NOTIZEN 967

	Symbol	Relative Häufigkeit bei Massenzahl A					
		A=40	A = 42	A = 43	A=44	A=46	A = 48
Normales (terrestisches) Ca Rein kosmogenes Spallations-Ca * Gemessene Werte für meteorit. Ca Berechneter Prozentsatz an kosmogenem Ca in meteorit. Ca	$({}^{A}\text{Ca}/{}^{44}\text{Ca})_{n}$ $({}^{A}\text{Ca}/{}^{44}\text{Ca})_{k}$ $({}^{A}\text{Ca}/{}^{44}\text{Ca})_{m}$ $({}^{A}\text{Ca}_{k}/{}^{A}\text{Ca})_{m}$	47,0 0,048 (64,3) **	0,310 0,955 0,425 40%	0,070 0,960 0,250 78%	1,00 1,00 1,00 18%	0,0016 0,014 0,007 87%	0,090 0,0006 — —

^{*} Berechnet aus den von Barr ¹¹ angegebenen Produktionsquerschnitten bei Spallation von Cu durch 5,7 GeV-Protonen. ** Enthält auch kosmogenes ⁴⁶K.

Tab. 1. Relative Isotopenhäufigkeiten in terrestrischem, in reinem Spallations- und in meteoritischem Calcium [bezogen auf $H(^{44}Ca) = 1$] sowie hieraus berechnete Anteile von kosmogenem Calcium im meteoritischen Calcium.

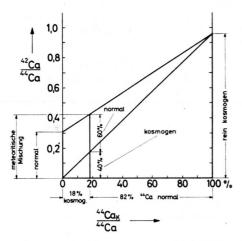


Abb. 4. Graphische Bestimmung der Anteile von kosmogenem ⁴²Ca und ⁴⁴Ca in ⁴²Ca und ⁴⁴Ca der meteoritischen Mischung von normalem und kosmogenem Calcium.

Werte von 40%, 78% bzw. 87% (siehe letzte Zeile der Tab. 1). Abb. 4 zeigt als Beispiel ein graphisches Verfahren zur Bestimmung der kosmogenen und normalen

Anteile von ⁴²Ca und ⁴⁴Ca in der meteoritischen Mischung der beiden Komponenten.

in Tab. 1 eingetragenen Bezeichnungsweise ergibt sich der kosmogene Anteil des meteoritischen ⁴⁴Ca mittels jeder der Gleichungen

$$\frac{\binom{44\text{Ca}_k}{4^4\text{Ca}}}{\binom{44\text{Ca}_k}{4^4\text{Ca}}} = \frac{(A\text{Ca}/4^4\text{Ca})_m - (A\text{Ca}/4^4\text{Ca})_n}{(A\text{Ca}/4^4\text{Ca})_k - (A\text{Ca}/4^4\text{Ca})_n}, \quad A = 42 \text{ oder } 43$$

zu etwa 18%. Für die kosmogenen Anteile der meteoritischen Calciumisotope ⁴²Ca, ⁴³Ca und ⁴⁶Ca erhält man mittels der 3 Gleichungen

$$\left(\frac{^{A}\text{Ca}_{k}}{^{44}\text{Ca}}\right)_{m} = \frac{(^{A}\text{Ca}/^{44}\text{Ca})_{m} - (^{A}\text{Ca}/^{44}\text{Ca})_{n}}{(^{A}\text{Ca}/^{44}\text{Ca})_{k} - (^{A}\text{Ca}/^{44}\text{Ca})_{n}} \cdot \frac{(^{A}\text{Ca}/^{44}\text{Ca})_{k}}{(^{A}\text{Ca}/^{44}\text{Ca})_{m}},$$

$$A = 42, 43, 46,$$

Für seine Hilfe bei der Durchführung der Untersuchungen danken wir Herrn N. Antoni. Die Proben des Meteoriten Trenton verdanken wir Herrn Dr. E. P. Henderson, Smithsonian Institution, Washington. Das Bundesministerium für wissenschaftliche Forschung hat die Untersuchung durch Bereitstellung von Sachmitteln unterstützt.

Infrarotspektren von Ammonium- und Thallium(I)pertechnat ^{1, 2}

ACHIM MÜLLER und BERNT KREBS

Anorganisch-Chemisches Institut der Universität Göttingen (Z. Naturforschg. 20 a. 967—968 [1965]; eingegangen am 26. Mai 1965)

Es wurden IR-Festkörperspektren von kristallinem $\mathrm{NH_4TcO_4}^3$ und $\mathrm{TlTcO_4}$ im Bereich zwischen 4000 und 300 cm $^{-1}$ gemessen (Nujol-Suspensionen und KBr-Preßlinge). Die Absorptionsmaxima sind in Tab. 1 zusammengefaßt.

