eine vorhandene Diode ist die Elektrodenfläche F und der Elektronenabstand d der Röhre bekannt. Nach Gl. (1) ergibt sich dann unmittelbar die Kapazität der Diode. Der über die Diode fließende Gleichstrom \bar{I} ist leicht zu messen, ebenso die Betriebsfrequenz. Es ergibt sich somit nach Gl. (14b) der Laufwinkel \bar{a}_d . Bei großen Aussteuerungsgraden kann im praktischen Betrieb die Richtspannung leicht meßtechnisch bestimmt werden: man mißt die Gleichspannung \bar{U} an der Diode und stellt dann bei abgeschalteter Hochfrequenz die Gleichspannung auf einen solchen Wert \overline{U}_0 ein, daß derselbe Gleichstrom \overline{I} wie zuvor fließt. Nunmehr ermittelt man sofort nach dem Diagramm Abb. 7 die Größe des Stromverhältnisses k. Somit ist auch der Strom \hat{I} bekannt; aus dem Diagramm der Abb. 4 folgt der Elektronenleitungsstrom an der Anode, aus dem Diagramm der Abb. 5 die Größe des Wechselstromwiderstandes der Diode und somit auch die Größe der Wechselspannung.

Anwenden lassen sich die Rechenergebnisse bei-

spielsweise auf die Diode, die in Kombination mit einem Schwingungskreis bei Höchstfrequenz als Generator wirkt². Sämtliche Betriebsbedingungen und Wirkungsgrade, die übrigens den Wert von 3% nicht überschreiten können, lassen sich ermitteln. Weiterhin läßt sich errechnen, wie sich eine Diode verhält, die man zur Messung von Wechselspannungen sehr hoher Frequenzen anwendet. Es ergibt sich, daß die bei niedrigen Frequenzen durchgeführte Eichung nicht mehr gültig ist und daß die Meßdiode die zu messende Spannungsquelle erheblich belastet. Auch auf das Verhalten der gittergesteuerten Röhren bei Höchstfrequenz ist die Rechnung unmittelbar anzuwenden, denn die Entladungsstrecke zwischen Kathode und erstem Gitter der Röhre läßt sich immer als eine Diode auffassen, sofern man die "effektive Spannung" richtig bestimmt, die an der in der Gitterebene zu denkenden "Ersatzanode" liegt*.

⁸ F. W. Gundlach, Berechnung der Gittersteuerung in Elektronenröhren mittels einer Ersatzbilddarstellung, Arch. Elektrotechn. 37, 463 [1943].

NOTIZEN

Untersuchungen im System Rh-Sn

Von Konrad Schubert

Aus dem Kaiser-Wilhelm-Institut für Metallforschung, Stuttgart

(Z. Naturforschg. 2a, 120 [1947]; eingeg. am 6. Dez. 1946)

Im Anschluß an kristallchemische Untersuchungen in binären Systemen von Übergangsmetallen mit Elementen der 4. Nebengruppe¹ wurde das System RhSn röntgenographisch und mikroskopisch untersucht.

Mit dem Rh(Sn)-Mischkristall (Gitterkonstante $a_{uv} = 3.85 \text{ A}$) bildet Rh₂Sn ein Eutektikum. Der homogene Bereich von Rh₃Sn₂ geht von 56 bis 59 Gew.-% Rh. Die Struktur der Phase ist vom aufgefüllten B 8-Typ.²

Gitterkonstanten einer Probe mit 56 Gew.-% Rh: $a = 4.331 \text{ Å}, \qquad c = 5.542 \text{ Å}.$ Aus der Phase Rh_3Sn_2 entsteht peritektisch RhSn vom Typ B 20 mit den Parametern

$$a_{io} = 5{,}122 \text{ Å}, \ X_{\mathbf{Rh}} = 0{,}10 \ X_{\mathbf{Sn}} = 0{,}40$$

Mit RhSn bildet RhSn₂ ein Eutektikum bei etwa 34 Gew.-% Rh. RhSn₂ ist isotyp zu PdSn₂.

Die peritektisch entstehende Verbindung der ungefähren Zusammensetzung RhSn₄ bildet mit Sn ein Eutektikum.

- ¹ H. Nowotny u. K. Schubert, Metallforschg. 1, 17 [1946]; 1, 23 [1946].
- ² Bezeichnung nach P. P. Ewald u. C. Hermann, Strukturbericht der Z. Kristallogr., Kristallgeometr., Kristallphysik, Kristallchem.

BERICHTE

Die Uranspaltprodukte nach einem amerikanischen Bericht

Im November 1946 wurde vom Plutonium Project eine Übersicht über die Daten und Ausbeuten der Uranspaltprodukte veröffentlicht¹.

¹ Nuclei Formed in Fission, Fission Yields and Chain Relationships, J. Amer. chem. Soc. **68**, 2411 bis Der Bericht ist von J. M. Siegel zusammengestellt worden und enthält eine einundzwanzig Seiten um-

2442 [1946]. Adresse für Sonderdrucke: Plutonium Project File. The American Chemical Society, 1155 16th St. Washington 6 D.C.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.