Ein einfaches Linsensystem für Bandgeneratoren mit veränderlicher Spannung

Von W. Dähnick, H. Neuert und U. Timm

Aus dem Physikalischen Staatsinstitut Hamburg

(Z. Naturforschg. 10a, 603-605 [1955]; eingegangen am 11. Juni 1955)

Zur Bündelung und Fokussierung des Ionenstrahls bei Bandgeneratoranlagen mit veränderlicher Spannung wird die bisher meist verwendete ein- oder zweistufige elektrostatische Nachbeschleunigungslinse zwischen Ionenquelle und Nachbeschleunigungsröhre, die relativ hohe Spannungen benötigt, ersetzt durch eine Linsenkette aus mehreren Beschleunigungs- und Verzögerungslinsen, die mit einer festen Spannung von 12 kV betrieben werden. Die Anpassung der Fokussierungseigenschaften des gesamten Linsensystems an die jeweilige Generatorspannung erfolgt durch Änderung der Energie der in das System eintretenden Ionen, im Falle der HF-Ionenquelle durch Änderung der Zieh-Spannung.

Qei Van de Graaff-Generatoren bereitet die Auf-Bgabe, auch bei veränderter Generatorspannung immer eine Fokussierung des Ionenstrahls auf das Target zu erreichen, einige Schwierigkeiten, weil die Abbildungseigenschaften der Beschleunigungsröhre allein sich stark mit der Generatorspannung ändern. Es ist üblich, zwischen die Ionenquelle und die Beschleunigungsröhre ein weiteres el. stat. Linsensystem einzuschalten, dessen Abbildungseigenschaften durch Änderung der Linsenspannungen seinerseits den jeweiligen Linsendaten der Beschleunigungsröhre angepaßt werden. Im allgemeinen werden für diese Hilfslinsen vorwiegend Beschleunigungslinsen mit relativ hohen Spannungen (20 – 60 kV) benutzt 1. Die Herstellung eines Linsensystems unter Verwendung erheblich niedrigerer Spannungen würde zweierlei Vorteile bieten: Einerseits wäre man nicht gezwungen, auf der Hochspannungsseite hohe Spannungen für die Linsen zu erzeugen, andererseits wirken sich kleine Energien der in die Beschleunigungssäule eintretenden Ionen günstig auf deren Abbildungseigenschaften aus. Bei einem hier aufgebauten Bandgenerator mit HF-Ionenquelle wurde eine Zwischenlinse in Form einer mehrfachen Folge von Beschleunigungs- und Verzögerungslinsen gebaut, bei der man z. B. mit einer festen Spannung von 12 kV dieselbe Brechkraft erreicht wie mit den sonst üblichen hohen Spannungen.

Die geometrischen Verhältnisse, die der Ionenoptik eines Van de Graaff-Generators mit Hochfrequenz-Ionenquelle zugrundeliegen, sind aus Abb. 1 ersichtlich. Der Ausgangsort der Ionen in der Ionenquelle (Objektpunkt) muß zunächst durch die Zwischenlinse auf einen Bildpunkt B_1 abgebildet werden, der seinerseits durch die Beschleunigungsröhre auf den festliegenden Ort B_2 (Target) abgebildet wird. B_1 kann auch virtuell, d. h. A_1 negativ sein.

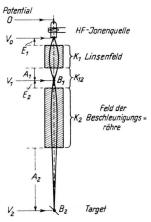


Abb. 1. Fokussierung des Ionenstrahls im Van de Graaff, schematisch und nicht maßstabgerecht. Maße: E_1 =2 cm; K_{12} =20 cm; K_2 =175 cm; A_2 =175 cm.

Die Abbildungseigenschaften der Beschleunigungsröhre mit der Länge K_2 sind in der Weise von der Generatorspannung abhängig, daß bei fester Bildweite A_2 die Objektweite E_2 mit wachsender Generatorspannung kleiner wird. Allerdings ist nicht die Generatorspannung V_2-V_1 selbst, sondern allgemein das Verhältnis von Austrittsenergie V_2 zu Eintrittsenergie V_1 der Ionen, also die Energievergrößerung $N_2=V_2/V_1$, maßgebend.

¹ B. Jannings, Proc. Instn. Radio Engrs., Aust. 38, 1126 [1950]; A. G. Ward, Helv. Phys. Acta 23, (Suppl. III) 27 [1950]; E. G. Rogers u. C. H. Turner, Rev. Sci. Instrum. 24, 805 [1953]; R. A. Peck u. H. P. Eubank, Rev. Sci. Instrum. 26, 444 [1955].

