Ergebnisse der Tieftemperaturforschung XXXVIII Atom- und Elektronenwärme des Chroms zwischen 14°K und 273°K¹

Von K. Clusius und P. Franzosini

Aus dem Physikalisch-Chemischen Institut der Universität Zürich (Z. Naturforschg. 17 a, 522-525 [1962]; eingegangen am 30. April 1962)

Die Atom- und Elektronenwärme von reinem duktilen Chrom wird zwischen 14 und 273 °K gemessen und seine Normalentropie bei 25 °C zu 5,64 Clausius bestimmt. Der Koeffizient γ der Elektronenwärme ergibt sich bei tiefen Temperaturen zu 3,6·10⁻⁴ cal/Grad²·g-Atom in Übereinstimmung mit Beobachtungen anderer Autoren; die Debyesche charakteristische Temperatur beläuft sich dabei auf 580°. Oberhalb von 100 °K läßt sich der Verlauf von C_v durch einen γ -Wert von 13.8·10⁻⁴ cal/Grad²·g-Atom und eine Debyesche charakteristische Temperatur von (493 ± 6) ° darstellen. Die verschiedentlich diskutierte Schwierigkeit, daß Chrom für ein Übergangselement bei tiefen Temperaturen eine anomal niedrige Elektronenwärme hat, etwa im Vergleich zum benachbarten Vanadin mit einem nahezu unabhängigen Wert von $16\cdot 10^{-4}\,T\,$ cal/Grad·g-Atom, besteht also oberhalb von 100 °K nicht mehr. Sollte der kleine γ-Wert durch Antiferromagnetismus zustande kommen, so müßte diese Eigenschaft jedenfalls oberhalb von 100 °K verschwinden.

- 1. Es bot sich die Gelegenheit, die Atomwärme eines im Vakuum erschmolzenen Stabes aus reinstem Elektrolytchrom (99,9% Cr) zu bestimmen. Der Verlauf der Elektronenwärme dieses Metalls ist im Bereiche tiefer und tiefster Temperaturen mehrfach gemessen worden, so daß der Versuch lohnend und notwendig erscheint, unter Anschluß an diese Messungen das Verhalten der Elektronenwärme auch bei höheren Temperaturen zu überprüfen. Dazu diente die früher entwickelte Auswertung der Meßdaten 2. Wir gingen dabei von der Überlegung aus, daß es wünschenswert ist, an ein und demselben Material über einen möglichst großen Temperaturbereich die Atomwärme zu messen, was früher nicht geschehen ist.
- 2. Der Chromstab erwies sich als völlig duktil und konnte ohne Schwierigkeit auf der Drehbank zu einem 45 mm langen Zylinder von 20 mm Durchmesser geformt werden. Er wurde mit einer Nut zur Aufnahme des 0,05 mm starken Konstantandrahtes von 384 Ω Widerstand bei 0 °C für die Zufuhr der elektrischen Energie versehen, über den durch dünnstes Seidenpapier isoliert ein 0,08 mm dickes Bleiwiderstandsthermometer gewickelt war. Dessen 0 °C-Widerstand von 560 Ω wurde laufend überwacht und seine Anzei-

gen wurden mit O2- und H2-Dampfdruckthermometern sorgfältig geeicht.

3. Die Normalentropie des Chroms bei 25 °C wurde graphisch gefunden zu

 (5.64 ± 0.03) Clausius.

Travis Anderson 3 hat sie zu (5.68 ± 0.05) Clausius angegeben und leitete diesen Wert aus Messungen der Atomwärme zwischen 56 und 291 °K ab. Sein Ergebnis stimmt mit dem unsrigen bis auf 0,7% überein, wie auch seine C_p -Werte von uns gut bestätigt werden; Abb. 2 gibt davon eine Vorstellung. Lewis und Gibson 4 hatten die Entropie auf Grund einer Abschätzung zu 5,70 Clausius veranschlagt.

4. Um die gemessenen Werte für die Atomwärme konstanten Drucks C_p auf die Atomwärme konstanten Volumens C_v umzurechnen, wurden folgende Daten benützt:

Dichte 5 g·cm⁻³ 7,138, Kompressibilität ⁶ β bei 25 °C cm²/kg $6.12 \cdot 10^{-7}$ Linearer Ausdehnungskoeffizient 7 bei 25 °C/Grad $4.99 \cdot 10^{-6}$ Atomgewicht 8 52,01.

