electron mov­
ing in a homogeneous magnetic field does not com­
mute with the translation operator, but Harper '

7 P. H a r p e r , Proc. Phys. Soc. London A 68, 879 [1955].
8 W. Kohn, Phys. Rev. 115, 1460 [1959],
9 L. Roth, J. Phys. Chem. Solids 23, 433 [1962].

10 G. W a n n i e r  and D. F r e d k i n , Phys. Rev. 125, 1910 [1962].

was able to show that there is a set of so called 
“Eichtranslationen” (or Harper operators) which 
commute with this Hamilton operator and have the 
following form:

C ( r 0) = ex p  j ( A ( r 0), r) ] T f 0 . (40)

T r„ is the translation operator

Tr , f ( r0) = f ( r  +  r 0) (41)

and A ( r 0) is the vector potential at the point f*0 . 
From the definition (40) follows at once

exp a L0* = C (a, 0, 0 ),
exp a R0* =  C (0, a, 0 ) .  (42)

Moreover, we can easily verify the commutation rule

[C (r0) C ( r ,) - C ( r j )  C (r0)]

=  2 is in  y  (yiX0 - x 1y 0) -Ciro +  r j ) .

In case the vectors l*0 , and the magnetic field are 
coplanar then the Harper operators form an Abelian 
group and the relation (43) gives at once

Y  ( y i x 0 - x i y 0) = n  I.  (44)

Formula (44) expresses the quantization of the 
magnetic field.

It will be shown now that the operators Tr« and 
exp{ — ijc (A (r 0) , 1*)} commute. Indeed, by using 
the definition (41) and the fact that (A (r 0) , r 0) =  0 
we obtain

Tr. -exp j - - f ( A ( r 0) ,r )}  •/(!•) <45>

= e x p j - i ( A ( r „ ) , r ) |  -Tr . f ( r ) .

There now exists an extensive literature devoted to 
the properties of the Harper operators (see Ko hn  8, 
Ro t h 9, Wan n ier-Fredkin  10, Bl o u n t 11, Fish- 
beck 12 and Zak 13) .

5. G eneralized  H arpers O perators

We define two new operators Ck ( r 0) and Ck (l*0) 
as follows:

Ck (r0) = e x p { - i ( k , r ) } - T r 0, (46) 

Ck (r0) =  Tr0 exp{ -  i ( k ,  r ) }. (47)

11 E. B l o u n t , Phys. Rev. 126, 1636 [1962].
12 H. F i s h b e c k , Phys. Stat. Sol. 3, 1082, 2399 [1963].
13 J. Z a k . Phys. Rev. 139. 1159 [1965].
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From the above relations, we easily obtain

Ck (r0) = exp { - i ( k ,  r 0) } -Ck  (r0). (48)

In case the scalar product (k, r0) is an integral mul­
tiple of 2 7i, then the operators Ck (r0) and Ck (r0) 
are equal and hence the operators exp{ — i(k,  r) } 
and T r.commute.

The scalar product (k , r ) vanishes when the 
wave vector k  is the inverse of the vector r0 or 
when the k  is given by the relation

k= i \ H x r 1\= —Ai^)  (49)

and the vectors r0, r1 and H are coplanar.
In the case Yx = r0 we obtain the Harper’s opera­

tor (40).
An analytic study of the condition (49) with the 

three vectors Y0 , and H coplanar, has been made 
by F is h b e c k 12 and is just the condition for the 
Harper’s operator to form an Abelian group. It can 
be shown that the operators (46) and (47) form a 
group and do not commute.
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In this paper the Dirac equation for a rectilinear onedimensional periodic potential is treated.
It is shown that the energy eigenvalues are periodic functions of the wave number K x and the con­
tinuous spectrum is split into energy bands. The end points of the energy bands are the points 
where the Bragg reflection takes place.

These results are obtained by perturbation theory, as well as by the method of determinants, 
since the resulting eigenvalue equation has the form of a determinant which is similar to the Hill 
determinant.

1. Introduction

We consider the motion of an electron parallel to 
the x-axis in a field that is a function of x only. We 
suppose that the vector potential A is zero every­
where and that e cp  = - V ( x ) . The Dirac wave func­
tion may be written in the form:

xp =  j(x)  exp{ (i/h) (P2y  +  P3z - W  t ) }  . (1)

Substituting this expression into the Dirac equation 
we obtain:

d , W ' - V ( x )  
i h a  j — + (2 ) 

/ ( * ) =  o
dx c

+ a2 P.2 +  a3 P3 +  a4 m c

where a; , i = 1, 2, 3, 4 are the Dirac matrices and 
they satisfy the relations

3j oij +  a} cii =  2 di j . (3)

The Eq. (2) in scalar function fi(x) has the form:

1 N. M o t t  and I. S n e d d o n , Wave Mechanics and its Applica­
tions, § 56, Clarendon Press, Oxford 1948.

dA W — V (x)— i n
dx ‘ c

— i h
d/2
dx +

r - F ( x )
c

• 0- W — V (x)— i n
dx +

c

— i h
d/4
dx +

W - V ( x )
c

/ 4 +  i P2 /i -  P3 / s -  m c / 4 = 0 , 

fa ~ i p -2 f-i + f i - m c  f3 =  0 ,

/i  — i P2 fi +  P3 f3 +  m c f i — 0 .

(4)

If we substitute the expressions 1

, i Po . m c
f i — K V 2 ’ f l  =  (P x~  £  992 ’ ( 5 )

, i P , , P 2 +  i m c
/ 3 =  -  K ¥2 ’ fi =  < P l + ---- K <P2

where (6)
We obtain the folowing linear system of differential 
equations for the functions cpx and cp2

d ^  , i W—V(x) K~ ^ + K — ~ 1’ i + h 'P2 =  0  ( 7 )

do?2 1 Wr— V(x) K  „
i t — c— h ^ = °