Die Änderung der Objektweite E_2 der Beschleunigungsröhre mit der Energievergrößerung N_2 kann man nach einer Formel von Elkind² berechnen, die sich unter Verwendung der hier vorliegenden Maße $K_2 = A_2 = 175$ cm vereinfacht zu

$$E_2 = \frac{700(7\sqrt{N_2} - 5)}{(N_2 - 1)(7\sqrt{N_2} - 15)}.$$

Diese Abhängigkeit ist in Abb. 2 aufgetragen. Aus dem unteren Teil des Diagramms erkennt man deutlich, wie bei fester Generatorspannung mit kleinerem V_1 der Wert N_2 rasch größer und damit die Gegenstandsweite E_2 kleiner wird.

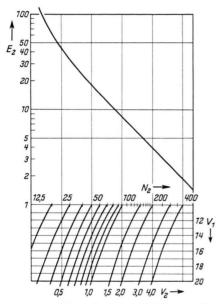


Abb. 2. Abhängigkeit der Objektweite E_2 der Beschleunigungsröhre von N_2 .

Für die Zwischenlinse wurde eine Folge von 3 Beschleunigungs- und 2 Verzögerungslinsen gewählt, die mit der gleichen Spannung von $12\,\mathrm{kV}$ betrieben werden. Die Geometrie der Linse ist aus Abb. 3 ersichtlich. Die Objektweite dieser Linse liegt fest, die Bildweite hängt wieder ab vom Energievergrößerungsfaktor $N_1 = V_1/V_0$; V_0 ist die Energie der aus der HF-Ionenquelle austretenden Ionen. N_1 kann durch Änderung der Ziehspannung an der HF-Ionenquelle verändert werden. Wie aus den noch folgenden Kurven ersichtlich ist, kann man durch geeignete Einstellung von N_1 dafür sorgen, daß das Bild bei B_1 dann gerade in den durch die Generatorspannung geforderten (Abb. 2) Abstand E_2 von der Beschleu-

nigungsröhre gebracht wird, um ein scharfes Bild auf dem Target zu erhalten.

Die ionenoptischen Daten der Zwischenlinse lassen sich nach den im vorhergehenden Aufsatz von

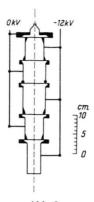


Abb. 3. Elektrodensystem der Zwischenlinse.

Timm³ dargelegten Berechnungen angeben. Als Grundlage dazu dient die Ausmessung des durch die gewählte Geometrie bestimm-Achsenpotentialverlaufs im elektrolytischen Trog (s. Abb. 4). In Abb. 4 ist die der Berechnung zugrunde liegende Approximation des Potentialverlaufs eingezeichnet. Man hat also 5 Linsen mit 4 feldfreien Zwischenräumen. Nach Anwendung des beschriebenen Matrizenrechenverfahrens³ bekommt man die Abhängigkeit der auf die Gesamtlinse bezogenen Brennweiten der Gesamtzwischenlinse von N_1 , wie sie in Abb. 5 dar-

gestellt ist. Zum Vergleich ist die Eingangsbrennweite einer Einzellinse $F_{\rm e}/K$ mit eingezeichnet, woraus man die beträchtliche Verkürzung der Brennweiten bei der verwendeten Linsenfolge erkennt. Schließlich zeigt Abb. 6 die Abhängigkeit der Bildweite A_1 von N_1 bzw. der Ziehspannung V_0 (für die

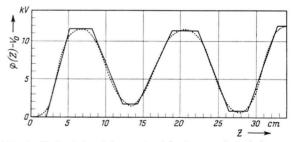


Abb. 4. Verlauf des Achsenpotentials (\ldots) und dessen Approximation durch Geradenstücke (----). Bei Z=0 liegt der Austrittskanal der Ionenquelle.

feste Linsenspannung von $12\,\mathrm{kV}$ und die hier verwendete Objektweite E_1 von $2\,\mathrm{cm}$, also für $E_1/K_1=0,065$). A_1 wandert demnach von $+\infty$ nach $-\infty$, während nach Abb. 5 F_{el}/K_1 von 0,065 für $N_1=2,3$ aus mit steigendem N_1 alle Werte über $-\infty$ und $+\infty$ bis 0,065 bei $N_1=7,3$ annehmen kann. Man kann auch einsehen, daß $A_1=0$ stets an den Stellen N_1^0 auftritt, wo

$$E_1 = 4 K_1 / (\sqrt{N_1^0} + 1) (\sqrt{N_1^0} - 3)$$

³ U. Timm, voranstehende Veröffentlichung.

ist, wie in Teil I gefordert wurde. Mit einer einzelnen Beschleunigungslinse günstiger Länge erhält man vergleichbare Brennweiten bei gleicher Objektweite $E_1 = 2$ cm erst für höhere Werte von N (N > 15), also höhere Linsenspannungen.