¹ Letzte Veröffentlichung über Atom- und Elektronenwärme (Vanadin und Niob): Z. Naturforschg. 15 a, 728 [1960].

² K. Clusius u. H. H. Bühler, Z. Naturforschg. 10 a, 930

³ C. Travis Anderson, J. Amer. Chem. Soc. 59, 488 [1937]. Messungen in der Nähe von 0 °C s. bei H. Schimpff, Z. phys. Chem. 71, 257 [1910] u. R. LAEMMEL, Ann. Phys., Lpz. (4) 16, 551 [1905].

⁴ G. N. Lewis u. G. E. Gibson, J. Amer. Chem. Soc. 39, 2554

⁵ G. F. Hüttig u. F. Brodkorb, Z. anorg. allg. Chem. 144,

P. W. Bridgman, Proc. Amer. Acad. Sci. 68, 27 [1933].

⁷ H. D. Erfling, Ann. Phys., Lpz. 34, 136 [1939].

Das Atomgewicht 52,01 von 1955 ist auf O=16,0000 bezogen. Der 0,02% betragende Unterschied gegen das mit $^{12}C = 12,0000$ berechnete neueste Atomgewicht 51,9994 ist für die Ergebnisse bedeutungslos.

Man erhält damit für 25 °C

Man erhalt damit für 25 °C
$$C_p - C_v = \frac{(3 \cdot 4.99 \cdot 10^{-6})^2 \cdot 52.01 \cdot 298.16}{6.12 \cdot 10^{-7} \cdot 7.138 \cdot 42.69}$$

$$= 0.0186 \text{ cal/g-Atom}^{\circ}.$$

Dieser Betrag für $C_n - C_v$ ist bemerkenswert klein und erklärt sich aus der Eigentümlichkeit des Chroms, eine relativ große Kompressibilität neben einem verhältnismäßig kleinen Ausdehnungskoeffizienten zu besitzen. Die auffällige Verminderung der Differenz der Molwärmen wird weiter durch den Umstand begünstigt, daß Chrom zu den wenigen Metallen gehört, die bereits bei Zimmertemperatur mit 5,6 cal/g-Atom° den klassischen Wert der Dulong-Petitschen Regel von $C_p \approx 6.2 \text{ cal/g-Atom}^{\circ}$ um 10% unterschreiten, wodurch eine Annäherung von C_p an C_v bewirkt wird.

Setzt man nach NERNST

$$C_p - C_v = A C_p^2 T, \qquad (2)$$

so erhält man mit der aus unseren Messungen für 25 °C folgenden Atomwärme von $C_p = 5.591 \text{ cal/g}$ -Atom^o den Faktor A zu

$$A = \frac{0.0186}{5.591^2 \cdot 298.16} = 2.00 \cdot 10^{-6} \text{ cal}^{-1}. \tag{3}$$

5. Die gemessenen C_p -Werte des Chroms sind in Tab. 1. ausgeglichene Werte in Tab. 2 zusammen mit den Debyeschen charakteristischen Temperaturen für verschiedene Berechnungsarten angegeben. Messungen unterhalb von 14 °K waren wegen der Kleinheit der spezifischen Wärme nicht möglich. Bei dieser Temperatur hatte der Versuchskörper nur noch die Wärmekapazität von 0.025 ml Wasser (d. h. etwa einem halben Bürettentropfen). Der Verlauf der Atomwärme zwischen 14 und 22 °K läßt sich in bekannter Weise in eine Gitterwärme Cg und Elektronenwärme $C_{\rm e}$ zerlegen:

$$C_p \approx C_v = C_g + C_e = 464.5 (T/\Theta)^3 + \gamma T$$
 (4)
= $464.5 (T/580)^3 + 3.6 \cdot 10^{-4} T$.

Abb. 1 zeigt in diesem Temperaturbereich im $C_v/T - T^2$ -Diagramm, wie gut die gemessenen Werte die Beziehung (4) erfüllen.