¹ IV. Mitteilung über "Schwingungsspektroskopische Untersuchungen anorganischer Festkörper"; I. Mitteilung: B. Krebs, G. Gattow u. A. Müller, Z. anorg. allg. Chem. (im Druck); II. Mitteilung: A. Müller, Z. Naturforschg. (im Druck); III. Mitteilung: G. Gattow, A. Franke u. A. Müller, Naturwiss. (im Druck).

² Vgl. hierzu das während unserer Untersuchungen publizierte Raman-Spektrum von KTcO₄ und des TcO₄-Ions: R. H. Busey u. O. L. Keller, J. Chem. Phys. 41, 215 [1964].

Die Normalschwingungen des isolierten tetraedrischen $\mathrm{TcO_4}^-$ -Ions lassen sich nach den irreduziblen Darstellungen der Punktgruppe $\mathrm{T_d}: \varGamma_{\mathrm{schw.}} = \mathrm{A_1} + \mathrm{E} + 2~\mathrm{F_2}$ klassifizieren. Als Site-Symmetrie des $\mathrm{TcO_4}$ ergibt sich für das $\mathrm{NH_4TcO_4}$ (Raumgruppe $\mathrm{C_{ah}^6}^4$) $\mathrm{S_4}$ und für das $\mathrm{TlTcO_4}$ (Raumgruppe wahrscheinlich $\mathrm{D_{2h}^{16}}^5$) $\mathrm{C_8}$. Die Korrelation zwischen den irreduziblen Darstellungen 6 der betreffenden Punktgruppen und die sich daraus ergebenden Auswahlregeln gehen aus $\mathrm{Tab.2}$ hervor. Nach Busey und Keller 2 fallen $\nu_1(\mathrm{A_1})$ und $\nu_3(\mathrm{F_2})$ für das $\mathrm{TcO_4}^-$ -Ion in Lösung zusammen, weil die im Bereich der $\mathrm{TcO-Valenzschwingung}$ liegende intensivste

 3 NH₄TcO₄ ($^{99}{\rm Tc}$) der Fa. Buchler, Braunschweig, mit weniger als 0.4% Re; das TlTcO₄ wurde aus NH₄TcO₄ mit TlNO₃ in wäßriger Lösung dargestellt.

B. J. McDonald u. G. J. Tyson, Acta Cryst. 15, 87 [1962].

⁵ C. Keller u. B. Kanellakopulos, Radiochim. Acta 1, 107 [1963].

⁶ E. B. Wilson, J. C. Decius u. P. C. Cross, Molecular Vibrations, McGraw-Hill, New York 1955.

NH_4TcO_4	TlTcO4			
cm ⁻¹	cm ⁻¹			
925 (Sch)	918 (Sch)			
900 (st) v_3	$\frac{905 (Sch)}{880 (st)} $ ν_{s}			
840 (s) **	840 (st) **			
$348 (m) v_{5}$				
329 (st)	332 (st)			
$317 (st) \int_{0.7}^{7.4}$	$327 \text{ (st)} \nu_4$			
3200 (st)	322 (st)			
1790 (s) *				
1410 (st)				
1390 (st) ∫				

Tab. 1. Absorptionsschwingungsfrequenzen von $\mathrm{NH_4TcO_4}$ und $\mathrm{TlTcO_4}$ im Bereich zwischen 4000 und 300 cm $^{-1}$; Sch: Schulter; *: wahrscheinlich Kombination von v_4 (des $\mathrm{NH_4^+}$) mit Gitterschwingung; **: wahrscheinlich Kombination von innerer Schwingung des $\mathrm{TcO_4^-}$ mit Gitterschwingung gung.

Linie $\nu_1(A_1)$ im Raman-Spektrum depolarisiert ist; $\nu_2(E)$ soll nach Angaben der Autoren wegen zu geringer Intensität nicht beobachtbar sein. Wahrscheinlich sind aber auch ν_2 und ν_4 näherungsweise zufällig entartet (ebenso beim $WO_4^{2^-}$, ReO_4^- und OsO_4^- 7), wie aus einer einfachen Rechnung auf der Basis des einfachen Valenzkraftmodells unter der Annahme $\nu_1 = \nu_3^-$ folgt. Nach Lösung der Säkulargleichungen erhält man nämlich für das Verhältnis der Frequenzen 8

$$v_3 v_4/v_1 v_2 = [0.667 (1 + 4 m_0/m_{Tc})]^{1/2}$$

und damit (mit $v_1 = v_3$)

$$u^2/
u^4 pprox 1$$
 .