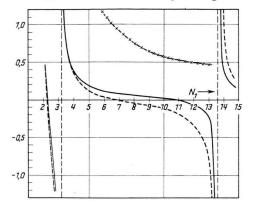


Abb. 5. Errechnete Brennweiten der Linsenkombination nach Abb. 4 in Abhängigkeit von N_1 . Ordinate — F_{e1}/K_1 , F_{a1}/K_1 , $\times \times \times - \times - F_e/K$, Einzellinse.

Um die Fehler kennenzulernen, die durch die obengenannte Approximation des Potentialverlaufs entstehen könnten, wurde das Achsenpotential für

⁴ H. Neuert, H. J. Stuckenberg u. H. P. Weidner, Z. angew. Phys. 6, 303 [1954]; O. Reifenschweiler, Ann. Phys., Lpz. 14, 33 [1954].

einen besonderen Fall (N=3) durch eine größere Zahl (34) Segmente angenähert. Dafür ergab sich eine Bildweite von 13 cm gegenüber 9 cm bei der groben Näherung der Abb. 4.

Die Fokussierungsverhältnisse wurden z. B. für eine Generatorspannung von $450\,\mathrm{kV}$ überprüft. Die Fokussierung in B₂ war optimal bei einer Ziehspannung an der HF-Ionenquelle von 2,4 kV. Dabei ist nach Abb. 2 und Abb. 6 $N_2=30\,\mathrm{cm}$ und $A_1=-5\,\mathrm{cm}$.

Bei einer Änderung der Ziehspannung um 20% war der Strahl bereits so divergent, daß die untersten Elektroden der Entladungsröhren getroffen wurden. Für eine Generatorspannung von 1,5 MV müßte die Ionenenergie V_0 nach Abb. 2 u. 6 6,0 keV sein. Wie schon be-

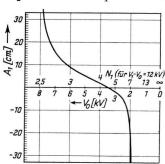


Abb. 6. Abhängigkeit der Bildweite von V_0 bzw. N_1 für $V_1 - V_0 = 12$ kV und $E_1 = 2$ cm.

kannt⁴, liegen diese Ziehspannungen durchaus im günstigen Arbeitsbereich der HF-Ionenquellen. Gegebenenfalls kann man die Linsenspannung noch etwas kleiner machen $(N_1$ kleiner).

Massenspektrographen mit Doppelfokussierung zweiter Ordnung*

Von H. HINTENBERGER, H. WENDE und L. A. KÖNIG

Aus dem Max-Planck-Institut für Chemie, Mainz

(Z. Naturforschg. 10a, 605-612 [1955]; eingegangen am 14. Juni 1955)

Es werden die Bedingungen dafür abgeleitet, unter denen in Massenspektrographen mit Doppelfokussierung erster Ordnung für alle Massen entlang einer geraden Bildkurve (d. h. Richtungs- und Geschwindigkeitsfokussierung erster Ordnung) die Bildfehler korrigiert werden. Es wird gezeigt, daß durch besondere Wahl des Verhältnisses der Bahnradien $r_{\rm e}/r_{\rm m}$ im elektrischen und magnetischen Feld für eine Masse bzw. für einen Punkt auf der Photoplatte Richtungsfokussierung zweiter Ordnung erreicht werden kann. Durch besondere Wahl des Abstandes d der beiden Ablenkfelder kann die von der Geschwindigkeitsabweichung allein herrührende Linienverbreiterung und auch die gemischte, durch den Öffnungswinkel und die Geschwindigkeitsabweichung bedingte Linienverbreiterung kompensiert werden. Für Apparate mit gegensinniger Ablenkung im elektrischen und magnetischen Feld ist es nicht möglich, alle drei von diesen Bildfehlern gleichzeitig zu beseitigen, während bei gleichsinniger Ablenkung die gleichzeitige Kompensation dieser Bildfehler möglich ist und damit Doppelfokussierung zweiter Ordnung für einen Punkt der Photoplatte erreicht werden kann. Es wird eine Reihe von Beispielen für Massenspektrographen mit Doppelfokussierung zweiter Ordnung angegeben.

Massenspektrographen werden heute in der Regel als doppelfokussierende Apparate gebaut, bei denen die in verschiedenen Richtungen durch den Ein-

* Über die Resultate dieser Arbeit wurde bereits auf der Physikertagung am 30. April 1955 in Bad Nauheim berichtet. gangsschlitz eintretenden Ionen trotz ihrer etwas verschiedenen Geschwindigkeiten am Austrittsschlitz oder auf einer Photoplatte zumindest für eine Massenlinie zu einem scharfen Bild vereinigt werden. Die Bedingungen dafür, daß eine solche Doppelfokussie-