Von verschiedenen Autoren sind wiederholt Bestimmungen der Elektronenwärme des Chroms vorgenommen worden, weil der Wärmeinhalt des Metalls sich anomal verhält. Bei höheren Temperaturen scheint die Atomwärme verhältnismäßig zu hoch zu liegen, was etwa auf eine abnorm große Elektronen-

Meßreihe	T° abs.	C_p (cal/°)	Meßreihe	T° abs.	$C_p \; (\mathrm{cal}/^\circ)$	Meßreihe	T° abs.	C_p (cal/°)
III/12	14,10	0,0119	1/2	61.80	0,8399	I/25	200,98	4,746
III'/I	14,21	0,0118	III'/26	62,60	0,8765	II/14	203,24	4,828
III/8	14,22	0,0118	I/3	66,33	1,018	II'/2	204,86	4,813
III'/4	14,47	0,0126	III'/27	69,04	1,125	II/15	209,27	4,876
III/16	15,15	0,0139	I/4	73,22	1,295	I/26	209,29	4,863
III/13	16,24	0,0162	1/5	78,94	1,537	II'/16	215,04	4,950
III/9	16,37	0.0167	1/6	84,50	1,759	1/27	215,14	4,952
III/5	16,90	0,0174	I/7	91,66	2,074	II'/4	215,43	4,967
III'/2	17.09	0.0181	1/8	97,21	2,285	II/17	220,44	5,032
III'/17	17,77	0,0195	I/9	102,30	2,469	I/28	220,48	5,035
III/14	18,28	0.0210	I/10	108,74	2,705	II/18	229,44	5,122
III/10	18,64	0.0218	I/11	113,84	2,886	II'/6	230,17	5,128
III'/6	19,47	0,0244	I/12	118,72	3,042	II/19	235,43	5,181
III'/3	19,52	0.0248	I/13	125,16	3,250	II/7	235,76	5,205
III/18	20,01	0,0260	1/14	130,40	3,402	II'/8	240,99	5,269
III/15	20,59	0,0290	I/15	135,38	3,554	II/20	241,01	5,242
III/11	20,77	0,0288	I/16	142,44	3,714	II/21	246,33	5,294
III'/7	21,61	0,0323	1/17	148,21	3,846	II/9	251,41	5,336
III/19	23,18	0,0401	I/18	153,92	4,009	II/22	255,68	5,366
III'/20	27,35	0.0561	I/19	159,48	4,096	II/10	257,50	5,373
III'/21	34,05	0,1252	I/21	173,22	4,342	II/23	261,24	5,461
III'/22	39,28	0,2035	I/22	178,97	4,455	II'/11	263,10	5,402
III/23	44,14	0.2961	1/23	188,46	4,569	$\overline{\mathrm{II}/24}$	267,11	5,446
III'/24	49,75	0,4431	I/24	194,88	4,683	$\overline{11/25}$	272,15	5,457
III/25	56,05	0,6423	II'/I	199,22	4,754	II'/13	274,43	5,472
I/1	56,45	0,6524				,	,	_,_,_

Tab. 1. Atomwärme von Chrom (gemessen wurden 104,9697 g = 2,0183 g-Atome; Atomgewicht 52,01).