Hieraus ergibt sich auch die Schwierigkeit der Zuordnung der beobachteten Absorptionsbanden des NH₄TcO₄ und TlTcO₄ im Bereich der TcO-Deformationsschwingungen, wobei für das NH₄TcO₄ nach der

$T_{ m d}$	S ₄	C_{s}
	$\begin{array}{l} A(R) \\ A(R) + B(R + IR) \\ B(R + IR) + E(R + IR) \\ B(R + IR) + E(R + IR) \end{array}$	

Tab. 2. Korrelation zwischen den irreduziblen Darstellungen der Punktgruppen T_d , S_4 und C_8 .

Site-Symmetrie S_4 3 Banden $(2\,B+E)$, für das $TlTcO_4$ gemäß C_s 5 Absorptionsbanden $(3\,A'+2\,A'')$ möglich sind. Die entartete TcO-Valenzschwingung $v_3(F_2)$ des isolierten Ions erscheint beim $TlTcO_4$ dreifach und beim NH_4TcO_4 zweifach aufgespalten (nur schwach als Schulter zu erkennen); die symmetrische Valenzschwingung, die für T_d und S_4 verboten ist, wird auch beim $TlTcO_4$ (C_s) nicht beobachtet. Entsprechend den Auswahlregeln der Site-Symmetrie $(Tab.\ 2)$ spaltet die Deformationsschwingung $v_3(F_2)$ zweifach bzw. dreifach auf. Die für das tetraedrische TcO_4^- im IR verbotene Deformationsschwingung $v_2(E)$ tritt sowohl beim $TlTcO_4$ als auch beim NH_4TcO_4 auf, wobei jedoch eine nach der Site-Symmetrie mögliche Aufspaltung beim $TlTcO_4$ nicht erfolgt.

Auf die inneren Schwingungen des $\mathrm{NH_4}^+$ im $\mathrm{NH_4TcO_4}$ (Site-Symmetrie $\mathrm{S_4}$) soll hier nicht näher eingegangen werden 9 . Eine Zuordnung bei Quasi-Tetraedersymmetrie ergibt 3200 cm $^{-1}$: $\nu_3(\mathrm{F_2})$, 1410-1390 cm $^{-1}$: $\nu_4(\mathrm{F_2})$.

Herrn Professor Dr. O. Glemser danken wir sehr für sein Interesse und großzügige Unterstützung der Arbeit.

Zur Bestimmung des Soret-Koeffizienten durch direkte Messung

H. Korsching

Max-Planck-Institut für Physik und Astrophysik, München (Z. Naturforschg. **20 a**, 968—969 [1965]; eingegangen am 22. Juni 1965)

Bei der Ermittlung von Thermodiffusionskoeffizienten in Flüssigkeiten beeinflussen systematische Fehler, hervorgerufen durch Ungleichmäßigkeiten des Temperaturgradienten, die Meßgenauigkeit. Vor einiger Zeit ¹ ist eine Meßzelle zur Bestimmung von Soret-Koeffizienten nach der optischen Methode angegeben worden, die durch die Schmalheit (0,3 mm) des streifenförmigen Meßvolumens störende Strömungen sehr stark unterdrückte. Im Gegensatz zu anderen Versuchen ², diese Störungen nach Möglichkeit zu vermeiden, liegt hier der Meßspalt in Richtung des Temperaturgradienten

und kann, soweit es die Lichtstärke zuläßt, auch enger gemacht werden.

In Abb. 1 sind Längsschnitt, Querschnitt und ein optisches Fenster mit Hilfsstück der neuen Meßapparatur wiedergegeben. Die eigentliche Meßzelle besteht aus einem V2A-Block, der durch elektronische Schweißung aus zwei mit flachen Rinnen versehenen Hälften erhalten ist, so daß in der Mitte das streifenförmige Meßvolumen S entsteht. Oben und unten fließt durch einen mit Araldit befestigten Teil, den V2A-Block tangential berührend, heißes bzw. kaltes Thermostatenwasser W vorbei, so daß im Metallblock ein konstanter Temperaturgradient aufrechterhalten wird. Da beim Durchfließen des Wassers etwas Wärme verbraucht wird, entsteht auch bei sehr schneller Strömung eine kleine Ungleichmäßigkeit im Temperaturgradienten. Diese Störung wird dadurch völlig kompensiert, daß der Metallblock in der Strömungsrichtung passend ab-

⁷ L. A. Woodward u. H. L. Roberts, Trans. Faraday Soc. 52, 615 [1956].

⁸ G. Herzberg, Infrared and Raman Spectra, Van Nostrand, New York 1945.

⁹ Eine ausführliche Publikation über infrarotspektroskopische Untersuchungen verschiedener Ammoniumsalze erscheint an anderer Stelle.

¹ H. Korsching, Z. Naturforschg. 10 a, 242 [1955].

² L. Guczi u. H. J. V. Tyrrell, J. Sci. Instr. 41, 468 [1964].