T° abs.	$C_{\mathcal{P}}$	$C_p - C_v$	C_{v}	$\Theta(C_v)$	$C_{\mathbf{e}}$	$C_v - C_e$	$\Theta(C_v - C_e)$
10	0,0061	_	0,0061	424	0,0036	0,0025	580
15	0,0135		0,0135	488	0,0054	0,0081	580
20	0.026		0,0260	522	0,0072	0,0188	582
25	0.046	_	0.0460	541	0.0095	0.0365	584
30	0.078		0.078	544	0,011	0.067	572
35	0,137	_	0.137	525	0.019	0,118	553
40	0.218	_	0,218	514	0.029	0.189	539
45	0.320	_	0,320	508	0,040	0.280	531
50	0,449	_	0.449	501	0.052	0.397	524
60	0,775	_	0,775	492	0.083	0.692	514
70	1.163	_	1,163	485	0.097	1.066	504
80	1,580	_	1,580	480	0,110	1,470	498
90	1,997	0.001	1,996	476	0,124	1,872	494
100	2,390	0.001	2,389	474	0.138	2,251	493
110	2,750	0.002	2,748	472	0.152	2,596	492
120	3.082	0.002	3,080	469	0.166	2,914	491
130	3,392	0,003	3,389	465	0.179	3,210	490
140	3,656	0.004	3,652	462	0,193	3,459	490
150	3,894	0,005	3,889	459	0,207	3,682	491
160	4,106	0,005	4,101	456	0,221	3,880	491
170	4,291	0,006	4,285	453	0,235	4,050	492
180	4,453	0,007	4,446	450	0,248	4,198	495
190	4,599	0,008	4,591	446	0,262	4,329	497
200	4,744	0.009	4,733	441	0,276	4,457	497
210	4,885	0.010	4,875	430	0,290	4,585	495
220	5,018	0.011	5,007	418	0,304	4,703	491
230	5,139	0,012	5.127	405	0,317	4,810	487
240	5,242	0,013	5,229	393	0,331	4,898	485
250	5,323	0,014	5,309	384	0,345	4,964	487
260	5,389	0,015	5,374	377	0,359	5,015	491
273,2	5,463	0,016	5,447	369	0,377	5,070	499

Tab. 2. Atomwärme des Chroms in cal/g-Atom $^\circ$ zwischen 10° und $273.2\,^\circ$ K. Die Elektronenwärme wurde unterhalb von $20\,^\circ$ K zu $3.6\cdot10^{-4}\,T$, oberhalb von $60\,^\circ$ K zu $13.8\cdot10^{-4}\,T$ angesetzt und der γ -Wert dazwischen linear interpoliert.

wärme zurückgeführt werden könnte. Auffälligerweise ist jedoch bei tiefen Temperaturen die Elektronenwärme für einen Vertreter der Übergangsmetalle besonders klein. Man sollte einen Wert von

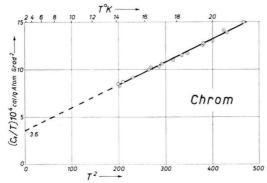


Abb. 1. $C_v/T-T^2$ -Diagramm zwischen 14 und 22 °K zur Festlegung des Koeffizienten $\gamma=3,6\cdot 10^{-4}$ cal/Grad²·g-Atom der Elektronenwärme des Chroms.

⁹ N. M. Wolcott, Bull. Inst. Int. Froid, Annexe 1955, 286. 10 S. A. Friedberg, I. Estermann u. J. E. Goldman, Phys. Rev. etwa 16·10⁻⁴ T cal/Grad·g-Atom erwarten, wie er beim benachbarten Vanadin auftritt, aber nicht einen Wert von $3.6 \cdot 10^{-4} T \text{ cal/Grad} \cdot \text{g-Atom.}$ Indessen stimmen nach Tab. 3 gerade hinsichtlich dieses Betrages praktisch alle Beobachter 9-11 unterhalb von

$\gamma \cdot 10^4 m cal/Grad^2g ext{-}Atom$	$\Theta_{ m g}*$	Temperatur- bereich	Autoren
3,7	585 - 564	$0 \text{ bis } 20^{\circ}\text{K}$	Wolcott ⁹
3,80	418	$1.8 \text{ bis } 4.2^{\circ} \text{ K}$	ESTERMANN, FRIEDBERG, GOLDMAN ¹⁰
3,35	630 ± 30	1,5 bis 4,2°K	RAYNE ¹¹
$\frac{3.6}{13,8}$	$^{580}_{493\pm6}$	$14 \text{ bis } 22^{\circ} \text{K}$ oberhalb 100°K	CLUSIUS, FRANZOSINI (diese Arbeit

Tab. 3. Debyesche charakteristische Temperaturen und y-Faktoren für Chrom.

85, 375, 715 [1952]; J. WEERTMAN, D. BURK U. J. E. GOLD-MAN, Phys. Rev. **86**, 628 [1952].

11 J. A. RAYNE u.R. G. KEMP, Phil. Mag. (8) **1**, 918 [1956].

 $20\,^\circ\mathrm{K}$ weitgehend überein, obwohl die Debyeschen $\Theta\textsc{-Werte}$ ganz erhebliche Unterschiede aufweisen.

6. Es ist jedoch unmöglich, den Verlauf von C_v oberhalb von 100 °K mit den bei tiefen Temperaturen gültigen Θ- und γ-Werten darzustellen. An der C_n-Kurve selbst tritt nach Abb. 2 eine augenfällige Anomalie nicht hervor. Die für die berechneten C_r -Werte sich ergebende Θ-Kurve ist auf Abb. 3 gezeichnet und zeigt das für die Metalle der Übergangselemente charakteristische Verhalten, indem ein Maximum durchlaufen wird 2. Oberhalb von 100 °K ergibt sich ein temperaturunabhängiger Verlauf von Θ nur dann, wenn der γ -Wert auf 13.8·10⁻⁴ erhöht wird. Unter allen Umständen ist aber der G-Wert in diesem Gebiet kleiner als bei den tiefen Temperaturen. Beide Tatsachen deuten darauf hin, daß die Atomwärme schneller ansteigt als gewöhnlich beobachtet wird. Dies steht in Übereinstimmung mit den Beobachtungen älterer Autoren 12. Falls Chrom bei tiefen Temperaturen sich antiferromagnetisch benimmt 13 und das 3 d-Band

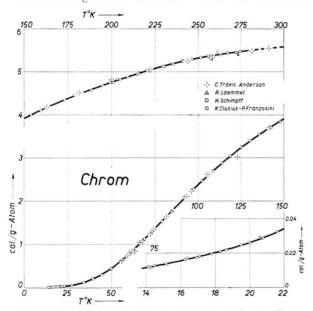
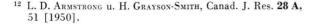



Abb. 2. Verlauf der gemessenen Atomwärme C_p von Chrom zwischen 14 und 273 $^{\circ}$ K; im rechten unteren Feld ist der Bereich von 14 bis 22 $^{\circ}$ K vergrößert dargestellt.



Abb. 3. Die ausgezogene Kurve gibt den Verlauf der Debyschen charakteristischen Temperatur $\Theta=f(C_v)$ wieder, wenn die unmittelbar für C_v beobachteten Werte eingesetzt werden. Die Θ -Werte durchlaufen ein Maximum, wie es für die Metalle der Übergangselemente besonders kennzeichnend ist. Die gestrichelte Kurve zeigt, daß die zur Gitterwärme gehörige charakteristische Temperatur $\Theta_{\mathbf{g}}=f(C_v-C_e)$ oberhalb von 100 °K keine merkliche Temperaturabhängigkeit besitzt, wenn eine Elektronenwärme $C_e=13.8\cdot 10^{-4}\ T$ von C_v abgezogen wird. Unterhalb 22 °K beträgt die Elektronenwärme aber nach Abb. 1 nur $3.6\cdot 10^{-4}\ T$ cal/Grad·g-Atom.

erst zur Hälfte, d. h. mit 5 Elektronen besetzt ist, sollten Übergänge, an denen 3 d-Elektronen beteiligt sind, wegen der notwendigen Spinumkehr erschwert sein. In diesem Fall würde das 3 d-Band aufspalten, wobei die tieferen Zustände voll besetzt sind und die höheren unbesetzt bleiben ¹⁴. Mit diesem Verhalten steht der rasche Anstieg der Atomwärme des Chroms oberhalb von 100 °K in Einklang.

Der Deutschen Forschungsgemeinschaft danken wir für die Überlassung einer Präzisionsmeßbrücke und dem Schweizerischen Nationalfonds für Apparate und finanzielle Mittel zur Durchführung der vorliegenden Untersuchung. Herrn Dr. M. Auwärter und Herrn Dr. O. Winkler von der Balzers AG, Liechtenstein, sind wir für die Herstellung des vakuumgeschmolzenen Chromstabes aus elektrolytisch gewonnenem Material zu vielem Dank verpflichtet. Die bereits 1956 durchgeführten Versuche konnten aus äußeren Gründen erst jetzt vollständig bearbeitet werden, wobei wir Herrn Dr. U. Piesbergen für seine kritische Hilfe bei der Auswertung der Ergebnisse vielmals zu danken haben.

¹³ C. Zener, Phys. Rev. **81**, 440 [1951].

¹⁴ J. C. Slater, Phys. Rev. **82**, 538 [1951].